This work introduced normalized representations of generalized Bessel functions, denoted by $ _{k}H_{\beta, g}(\wp) $ and $ _{k}M_{\beta, g}(\wp; s) $ in terms of $ k $ and $ (s, k) $, where $ s > k > 0 $ and $ s < 1 $. The motivation stemed from the increasing relevance of such functions in diverse fields such as mathematical physics, wave dynamics and fractional calculus, where classical Bessel functions may be limited. This study also gave detailed geometric investigation of these generalized Bessel functions. We derived sufficient conditions for these functions to be starlike and convex of order $ \zeta $ in the open unit disk $ \mathbb{U} $. The results of our analysis revealed enhanced structural flexibility over classical counterparts, making them well-suited for advanced applications in complex modeling theory. Several illustrative examples and plots were provided to validate and visualize the behavior of the proposed functions, highlighting their potential in mathematical modeling and theoretical studies. These findings enhanced the geometric function theory framework for special functions and provided a solid foundation for future analytical and applied investigations.
Citation: Syed Ali Haider Shah, Hafsa, Hajer Zaway, Salma Trabelsi. Analytic normalization and geometric behavior of generalized Bessel functions[J]. AIMS Mathematics, 2025, 10(12): 30206-30228. doi: 10.3934/math.20251327
This work introduced normalized representations of generalized Bessel functions, denoted by $ _{k}H_{\beta, g}(\wp) $ and $ _{k}M_{\beta, g}(\wp; s) $ in terms of $ k $ and $ (s, k) $, where $ s > k > 0 $ and $ s < 1 $. The motivation stemed from the increasing relevance of such functions in diverse fields such as mathematical physics, wave dynamics and fractional calculus, where classical Bessel functions may be limited. This study also gave detailed geometric investigation of these generalized Bessel functions. We derived sufficient conditions for these functions to be starlike and convex of order $ \zeta $ in the open unit disk $ \mathbb{U} $. The results of our analysis revealed enhanced structural flexibility over classical counterparts, making them well-suited for advanced applications in complex modeling theory. Several illustrative examples and plots were provided to validate and visualize the behavior of the proposed functions, highlighting their potential in mathematical modeling and theoretical studies. These findings enhanced the geometric function theory framework for special functions and provided a solid foundation for future analytical and applied investigations.
| [1] | R. Ali, M. Kamran I. Nayab, Some results of generalized $k$-fractional integral operator with $k$-Bessel function, Turkish J. Sci., 5 (2020), 157–169. |
| [2] |
İ. Aktaş, On some geometric properties and Hardy class of $q$-Bessel functions, AIMS Math., 5 (2020), 3156–3168. https://doi.org/10.3934/math.2020203 doi: 10.3934/math.2020203
|
| [3] | Á. Baricz, Generalized Bessel functions of the first kind, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-12230-9 |
| [4] |
Á. Baricz, Functional inequalities for Galué's generalized modified Bessel functions, J. Math. Inequal., 1 (2007), 183–193. https://doi.org/10.7153/jmi-01-18 doi: 10.7153/jmi-01-18
|
| [5] |
T. Bulboacă, H. M. Zayed, Analytical and geometrical approach to the generalized Bessel function, J. Inequal. Appl., 2024 (2024), 51. https://doi.org/10.1186/s13660-024-03117-1 doi: 10.1186/s13660-024-03117-1
|
| [6] |
Á. Baricz, S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 21 (2010), 641–653. https://doi.org/10.1080/10652460903516736 doi: 10.1080/10652460903516736
|
| [7] | Á. Baricz, E. Toklu, E. Kadıoğlu, Radii of starlikeness and convexity of Wright functions, Math. Commun., 23 (2018), 97–117. |
| [8] | C. Cesarano, D. Assante, A note on generalized Bessel functions, Int. J. Math. Models Methods Appl. Sci., 7 (2013), 625–629. |
| [9] | D. L. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-30351-8 |
| [10] | G. Dattoli, A. Torre, Theory and applications of generalized Bessel functions, Rome: Aracne, 1996. |
| [11] |
H. Diao, H. Y. Liu, Q. L. Meng, L. Wang, On a coupled-physics transmission eigenvalue problem and its spectral properties with applications, J. Differ. Equ., 441 (2025), 113508. https://doi.org/10.1016/j.jde.2025.113508 doi: 10.1016/j.jde.2025.113508
|
| [12] | R. Diaz, E. Pariguan, On hypergeometric functions and $k$-Pochhammer symbol, 2004, arXiv: math/0405596. |
