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Abstract: For a graph Γ = (V(Γ),E(Γ)), a subset C of V(Γ) is called an (α,β)-regular set in Γ, if every
vertex of C is adjacent to exactly α vertices of C and every vertex of V(Γ) \C is adjacent to exactly
β vertices of C. In particular, if C is an (α,β)-regular set in some Cayley sum graph of a finite group
G with connection set S , then C is called an (α,β)-regular set of G. In this paper, we considered a
generalized dicyclic group G and for each subgroup H of G, by giving an appropriate connection set
S , we determined each possibility for (α,β) such that H is an (α,β)-regular set of G.
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1. Introduction

Let Fq be the finite field of order q. Then, C ⊆ Fn
q is called a code of length n over Fq, and its

elements are referred to as codewords. For any two vectors x,y ∈ Fn
q, their Hamming distance d(x,y)

is the number of coordinates in which they differ. Given any vector x ∈ Fn
q, its distance to the code C

is d(x,C) =min{d(x,y) | y ∈ C}. The covering radius of a code C is the smallest integer ρ such that for
every vector y, there is a codeword x ∈C satifying d(x,y) ≤ ρ. For a vector x ∈ Fn

q, let Bx,i be the number
of codewords in C having distance i from x. A code C with covering radius ρ is called t-regular with
0 ≤ t ≤ ρ if Bx,i depends only on i and d(x,C) for 0 ≤ i ≤ ρ whenever d(x,C) ≤ t, see [9,13] as examples.
A code C is called completely regular if it is ρ-regular [9]. In the context of 1-regular code, two key
parameters arise: α = Bx,1 for all x ∈C and β = Bx,1 for all x ∈ Fn

q \C. For any x ∈C, there are precisely
α codewords in C having distance 1 from x; for any x <C, there are precisely β codewords in C having
distance 1 from x. In particular, a 1-regular code with Bx,1 = 0 for x ∈ C and Bx,1 = 1 for x ∈ Fn

q \C
is known as a perfect code. The combinatorial properties of completely regular codes enable their
connection to various other combinatorial structures, such as association schemes and combinatorial
designs. To generalize the idea of regular codes to other structures, many authors have extended the
idea to perfect codes and regular sets in graphs.
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A graph Γ is a pair (V(Γ),E(Γ)) of vertex set V(Γ) and edge set E(Γ), where E(Γ) is a subset of the
set of 2-element subsets of V(Γ). Throughout this paper, all groups are assumed to be finite, and all
graphs are finite, simple, and undirected.

Let Γ = (V(Γ),E(Γ)) be a graph. For two different vertices x,y ∈ V(Γ), they are said to be adjacent
if the set {x,y} ∈ E(Γ). A subset C of V(Γ) is a perfect code in Γ if C is an independent set of Γ and
every vertex of V(Γ) \C is adjacent to exactly one vertex of C. A subset C of V(Γ) is said to be a total
perfect code in Γ if every vertex of Γ has exactly one neighbor in C. In the literature, a perfect code
is also called an efficient dominating set [8, 10, 11, 14, 18, 19] or an independent perfect dominating
set [14, 20, 28], and a total perfect code is also called an efficient open dominating set [6, 12, 14].

As a generalization of perfect codes and total perfect codes in a graph, regular sets are defined as
follows. For non-negative integers α and β, a subset C of V(Γ) is called an (α,β)-regular set [4] in Γ,
if every vertex of C is adjacent to exactly α vertices of C and every vertex of V(Γ) \C is adjacent to
exactly β vertices of C. In particular, a (0,1)-regular set in Γ is a perfect code; a (1,1)-regular set in Γ
is a total perfect code. Clearly, the definition of a regular set in a graph arises from the definition of the
1-regular code, by replacing the Hamming distance of two vectors by the distance of the vertices in the
graph, as the metric. Moreover, an (α,β)-regular set in an r-regular graph Γ coincides precisely with
a completely regular code C in Γ, see, for example, [24], where the corresponding distance partition
consists of exactly two parts: {C,V(Γ) \C}.

