This work is devoted to the study of Riemann solitons in the setting of the energy-momentum squared gravity framework, expressed as $ f(r, T^2) $, regarded as a deformation of Einstein's general relativity. Our attention is placed on the particular model $ f(r, T^2) = r+\lambda T^2 $, coupled with a perfect fluid, where the dynamics naturally admit Riemann solitons. Within the steady formulation of such solitons, we obtain the corresponding fluid relation of state under $ f(r, T^2) $-gravity. Moreover, by exploiting the solitonic structure, we further analyze the admissibility of energy conditions, the emergence of black hole geometries, and the manifestation of singularities in the presence of a perfect fluid for this modified gravitational scenario.
Citation: Wedad A Alharbi, Shahroud Azami, Mehdi Jafari, Abdul Haseeb. Riemann solitons on perfect fluid within $ f ({r}, {T^{2}}) $-gravity[J]. AIMS Mathematics, 2025, 10(12): 30331-30353. doi: 10.3934/math.20251332
This work is devoted to the study of Riemann solitons in the setting of the energy-momentum squared gravity framework, expressed as $ f(r, T^2) $, regarded as a deformation of Einstein's general relativity. Our attention is placed on the particular model $ f(r, T^2) = r+\lambda T^2 $, coupled with a perfect fluid, where the dynamics naturally admit Riemann solitons. Within the steady formulation of such solitons, we obtain the corresponding fluid relation of state under $ f(r, T^2) $-gravity. Moreover, by exploiting the solitonic structure, we further analyze the admissibility of energy conditions, the emergence of black hole geometries, and the manifestation of singularities in the presence of a perfect fluid for this modified gravitational scenario.
| [1] | C. Udriste, Riemann flow and Riemann wave via bialternate product Riemannian metric, arXiv: 1112.4279, 2012. https://doi.org/10.48550/arXiv.1112.4279 |
| [2] |
S. Azami, M. Jafari, Riemann solitons on relativistic space-times, Gravit. Cosmol., 30 (2024), 306–311. https://doi.org/10.1134/S020228932470021X doi: 10.1134/S020228932470021X
|
| [3] |
S. Hajiaghasi, S. Azami, Gradient Ricci Bourguignon solitons on perfect fluid spacetimes, J. Mahani Math. Res., 13 (2024), 1–12. https://doi.org/10.22103/jmmr.2023.20705.1376 doi: 10.22103/jmmr.2023.20705.1376
|
| [4] |
M. Jafari, S. Azami, Riemann solitons on Sasakian 3-manifolds, Filomat, 39 (2025), 7371–7382. https://doi.org/10.2298/FIL2521371J doi: 10.2298/FIL2521371J
|
| [5] | R. K. Sachs, W. Hu, General relativity for mathematician, New York: Springer, 1997. https://doi.org/10.1007/978-1-4612-9903-5 |
| [6] |
G. G. Biswas, X. Chen, U. C. De, Riemann solitons on almost co-Kähler manifolds, Filomat, 36 (2022), 1403–1413. https://doi.org/10.2298/FIL2204403B doi: 10.2298/FIL2204403B
|
| [7] |
M. N. Devaraja, H. A. Kumara, V. Venkatesha, Riemannian soliton within the framework of contact geometry, Quaest. Math., 44 (2021), 637–651. https://doi.org/10.2989/16073606.2020.1732495 doi: 10.2989/16073606.2020.1732495
|
| [8] |
