For a graph $ \Gamma = (V(\Gamma), E(\Gamma)) $, a subset $ C $ of $ V(\Gamma) $ is called an $ (\alpha, \beta) $-regular set in $ \Gamma $, if every vertex of $ C $ is adjacent to exactly $ \alpha $ vertices of $ C $ and every vertex of $ V(\Gamma)\setminus C $ is adjacent to exactly $ \beta $ vertices of $ C $. In particular, if $ C $ is an $ (\alpha, \beta) $-regular set in some Cayley sum graph of a finite group $ G $ with connection set $ S $, then $ C $ is called an $ (\alpha, \beta) $-regular set of $ G $. In this paper, we considered a generalized dicyclic group $ G $ and for each subgroup $ H $ of $ G $, by giving an appropriate connection set $ S $, we determined each possibility for $ (\alpha, \beta) $ such that $ H $ is an $ (\alpha, \beta) $-regular set of $ G $.
Citation: Meiqi Peng, Yuefeng Yang. Regular sets in Cayley sum graphs on generalized dicyclic groups[J]. AIMS Mathematics, 2025, 10(12): 30186-30205. doi: 10.3934/math.20251326
For a graph $ \Gamma = (V(\Gamma), E(\Gamma)) $, a subset $ C $ of $ V(\Gamma) $ is called an $ (\alpha, \beta) $-regular set in $ \Gamma $, if every vertex of $ C $ is adjacent to exactly $ \alpha $ vertices of $ C $ and every vertex of $ V(\Gamma)\setminus C $ is adjacent to exactly $ \beta $ vertices of $ C $. In particular, if $ C $ is an $ (\alpha, \beta) $-regular set in some Cayley sum graph of a finite group $ G $ with connection set $ S $, then $ C $ is called an $ (\alpha, \beta) $-regular set of $ G $. In this paper, we considered a generalized dicyclic group $ G $ and for each subgroup $ H $ of $ G $, by giving an appropriate connection set $ S $, we determined each possibility for $ (\alpha, \beta) $ such that $ H $ is an $ (\alpha, \beta) $-regular set of $ G $.
| [1] |
M. Amooshahi, B. Taeri, On Cayley sum graphs of non-abelian groups, Graph. Combinator., 32 (2016), 17–29. https://doi.org/10.1007/s00373-015-1535-4 doi: 10.1007/s00373-015-1535-4
|
| [2] | A. Behajaina, R. Maleki, A. S. Razafimahatratra, On non-normal subgroup perfect codes, Australas. J. Comb., 81 (2021), 474–479. |
| [3] |
X. C. Bu, J. J. Li, J. Y. Zhang, Subgroup perfect codes of 2-groups with cyclic maximal subgroups, Bull. Malays. Math. Sci. Soc., 48 (2025), 78. https://doi.org/10.1007/s40840-025-01866-w doi: 10.1007/s40840-025-01866-w
|
| [4] |
D. M. Cardoso, P. C. Rama, Equitable bipartitions of graphs and related results, Journal of Mathematical Sciences, 120 (2004), 869–880. https://doi.org/10.1023/b:joth.0000013552.96026.87 doi: 10.1023/b:joth.0000013552.96026.87
|
| [5] |
J. Y. Chen, Y. P. Wang, B. Z. Xia, Characterization of subgroup perfect codes in Cayley graphs, Discrete Math., 343 (2020), 111813. https://doi.org/10.1016/j.disc.2020.111813 doi: 10.1016/j.disc.2020.111813
|
| [6] |
T. T. Chelvam, S. Mutharasu, Efficient open domination in Cayley graphs, Appl. Math. Lett., 25 (2012), 1560–1564. https://doi.org/10.1016/j.aml.2011.12.036 doi: 10.1016/j.aml.2011.12.036
|
| [7] |