Let G be a group with the identity element e and S an inverse-closed subset of G \ {e} (that is,
S −1 := {s−1 : s ∈ S } = S ). The Cayley graph Cay(G,S ) on G with connection set S is the graph with
vertex set G and edge set {{g,gs} : g ∈G, s ∈ S }.

Huang, Xia, and Zhou [15] first introduced the definition of a subgroup (total) perfect code of a
group G by using Cayley graphs on G. A subset of a group G is called a (total) perfect code of G if it
is a (total) perfect code in some Cayley graph of G. A (total) perfect code of G is called a subgroup
(total) perfect code of G if it is also a subgroup of G. Also in [15], the authors gave a necessary and
sufficient condition for a normal subgroup of a group G to be a subgroup (total) perfect code of G.
Chen, Wang, and Xia generalized this result on perfect codes to arbitrary subgroups [5]. Ma, Walls,
Wang, and Zhou [22] proved that a group G admits every subgroup as a perfect code if and only if G
has no elements of order 4. In [36,37], Zhang and Zhou gave a few necessary and sufficient conditions
for a subgroup of a group to be a subgroup perfect code, and several results on subgroup perfect codes
of metabelian groups, generalized dihedral groups, nilpotent groups, and 2-groups. For further results
on subgroup perfect codes in Cayley graphs, see [2, 3, 16, 31, 35].

In [29,30], Wang, Xia, and Zhou first introduced the concept of an (α,β)-regular set of a group G by
using Cayley graphs on G. A subset (resp. subgroup) of a group G is called an (α,β)-regular set (resp.
a subgroup (α,β)-regular set) of G if it is an (α,β)-regular set in some Cayley graph of G. In particular,
a subgroup (0,1)-regular set (resp. (1,1)-regular set) of G is a subgroup perfect code (resp. subgroup
total perfect code) of G. In [32], Wang, Xu, and Zhou determined when a non-trivial proper normal
subgroup of a group is a (0,β)-regular set of the group and determined all subgroup (0,β)-regular sets
of dihedral groups and dicyclic groups. In [17], Khaefi, Akhlaghi, and Khosravi proved that if H is a
subgroup of G, then H is an (α,β)-regular set of G, for each 0 ≤ α ≤ |H| − 1 such that gcd(2, |H| − 1)
divides α, and for each 0 ≤ β ≤ |H| such that β is even. Also, they proved that a subgroup H of a group
G is a perfect code of G if and only if it is an (α,β)-regular set of G, for each 0 ≤ α ≤ |H| −1 such that
gcd(2, |H| −1) divides α, and for each 0 ≤ β ≤ |H|. In addition, they showed that if H is a subgroup of
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G, then H is a perfect code of G if and only if it is an (α,β)-regular set of G for each 0 ≤ α ≤ |H| − 1
such that gcd(2, |H| −1) divides α, and for each 0 ≤ β ≤ |H| such that β is odd.

The Cayley sum graph is first defined for abelian groups [7] and then it is generalized to any arbitrary
group in [1]. Let G be a group. An element x ∈G is called square if x = y2 for some element y ∈G. A
subset S of G is called square-free if every element of S is not square. We say that a subset S of G is
normal if g−1S g = {g−1sg : s ∈ S } = S for every element g ∈ G. Let S be a normal square-free subset
of G. The Cayley sum graph of G with the connection set S , denoted by CayS(G,S ), is the graph
with vertex set G and two vertices x and y are adjacent whenever xy ∈ S . Note that the normality of S
implies that xy ∈ S if and only if yx ∈ S . The square-free condition of S ensures that CayS(G,S ) has
no loops, so that CayS(G,S ) is a simple graph. Clearly, CayS(G,S ) is an |S |-regular graph.

In [21], Ma, Feng, and Wang studied the perfect codes in Cayley sum graphs, and defined a subgroup
perfect code of a group by using Cayley sum graphs instead of Cayley graphs. More precisely, a
subgroup of a group G is said to be a subgroup perfect code of G if the subgroup is a perfect code
in some Cayley sum graph of G. Also in [21], the authors reduced the problem of determining when
a given subgroup of an abelian group is a perfect code to the case of abelian 2-groups, and classified
the abelian groups whose all non-trivial subgroups are perfect codes. Ma, Wang, and the second
author [23] characterized all subgroup perfect codes of abelian groups.