V. Venkatesha, H. A. Kumara, M. N. Devaraja, Riemann solitons and almost Riemann solitons on almost Kenmotsu manifolds, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050105. https://doi.org/10.1142/S0219887820501054 doi: 10.1142/S0219887820501054
|
| [9] |
K. De, U. C. De, Riemann solitons on para-Sasakian geometry, Carpathian Math. Publ., 14(2022), 395–405. https://doi.org/10.15330/cmp.14.2.395-405 doi: 10.15330/cmp.14.2.395-405
|
| [10] |
R. Bossly, S. Azami, D. S. Patra, A. Haseeb, Riemann solitons on spacetimes with pure radiation metrics, AIMS Mathematics, 10 (2025), 18094–18107. https://doi.org/10.3934/math.2025806 doi: 10.3934/math.2025806
|
| [11] |
M. Jafari, S. Azami, Complete shrinking Riemann solitons, Arab J. Math. Sci., 2025, 1–6. https://doi.org/10.1108/AJMS-11-2024-0169 doi: 10.1108/AJMS-11-2024-0169
|
| [12] | S. Azami, R. Bossly, A. Haseeb, Riemann solitons on Egorov and Cahen-Wallach symmetric spaces, AIMS Mathematics, 10 (2025), 1882–1899. http://dx.doi.org/2010.3934/math.2025087 |
| [13] |
S. Azami, M. Jafari, Riemann solitons on perfect fluid spacetimes in $f(r, T)$-gravity, Rend. Circ. Mat. Palermo, II. Ser, 74 (2025), 2. https://doi.org/10.1007/s12215-024-01116-1 doi: 10.1007/s12215-024-01116-1
|
| [14] |
S. Azami, U. C. De, Relativistic spacetimes admitting h-almost conformal $\omega$-Ricci-Bourguignon solitons, Int. J. Geom. Methods Mod. Phys., 22 (2025), 2550067. https://doi.org/10.1142/S0219887825500677 doi: 10.1142/S0219887825500677
|
| [15] |
S. Azami, M. Jafari, N. Jamal, A. Haseeb, Hyperbolic Ricci solitons on perfect fluid spacetimes, AIMS Mathematics, 9 (2024), 18929–18943. https://doi.org/10.3934/math.2024921 doi: 10.3934/math.2024921
|
| [16] |
S. Azami, U. C. De, Generalized $\mathcal{Z}$-solitons on magneto-fluid spacetimes in $f(r)$-gravity, Int. J. Theor. Phys., 64 (2025), 33. https://doi.org/10.1007/s10773-025-05900-2 doi: 10.1007/s10773-025-05900-2
|
| [17] |
P. J. E. Peebles, B. Ratra, The cosmological constant and dark energy, Rev. Mod. Phys., 75 (2003), 559. https://doi.org/10.1103/RevModPhys.75.559 doi: 10.1103/RevModPhys.75.559
|
| [18] |
J. M. Overduin, P. S. Wesson, Dark matter and background light, Phys. Rep., 402 (2004), 267–406. https://doi.org/10.1016/j.physrep.2004.07.006 doi: 10.1016/j.physrep.2004.07.006
|
| [19] |
T. P. Sotiriou, V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys., 82(2010), 451–497. https://doi.org/10.1103/RevModPhys.82.451 doi: 10.1103/RevModPhys.82.451
|
| [20] | L. Parker, D. J. Toms, Quantum field theory in curved spacetime: Quantized fields and gravity, Cambridge: Cambridge University Press, 2011. https://doi.org/10.1017/CBO9780511813924 |
| [21] |
S. Capozziello, C. A. Mantica, L. G. Molinari, General properties of f(R) gravity vacuum solutions, Int. J. Geom. Methods Mod. Phys., 29 (2020), 2050089. https://doi.org/10.1142/S0218271820500893 doi: 10.1142/S0218271820500893
|
| [22] |
F. Briscese, E. Elizalde, S. Nojiri, S. D. Odintsov, Phantom scalar dark energy as modified gravity: Understanding the origin of the big rip singularity, Phys. Lett. B, 646 (2007), 105–111. https://doi.org/10.1016/j.physletb.2007.01.013 doi: 10.1016/j.physletb.2007.01.013
|
| [23] |