F. R. K. Chung, Diameters and eigenvalues, J. Amer. Math. Soc., 2 (1989), 187–196. https://doi.org/10.1090/s0894-0347-1989-0965008-x doi: 10.1090/s0894-0347-1989-0965008-x
|
| [8] |
I. J. Dejter, O. Serra, Efficient dominating sets in Cayley graphs, Discrete Appl. Math., 129 (2003), 319–328. https://doi.org/10.1016/s0166-218x(02)00573-5 doi: 10.1016/s0166-218x(02)00573-5
|
| [9] | P. Delsarte, An algebraic approach to the association schemes of coding theory, Netherlands: N. V. Philips' Gloeilampenfabrieken, 1973. |
| [10] |
Y. P. Deng, Efficient dominating sets in circulant graphs with domination number prime, Inform. Process. Lett., 114 (2014), 700–702. https://doi.org/10.1016/j.ipl.2014.06.008 doi: 10.1016/j.ipl.2014.06.008
|
| [11] |
Y. P. Deng, Y. Q. Sun, Q. L. Liu, H. C. Wang, Efficient dominating sets in circulant graphs, Discrete Math., 340 (2017), 1503–1507. https://doi.org/10.1016/j.disc.2017.02.014 doi: 10.1016/j.disc.2017.02.014
|
| [12] | H. Gavlas, K. Schultz, P. Slater, Efficient open domination in graphs, Sci. Ser. A, Math. Sci. (N. S.), 6 (2003), 77–84. |
| [13] | H. C. A. Van Tilborg, J. M. Goethals, Uniformly packed codes, Philips Research Reports, 30 (1975), 9–36. |
| [14] | T. W. Haynes, S. Hedetniemi, P. Slater, Fundamentals of domination in graphs, Boca Raton: CRC Press, 1998. https://doi.org/10.1201/9781482246582 |
| [15] |
H. Huang, B. Z. Xia, S. M. Zhou, Perfect codes in Cayley graphs, SIAM J. Discrete Math., 32 (2018), 548–559. https://doi.org/10.1137/17m1129532 doi: 10.1137/17m1129532
|
| [16] |
Y. Khaefi, Z. Akhlaghi, B. Khosravi, On the subgroup perfect codes in Cayley graphs, Des. Codes Cryptogr., 91 (2023), 55–61. https://doi.org/10.1007/s10623-022-01098-0 doi: 10.1007/s10623-022-01098-0
|
| [17] |
Y. Khaefi, Z. Akhlaghi, B. Khosravi, On the subgroup regular sets in Cayley graphs, J. Algebr. Comb., 61 (2025), 38. https://doi.org/10.1007/s10801-025-01406-6 doi: 10.1007/s10801-025-01406-6
|
| [18] |
M. Knor, P. Poto$\acute{c}$nik, Efficient domination in cubic vertex-transitive graphs, Eur. J. Combin., 33 (2012), 1755–1764. https://doi.org/10.1016/j.ejc.2012.04.007 doi: 10.1016/j.ejc.2012.04.007
|
| [19] |
Y. S. Kwon, J. Lee, M. Y. Sohn, Classification of efficient dominating sets of circulant graphs of degree 5, Graph. Combinator., 38 (2022), 120. https://doi.org/10.1007/s00373-022-02527-6 doi: 10.1007/s00373-022-02527-6
|
| [20] |
J. Lee, Independent perfect domination sets in Cayley graphs, J. Graph Theor., 37 (2001), 213–219. https://doi.org/10.1002/jgt.1016 doi: 10.1002/jgt.1016
|
| [21] |
X. L. Ma, M. Feng, K. S. Wang, Subgroup perfect codes in Cayley sum graphs, Des. Codes. Cryptogr., 88 (2020), 1447–1461. https://doi.org/10.1007/s10623-020-00758-3 doi: 10.1007/s10623-020-00758-3
|
| [22] |
X. L. Ma, G. L. Walls, K. S. Wang, S. M. Zhou, Subgroup perfect codes in Cayley graphs, SIAM J. Discrete Math., 34 (2020), 1009–1931. https://doi.org/10.1137/19m1258013 doi: 10.1137/19m1258013
|