The total perfect codes in Cayley sum graphs have been studied, and a total perfect code of a group
is also defined by using Cayley sum graphs instead of Cayley graphs. A subset (resp. subgroup) C of a
group G is called a total perfect code (resp. subgroup total perfect code) of G if it is a total perfect code
in some Cayley sum graph of G. Zhang [34] gave some necessary conditions of a subgroup of a given
group being a (total) perfect code in a Cayley sum graph of the group, and classified the Cayley sum
graphs of some families of groups which admit a subgroup as a (total) perfect code. Wang, Wei, Xu,
and Zhou [26] gave two necessary and sufficient conditions for a subgroup of a group G to be a total
perfect code of G, and obtained two necessary and sufficient conditions for a subgroup of an abelian
group G to be a total perfect code of G. They also gave a classification of subgroup total perfect codes
of a cyclic group, a dihedral group, and a dicyclic group.

Replacing Cayley graphs with Cayley sum graphs in the concept of a subgroup (α,β)-regular sets
of a group, the authors in [27] obtained the concept of regular sets in a group. More precisely, a subset
(resp. subgroup) C of a group G is called an (α,β)-regular set (resp. a subgroup (α,β)-regular set) of
G if it is an (α,β)-regular set in some Cayley sum graph of G. In particular, a subgroup (0,1)-regular
set (resp. (1,1)-regular set) of G is a subgroup perfect code (resp. subgroup total perfect code) of G.
Also in [27], the authors obtained some necessary and sufficient conditions for a subgroup of a group
G to be a (0,β)-regular set of G, and characterized all possible subgroup (0,β)-regular sets of a cyclic
group, a dihedral group, and a dicyclic group. Seiedali, Khosravi, and Akhlaghi [25] gave a necessary
and sufficient condition for a subgroup of an abelian group to be a subgroup (α,β)-regular set. For each
subgroup H of a dihedral group G, by giving an appropriate connection set S , they determined each
possibility for (α,β) such that H is an (α,β)-regular set of G.

In this paper, we study regular sets in Cayley sum graphs on a generalized dicyclic group. For each
subgroup H of a generalized dicyclic group G, by giving an appropriate connection set S , we determine
each possibility for (α,β) such that H is an (α,β)-regular set of G. In order to state our main results,
we need additional notations and terminologies.

Let G be a group with the identity element e. For g ∈G, let o(g) denote the order of g, that is, the
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smallest positive integer m such that gm = e. An element a is called an involution if o(a) = 2. For a
subgroup H of G and an element a ∈ G, Ha = {ha : h ∈ H} (resp. aH = {ah : h ∈ H}) is called a right
coset (resp. left coset) of H in G. The index of a subgroup H in G, denoted by |G : H|, is defined as the
number of distinct right (or left) cosets of H in G.

In the remainder of this paper, A always denotes an abelian group of even order with an involution
b2, and G denotes the generalized dicyclic group generated by A and b, where bab−1 = a−1 for all a ∈ A,
that is, G = ⟨A,b : b2 ∈ A,b4 = e,bab−1 = a−1,a ∈ A⟩. Since A is an abelian group, from the fundamental
theorem of finitely generated abelian groups, we may assume

A = ⟨a1⟩× · · · × ⟨aλ⟩× ⟨aλ+1⟩× · · · × ⟨aλ+µ⟩,

with o(ai) = pei
i for all 1 ≤ i ≤ λ+µ, where pi is a prime, e1 ≤ · · · ≤ eλ, and p j = 2 if and only if 1 ≤ j ≤ λ.