T. Kobayashi, K. I. Maeda, Relativistic stars in f(R) gravity, and absence thereof, Phys. Rev. D, 78 (2008), 064019. https://doi.org/10.1103/PhysRevD.78.064019 doi: 10.1103/PhysRevD.78.064019
|
| [24] |
A. V. Astashenok, S. Capozziello, S. D. Odintsov, Further stable neutron star models from f(R) Gravity, J. Cosmol. Astropart. Phys., 2013 (2013), 040. https://doi.org/10.1088/1475-7516/2013/12/040 doi: 10.1088/1475-7516/2013/12/040
|
| [25] |
A. V. Astashenok, S. D. Odintsov, A. de la Cruz-Dombriz, The realistic models of relativistic stars in f(R) = R + $\alpha R^2$ gravity, Classical Quantum Gravity, 34 (2017), 205008. https://doi.org/10.1088/1361-6382/aa8971 doi: 10.1088/1361-6382/aa8971
|
| [26] |
A. V. Astashenok, S. Capozziello, S. D. Odintsov, Extreme neutron stars from extended theories of gravity, J. Cosmol. Astropart. Phys., 2015 (2005), 001. https://doi.org/10.1088/1475-7516/2015/01/001 doi: 10.1088/1475-7516/2015/01/001
|
| [27] |
T. Harko, F. S. N. Lobo, S. Nojiri, S. D. Odintsov, f(R, T)-gravity, Phys. Rev. D, 84 (2011), 024020. https://doi.org/10.1103/PhysRevD.84.024020 doi: 10.1103/PhysRevD.84.024020
|
| [28] |
N. Katirci, M. Kavuk, $f(R, T_{\mu\nu}T^{\mu\nu})$ gravity and cardassian-like expansion as one of its consequences, Eur. Phys. J. Plus, 129 (2014), 163. https://doi.org/10.1140/epjp/i2014-14163-6 doi: 10.1140/epjp/i2014-14163-6
|
| [29] |
O. Akarsu, J. D. Barrow, S. Ckintoglu, K. Y. Eksi, N. Katirci, Constraint on energy-momentum squared gravity from neutron stars and its cosmological implications, Phys. Rev. D, 97 (2018), 124017. https://doi.org/10.1103/PhysRevD.97.124017 doi: 10.1103/PhysRevD.97.124017
|
| [30] |
C. V. R. Board, J. D. Barrow, Cosmological models in energy-momentum-squared gravity, Phys. Rev. D, 96 (2017), 123517. https://doi.org/10.1103/PhysRevD.96.123517 doi: 10.1103/PhysRevD.96.123517
|
| [31] |
M. Roshan, F. Shojai, Energy-momentum squared gravity, Phys. Rev. D, 94 (2016), 044002. https://doi.org/10.1103/PhysRevD.94.044002 doi: 10.1103/PhysRevD.94.044002
|
| [32] |
O. Akarsu, N. Katirci, S. Kumar, Cosmic acceleration in a dust-only universe via energy-momentum powered gravity, Phys. Rev. D, 97 (2018), 024011. https://doi.org/10.1103/PhysRevD.97.024011 doi: 10.1103/PhysRevD.97.024011
|
| [33] |
N. Nari, M. Roshan, Compact stars in energy-momentum squared gravity, Phys. Rev. D, 98 (2018), 024031. https://doi.org/10.1103/PhysRevD.98.024031 doi: 10.1103/PhysRevD.98.024031
|
| [34] |
S. Bahamonde, M. Marciu, P. Rudra, Dynamical system analysis of generalized energy-momentum squared gravity, Phys. Rev. D, 100 (2019), 083511. https://doi.org/10.1103/PhysRevD.100.083511 doi: 10.1103/PhysRevD.100.083511
|
| [35] |
M. Jafari, Generalized cross-curvature solitons of 3D Lorentzian lie groups, Axioms, 14 (2025), 695. https://doi.org/10.3390/axioms14090695 doi: 10.3390/axioms14090695
|
| [36] |
S. Azami, M. Jafari, A. Haseeb, A. A. H. Ahmadini, Cross curvature solitons of Lorentzian three-dimensional lie groups, Axioms, 13 (2024), 211. https://doi.org/10.3390/axioms13040211 doi: 10.3390/axioms13040211
|
| [37] |
M. Novello, M. J. Reboucas, The stability of a rotating universe, Astrophys. J., 225 (1978), 719–724. https://doi.org/10.1086/156533 doi: 10.1086/156533