| [23] |
X. L. Ma, K. S. Wang, Y. F. Yang, Perfect codes in Cayley sum graphs, Electron. J. Comb., 29 (2022), 1–12. https://doi.org/10.37236/9792 doi: 10.37236/9792
|
| [24] |
A. Neumaier, Completely regular codes, Discrete Math., 106/107 (1992), 353–360. https://doi.org/10.1016/0012-365x(92)90565-w doi: 10.1016/0012-365x(92)90565-w
|
| [25] |
F. S. Seiedali, B. Khosravi, Z. Akhlaghi, Regular set in Cayley sum graphs, Bull. Malays. Math. Sci. Soc., 48 (2025), 35. https://doi.org/10.1007/s40840-024-01817-x doi: 10.1007/s40840-024-01817-x
|
| [26] |
X. M. Wang, L. Wei, S. J. Xu, S. M. Zhou, Subgroup total perfect codes in Cayley sum graphs, Des. Codes Cryptogr., 92 (2024), 2599–2613. https://doi.org/10.1007/s10623-024-01405-x doi: 10.1007/s10623-024-01405-x
|
| [27] |
X. M. Wang, S. J. Xu, On subgroup regular sets in Cayley sum graphs, Discrete Math., 347 (2024), 114059. https://doi.org/10.1016/j.disc.2024.114059 doi: 10.1016/j.disc.2024.114059
|
| [28] |
X. M. Wang, S. J. Xu, X. Y. Li, Independent perfect dominating sets in semi-Cayley graphs, Theor. Comput. Sci., 864 (2021), 50–57. https://doi.org/10.1016/j.tcs.2021.02.006 doi: 10.1016/j.tcs.2021.02.006
|
| [29] |
Y. P. Wang, B. Z. Xia, S. M. Zhou, Subgroup regular sets in Cayley graphs, Discrete Math., 345 (2022), 113023. https://doi.org/10.1016/j.disc.2022.113023 doi: 10.1016/j.disc.2022.113023
|
| [30] |
Y. P. Wang, B. Z. Xia, S. M. Zhou, Regular sets in Cayley graphs, J. Algebr. Comb., 57 (2023), 547–558. https://doi.org/10.1007/s10801-022-01181-8 doi: 10.1007/s10801-022-01181-8
|
| [31] |
Y. Wang, X. Zhang, Subgroup perfect codes of finite groups, Advances in Mathematics (China), 52 (2023), 46–52. https://doi.org/10.11845/sxjz.2021059b doi: 10.11845/sxjz.2021059b
|
| [32] |
X. M. Wang, S. J. Xu, S. M. Zhou, On regular sets in Cayley graphs, J. Algebr. Comb., 59 (2024), 735–759. https://doi.org/10.1007/s10801-024-01298-y doi: 10.1007/s10801-024-01298-y
|
| [33] | J. Yang, Q. H. Guo, W. J. Liu, L. H. Feng, The Terwilliger algebras of the group association schemes of non-abelian finite groups admitting an abelian subgroup of index 2, submitted for publication. |
| [34] |
J. Y. Zhang, On subgroup perfect codes in Cayley sum graphs, Finite Fields Th. App., 95 (2024), 102393. https://doi.org/10.1016/j.ffa.2024.102393 doi: 10.1016/j.ffa.2024.102393
|
| [35] |
J. Y. Zhang, Characterizing subgroup perfect codes by 2-subgroups, Des. Codes Cryptogr., 91 (2023), 2811–2819. https://doi.org/10.1007/s10623-023-01240-6 doi: 10.1007/s10623-023-01240-6
|
| [36] |
J. Y. Zhang, S. M. Zhou, On subgroup perfect codes in Cayley graphs, Eur. J. Combin., 91 (2021), 103228. https://doi.org/10.1016/j.ejc.2020.103228 doi: 10.1016/j.ejc.2020.103228
|
| [37] |
J. Y. Zhang, S. M. Zhou, Corrigendum to "On subgroup perfect codes in Cayley graphs", [European J. Combin. 91 (2021), 103228], Eur. J. Combin., 101 (2022), 103461. https://doi.org/10.1016/j.ejc.2021.103461 doi: 10.1016/j.ejc.2021.103461
|