Let a0 = b2 and k be the maximum nonnegative integer such that ak is an involution. Let φi be the
projection from A to ⟨ai⟩ for 1 ≤ i ≤ λ+µ. Denote

B = ⟨a2
1⟩× · · · × ⟨a

2
λ⟩× ⟨aλ+1⟩× · · · × ⟨aλ+µ⟩. (1.1)

Throughout this paper, we always assume that H is a subgroup of A and z ∈ A. Denote

LH = {ai : φi(H) = ⟨ai⟩, 1 ≤ i ≤ λ}, rH = |{i : φi(H) = ⟨ai⟩, 1 ≤ i ≤ k}|,

mH = |{i : φi(H) , {e}, 1 ≤ i ≤ λ}|.

If no confusion occurs, we write t instead of tH for all symbols t ∈ {L,r,m}.
Recall that A is an abelian group, G = ⟨A,b : b2 ∈ A,b4 = e,bab−1 = a−1,a ∈ A⟩, and H ⩽ A. All

subgroups of G are of the form H or ⟨H,zb⟩ with |⟨H,zb⟩ : H| = 2, see Lemma 2.2. In the following
theorem, by giving an appropriate connection set S , we determine each possibility for (α,β) such that
H is an (α,β)-regular set of G.

Theorem 1.1. The subgroup H is an (α,β)-regular set of G for (α,β) , (0,0), if and only if 0 ≤ α ≤
(2|L|−1)|H|/2|L|− ϵ, β = t|H|/2|L| with 0 ≤ t ≤ 2|L|−ε, and one of the following occurs:

(1) ϵ = 1 and α is even, when m = |L| = 1 and b2 ∈ H \B;

(2) ϵ = 1, when m ≥ |L| ≥ 1, m , 1 and b2 ∈ H \B;

(3) ϵ = 0 and α is even, when r = 0 and b2 < H \B;

(4) ϵ = 0, when r > 0 and b2 < H \B.

Here, ε = 0 if B∪{b2} ⊆ H, ε = 2 if B ⩽̸ H, b2 < H∪B, and Hb2∩B , ∅, and ε = 1, otherwise.
In the following theorem, by giving an appropriate connection set S , we determine each possibility

for (α,β) such that ⟨H,zb⟩ is an (α,β)-regular set of G.

Theorem 1.2. Without loss of generality we assume |⟨H,zb⟩ : H| = 2. Then ⟨H,zb⟩ is an (α,β)-regular
set of G for (α,β), (0,0), if and only if (α,β)= (η+ t′|H|/2|L|, ζ+ t|H|/2|L|) with 0≤ η≤ (2|L|−1)|H|/2|L|−
ϵ, 0 ≤ ζ ≤ (2|L|−ε)|H|/2|L|, and 0 ≤ t′, t ≤ 2|L|, and one of the following occurs:

(1) ϵ = 1 and β is even, when m > |L| and b2 ∈ H \B;
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(2) ϵ = 1, when m = |L| and b2 ∈ H \B;

(3) ϵ = 0, α and β are even, when m > |L|, r = 0, and b2 < H \B;

(4) ϵ = 0 and β is even, when m > |L|, r > 0, and b2 < H \B;

(5) ϵ = 0, when m = |L| and b2 < H \B.

Here, ε = 0 if B ⩽ H, and (ε, t′) = (1, t) if B ⩽̸ H.
The paper is organized as follows. In Section 2, we give some preliminary results which will be

used in subsequent sections. In Section 3, by giving an appropriate connection set S , we determine
each possibility for β such that H or ⟨H,zb⟩ is a (0,β)-regular set of G. In Section 4, we prove Theorems
1.1 and 1.2.

2. Preliminary

In this section, we give some basic results which will be used frequently in this paper.
Let Sq(G) and Nsq(G) be the sets of all square and non-square elements of G, respectively. For a

subgroup K of G, denote L(K) =min{|Nsq(G)∩Kx| : x ∈G \K}.

Lemma 2.1. Let K be a subgroup of G and S be a normal and square-free subset of G. The following
hold:

(1) The subgroup K is an (α,β)-regular set in CayS(G,S ) if and only if α = |S ∩K| and β = |S ∩Kx|
for each x ∈G \K;

(2) If K is an (α,β)-regular set of CayS(G,S ), then α ≤ |Nsq(G)∩K| and β ≤ L(K).