|
| [38] | B. O'Neill, Semi-Riemannian geometry with application to relativity, Academic Press, 1983. |
| [39] |
L. O. Pimentel, Energy-momentum tensor in the general scalar-tensor theory, Class. Quantum Grav., 6 (1989), L263. https://doi.org/10.1088/0264-9381/6/12/005 doi: 10.1088/0264-9381/6/12/005
|
| [40] |
R. Jackiw, V. P. Nair, S. Y. Pi, A. P. Polychronakos, Perfect fluid theory and its extensions, J. Phys. A Math. Gen., 37 (2004), R327. https://doi.org/10.1088/0305-4470/37/42/R01 doi: 10.1088/0305-4470/37/42/R01
|
| [41] | M. Ali, Z. Ahsan, Ricci solitons and symmetries of spacetime manifold of general relativity, Glob. J. Adv. Res. Class. Mod. Geom., 1 (2014), 75–84. |
| [42] |
Y. Li, A. Haseeb, M. Ali, LP-Kenmotsu manifolds admitting $\eta$-Ricci solitons and spacetime, J. Math., 2022 (2022), 6605127. https://doi.org/10.1155/2022/6605127 doi: 10.1155/2022/6605127
|
| [43] |
Venkatesha, H. A. Kumara, Ricci solitons and geometrical structure in a perfect fluid spacetime with torse-forming vector field, Afr. Math., 30 (2019), 725–736. https://doi.org/10.1007/s13370-019-00679-y doi: 10.1007/s13370-019-00679-y
|
| [44] |
K. Ramasamy, S. Roy, Solitonic geometry of magneto fluid spacetimes: Ricci Bourguignon insights and energy momentum characterizations, J. Geom. Phys., 217 (2025), 105609. https://doi.org/10.1016/j.geomphys.2025.105609 doi: 10.1016/j.geomphys.2025.105609
|
| [45] |
M. D. Siddiqi, F. Mofarreh, Modified F(R, T$^2$)-gravity coupled with perfect fluid admitting hyperbolic Ricci soliton type symmetry, Axioms, 13 (2024), 708. https://doi.org/10.3390/axioms13100708 doi: 10.3390/axioms13100708
|
| [46] | V. I. Arnold, Mathematical methods of classical mechanics, New York: Springer, 1989. https://doi.org/10.1007/978-1-4757-2063-1 |
| [47] |
A. Fialkow, Conformal geodesics, Trans. Am. Math. Soc., 45 (1939), 443–473. https://doi.org/10.1090/S0002-9947-1939-1501998-9 doi: 10.1090/S0002-9947-1939-1501998-9
|
| [48] |
S. K. Srivastava, Scale factor dependent equation of state for curvature inspired dark energy, phantom barrier and late cosmic acceleration, Phys. Lett. B, 643 (2006), 1–4. https://doi.org/10.1016/j.physletb.2006.10.035 doi: 10.1016/j.physletb.2006.10.035
|
| [49] |
U. C. De, A. Sardar, F. Mofarreh, Relativistic spacetimes admitting almost Schouten solitons, Int. J. Geom. Methods Mod. Phys., 20 (2023), 2350147. https://doi.org/10.1142/S0219887823501475 doi: 10.1142/S0219887823501475
|
| [50] | G. P. Pokhariyal, R. S. Mishra, The curvature tensor and their relativistic significance, Yokohama Math. J., 18 (1970), 105–108. |
| [51] |
F. J. Tipler, Energy condition and spacetime singularities, Phys. Rev. D, 17 (1978), 2521. https://doi.org/10.1103/PhysRevD.17.2521 doi: 10.1103/PhysRevD.17.2521
|
| [52] | S. W. Hawking, G. F. R. Ellis, The Large scale structure of space-time, Cambridge: Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511524646 |
| [53] |
S. Azami, G. Fasihi-Ramandi, M. Zohrehvand, Riemann solitons on Vaidya spacetimes, Int. J. Geom. Methods Mod. Phys., 22 (2025), 2550132. https://doi.org/10.1142/S0219887825501324 doi: 10.1142/S0219887825501324
|