| [13] |
G. Dattoli, E. Di Palma, S. Licciardi, E. Sabia, Generalized Bessel functions and their use in bremsstrahlung and multi-photon processes, Symmetry, 13 (2021), 159. https://doi.org/10.3390/sym13020159 doi: 10.3390/sym13020159
|
| [14] |
G. Dattoli, A. Torre, A. M. Mancho, The generalized Laguerre polynomials, the associated Bessel functions and application to propagation problems, Radiation Phys. Chem., 59 (2000), 229–237. https://doi.org/10.1016/S0969-806X(00)00273-5 doi: 10.1016/S0969-806X(00)00273-5
|
| [15] |
B. A. Frasin, I. Aldawish, On subclasses of uniformly spiral‐like functions associated with generalized Bessel functions, J. Funct. Spaces, 2019 (2019), 1329462. https://doi.org/10.1155/2019/1329462 doi: 10.1155/2019/1329462
|
| [16] |
X. Q. Huo, W. F. Yang, F. C. Jin, S. Ben, X. H. Song, Application of the generalized Bessel function to two-color phase-of-the-phase spectroscopy, Mathematics, 10 (2022), 4642. https://doi.org/10.3390/math10244642 doi: 10.3390/math10244642
|
| [17] | F. A. Idris, A. L. Buhari, T. U. Adamu, Bessel functions and their applications: solution to Schrödinger equation in a cylindrical function of the second kind and Hankel functions, Int. J. Novel Res. Phys. Chem. Math., 3 (2016), 17–31. |
| [18] |
H. Khosravian‐Arab, M. Dehghan, M. R. Eslahchi, Generalized Bessel functions: theory and their applications, Math. Methods Appl. Sci., 40 (2017), 6389–6410. https://doi.org/10.1002/mma.4463 doi: 10.1002/mma.4463
|
| [19] |
M. F. Khan, A. A. Abubaker, S. B. Al-Shaikh, K. Matarneh, Some new applications of the quantum-difference operator on subclasses of multivalent $q$-starlike and $q$-convex functions associated with the Cardioid domain, AIMS Math., 8 (2023), 21246–21269. https://doi.org/10.3934/math.20231083 doi: 10.3934/math.20231083
|
| [20] |
S. Mubeen, S. Shah, G. Rahman, K. Nisar, T. Abdeljawad, Some generalized special functions and their properties, Adv. Theory Nonlinear Anal. Appl., 6 (2022), 45–65. https://doi.org/10.31197/atnaa.768532 doi: 10.31197/atnaa.768532
|
| [21] |
K. Parand, M. Nikarya, Application of Bessel functions for solving differential and integro-differential equations of the fractional order, Appl. Math. Model., 38 (2014), 4137–4147. https://doi.org/10.1016/j.apm.2014.02.001 doi: 10.1016/j.apm.2014.02.001
|
| [22] |
R. Reynolds, A. Stauffer, Double integral involving the product of the Bessel function of the first kind and modified Bessel function of the second kind: derivation and evaluation, Eur. J. Pure Appl. Math., 15 (2022), 856–863. https://doi.org/10.29020/nybg.ejpam.v15i3.4239 doi: 10.29020/nybg.ejpam.v15i3.4239
|
| [23] |
R. Reynolds, A. Stauffer, Triple integral involving the Bessel-integral function $Ji_{v} (z)$: derivation and evaluation, Eur. J. Pure Appl. Math., 15 (2022), 916–923. https://doi.org/10.29020/nybg.ejpam.v15i3.4259 doi: 10.29020/nybg.ejpam.v15i3.4259
|
| [24] |
S. A. H. Shah, S. Mubeen, Expressions of the Laguerre polynomial and some other special functions in terms of the generalized Meijer $G$-functions, AIMS Math., 6 (2021), 11631–11641. https://doi.org/10.3934/math.2021676 doi: 10.3934/math.2021676
|
| [25] |
H. M. Srivastava, An introductory overview of Bessel polynomials, the generalized Bessel polynomials and the $q$-Bessel polynomials, Symmetry, 15 (2023), 822. https://doi.org/10.3390/sym15040822 doi: 10.3390/sym15040822
|
| [26] |
J. Salah, On uniformly starlike functions with respect to symmetrical points involving the Mittag-Leffler function and the Lambert series, Symmetry, 16 (2024), 580. https://doi.org/10.3390/sym16050580 doi: 10.3390/sym16050580
|
| [27] |
S. A. H. Shah, Hafsa, A. Aloqaily, G. Rahman, Y. Elmasry, S. Haque, et al., Dual approach to the generalization of extended Bessel function, Eur. J. Pure Appl. Math., 18 (2025), 5823. https://doi.org/10.29020/nybg.ejpam.v18i2.5823 doi: 10.29020/nybg.ejpam.v18i2.5823
|
| [28] |
E. Toklu, On some geometric results for generalized $k$-Bessel functions, Demonstratio Math., 56 (2023), 20220235. https://doi.org/10.1515/dema-2022-0235 doi: 10.1515/dema-2022-0235
|
| [29] |
N. Yagmur, H. Orhan, Starlikeness and convexity of generalized Struve functions, Abstr. Appl. Anal., 2013 (2013), 1–6. https://doi.org/10.1155/2013/954513 doi: 10.1155/2013/954513
|
| [30] |
H. M. Zayed, T. Bulboacă, Normalized generalized Bessel function and its geometric properties, J. Inequal. Appl., 2022 (2022), 158. https://doi.org/10.1186/s13660-022-02891-0 doi: 10.1186/s13660-022-02891-0
|