Proof. (1) The necessity is immediate from [25, Lemma 2.4 and Corollary 2.5]. Next, we prove the
sufficiency. Since α = |S ∩K| and β = |S ∩Kx| for each x ∈G \K, S contains exactly α elements of K
and β elements of Kx for each x ∈ G \K. Let a ∈ G \K. Without loss of generality, we may assume
S ∩K = {k1,k2, . . . ,kα} and S ∩Ka= {a1a,a2a, . . . ,aβa}with a j ∈K for 1≤ j≤ β. For each k ∈K, there are
exactly α elements k−1k1,k−1k2, . . . ,k−1kα ∈ K such that kk−1ki = ki ∈ S for 1 ≤ i ≤ α. For a ∈G \K, there
are exactly β elements a1,a2, . . . ,aβ ∈ K such that a ja ∈ S for 1 ≤ j ≤ β. Since k ∈ K and a ∈G \K are
arbitrary, every element of K is adjacent to exactly α elements of K in CayS(G,S ), and every element
of G \K is adjacent to exactly β elements of K in CayS(G,S ). Since S is a normal and square-free
subset of G, K is an (α,β)-regular set in CayS(G,S ).

(2) This is immediate from [25, Theorem 2.9]. □

The following result determines all subgroups of a generalized dicyclic group.

Lemma 2.2. All subgroups of G are as follows:

(1) A1, where A1 ⩽ A;

(2) ⟨A1, xb⟩, where x ∈ A and |⟨A1, xb⟩ : A1| = 2.
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Proof. Let M be a subgroup of G. Since |G : A| = 2, we have G = A∪Ab, which implies M = A1∪ (M∩
Ab), where A1 = M∩A. If M∩Ab = ∅, then A1 = M ≤ A.

We only need to consider the case M ∩ Ab , ∅. Let xb ∈ M ∩ Ab with x ∈ A. It follows that b2 =

(xb)2 ∈ M∩A = A1, and so |⟨A1, xb⟩ : A1| = 2.
Pick w ∈ M. If w ∈ A, then w ∈ A1, and so w ∈ ⟨A1, xb⟩. Now, suppose w ∈ Ab. Then, there exists

a ∈ A such that w = ab. It follows that ab = ax−1xb. Since ab, xb,b2 ∈ M, one gets ax−1 = (ab)(xb)b2 ∈

M∩A = A1, which implies w = ab ∈ ⟨A1, xb⟩. Since w is arbitrary, we get M ⩽ ⟨A1, xb⟩.
Let a′(xb)i ∈ ⟨A1, xb⟩ with a′ ∈ A1 and i ∈ {0,1,2,3}. If i ∈ {0,2}, then a′(xb)i ∈ A1 ⊆ M since b2 ∈ A1.

If i = {1,3}, then a′(xb)i = a′xb or a′b2xb, which implies a′(xb)i ∈ M since a′, xb,b2 ∈ M. Therefore,
⟨A1, xb⟩ ⩽ M, and so M = ⟨A1, xb⟩. □

Recall that H is a subgroup of A.

Lemma 2.3. The subgroup H is an (α,β)-regular set of G if and only if H is an (α,0)-regular set of G
and a (0,β)-regular set of G.

Proof. This is immediate from the fact that H is a normal subgroup of G and [25, Lemma 2.6]. □

Recall B = ⟨a2
1⟩× · · · × ⟨a

2
λ⟩× ⟨aλ+1⟩× · · · × ⟨aλ+µ⟩. The following fact gives all square elements in G.

Fact 2.4. The set B∪{b2} consists of all square elements in G, that is, Sq(G) = B∪{b2}.

Denote

A′ = ⟨a2e1−1

1 ⟩× · · · × ⟨a2eλ−1

λ ⟩. (2.1)

The following fact determines all involutions of G.

Fact 2.5. The set A′ \ {e} consists of all involutions of G.

Two elements a and h of G are said to be conjugate if there exists an element g ∈ G such that
h = g−1ag. The conjugacy class of an element a ∈G is the set of conjugates of a ∈G, which is denote
by aG. The following result classifies the conjugacy classes of G.

Lemma 2.6. ( [33, Lemma 2.4]) The following hold:

(1) aG = {a}, for each a ∈ A′;

(2) aG = {a,a−1}, for each a ∈ A \A′;

(3) (ab)G = Bab, for each a ∈ A.

Corollary 2.7. Each inverse-closed subset of A is normal.

Recall L = {ai : φi(H) = ⟨ai⟩, 1 ≤ i ≤ λ} and m = |{i : φi(H) , {e}, 1 ≤ i ≤ λ}|. In the following lemmas,
we give some results on the subgroup H.

Lemma 2.8. The following hold:

(1) |H∩B| = |H|/2|L|, |H∩A′| = 2m, and |H∩A′∩B| = 2m−r;

(2) If m > |L|, then |H|/2|L| is even.
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Proof. (1) Since m ≥ |L|, we may assume

H = ⟨ai1⟩× · · · × ⟨ai|L|⟩× ⟨a
′
i|L|+1
⟩× · · · × ⟨a′im⟩× ⟨a

′
λ+1⟩× · · · × ⟨a

′
λ+µ⟩,

where 1≤ i1 < i2 < · · ·< im ≤ λ, {e}, ⟨a′h⟩⊊ ⟨ah⟩with i|L|+1 ≤ h≤ im, and a′j ∈ ⟨a j⟩with λ+1≤ j≤ λ+µ. In
view of (1.1), we get H∩B = ⟨a2

i1⟩× · · ·×⟨a
2
i|L|
⟩×⟨a′i|L|+1

⟩× · · ·×⟨a′im⟩×⟨a
′
λ+1⟩× · · ·×⟨a

′
λ+µ⟩. It follows that

|H∩B| = |H|/2|L|. Since r = |{i : φi(H) = ⟨ai⟩, 1 ≤ i ≤ k}|, from (2.1), one gets H∩A′ = ⟨ai1⟩× · · ·×⟨air⟩×

⟨a2eir+1
−1

ir+1
⟩×· · ·×⟨a2eim−1

im ⟩ with 1 ≤ i1 < i2 < · · · < ir ≤ k, which implies H∩A′∩B= ⟨a2eir+1
−1

ir+1
⟩×· · ·×⟨a2eim−1

im ⟩

by (1.1). Then, |H∩A′| = 2m and |H∩A′∩B| = 2m−r.
(2) By (1), we have 2m | |H|. The fact that m > |L| implies that |H|/2|L| is even. □

Let C be a subset of A. Denote aC = e if C = ∅, and aC =
∏

a∈C a if C , ∅. Let T be the set
consisting of ai with φi(H) , ⟨ai⟩ for 1 ≤ i ≤ λ. Throughout the paper, ⊔ denotes the disjoint union.
Then L⊔T = {a1, . . . ,aλ}.

Lemma 2.9. If L′ ⊆ L and T ′ ⊆ T, then |BaL′aT ′b∩HaT ′b| = |H|/2|L|.

Proof. Since aL′ ∈ H, we have |BaL′aT ′b∩HaT ′b| = |BaL′ ∩H| = |B∩H|. This together with Lemma 2.8
(1) leads to |BaL′aT ′b∩HaT ′b| = |H|/2|L|. □

Lemma 2.10. There are 2|L| distinct aL′ for L′ ⊆ L and 2λ−|L| distinct aT ′ for T ′ ⊆ T.

Proof. Let L′ ⊆ L and T ′ ⊆ T . For each element ai ∈ L and each symbol K ∈ {L′,T ′}, if ai ∈ K, then
φi(aK) = ai; if ai < K, then φi(aK) = e. It follows that φi(aL′) ∈ {ai,e} for each ai ∈ L and φi(aT ′) ∈ {ai,e}
for each ai ∈ T . Note that |T | = λ− |L|. Since L′ ⊆ L and T ′ ⊆ T are arbitrary, there are exactly 2|L|

distinct aL′ for L′ ⊆ L and 2λ−|L| distinct aT ′ for T ′ ⊆ T . □

Lemma 2.11. We have A = ⊔L′⊆L,T ′⊆T BaL′aT ′ and H = ⊔L′⊆L(H∩B)aL′ .

Proof. In view of Lemma 2.10, there are 2|L| distinct aL′ for L′ ⊆ L and 2λ−|L| distinct aT ′ for T ′ ⊆ T . By
(1.1), BaK and BaK′ are pairwise disjoint for distinct subsets K and K′ of {a1, . . . ,aλ}. In view of (1.1),
we get |A : B| = 2λ. The fact that L⊔T = {a1, . . . ,aλ} implies A = ⊔L′⊆L,T ′⊆T BaL′aT ′ . Since L ⊆ H, from
Lemma 2.8 (1), we get H = ⊔L′⊆L(H∩B)aL′ . □

Lemma 2.12. Let a ∈ A \H and m = |L|. If Ha = Ha−1, then there exists h ∈ H such that a2 = h2.

Proof. Since m = |L|, we may assume

H = ⟨ai1⟩× · · · × ⟨ai|L|⟩× ⟨a
′
λ+1⟩× · · · × ⟨a

′
λ+µ⟩,

where 1 ≤ i1 < i2 < · · · < i|L| ≤ λ and a′j ∈ ⟨a j⟩ with λ+1 ≤ j ≤ λ+µ. Since Ha = Ha−1, we have a2 ∈ H.
Since a ∈ A, from (1.1) and Fact 2.4, we obtain a2 ∈ B, and so a2 ∈ H∩B = ⟨a2

i1⟩× · · · × ⟨a
2
i|L|
⟩× ⟨a′λ+1⟩×

· · · × ⟨a′λ+µ⟩. Since ∪x∈H x2 = H∩B, there exists h ∈ H such that a2 = h2. □

Lemma 2.13. Let a ∈ A \H. If m = |L|, then Ha = Ha−1 if and only if Ha∩A′ , ∅.

Proof. We first prove the necessity. Assume Ha = Ha−1. In view of Lemma 2.12, we have a2 = h2 for
some h ∈ H. It follows that (h−1a)2 = e. By Fact 2.5, we get h−1a ∈ Ha∩A′, which implies Ha∩A′ , ∅.

We next prove the sufficiency. Let a′ ∈ Ha∩ A′. Then, there exists h ∈ H such that a′ = ha. It
follows that a = h−1a′. Since a′ ∈ A′, from Fact 2.5, one gets a2 = (h−1a′)2 = h−2a′2 = h−2 ∈ H. Then
Ha = Ha−1. □
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Lemma 2.14. Let a ∈ A \H. Suppose Ha = Ha−1. If Ha∩A′ , ∅ and Ha∩Sq(G) , ∅, then Ha∩A′∩
Sq(G) , ∅.

Proof. In view of Fact 2.4, we obtain Sq(G) = B∪ {b2}, and so Ha∩Sq(G) = Ha∩ (B∪ {b2}) , ∅. If
b2 ∈ Ha, then Hb2 = Ha, which implies b2 ∈ Ha∩A′∩Sq(G) from Fact 2.5.

Now, we only need to consider the case b2 <Ha. It follows that Ha∩B, ∅. Since a <H, there exists
c ∈ B\H such that Hc = Ha. Since Ha = Ha−1, one gets (Hc)2 = (Ha)2 = H, which implies Hc = Hc−1.
Since Ha = Hc, we have Hc∩A′ , ∅, and so (hc)2 = e for some h ∈ H from Fact 2.5. It follows that
h2 = c−2. Since h ∈ H, from Lemma 2.11, we have h = c′aL′ for some c′ ∈ H∩B and L′ ⊆ L. It follows
that h2 = c′2a2

L′ = c−2, and so (c′c)2 = a−2
L′ . Since c ∈ B\H and c′ ∈ H∩B, we get c′c ∈ B\H. It follows

from Fact 2.4 that c′c ∈ Hc∩Sq(G). Since Hc = Ha, we obtain c′c ∈ Ha∩Sq(G).
By Fact 2.5, it suffices to show that (c′c)2 = a−2

L′ = e. The case aL′ = e is trivial. Now suppose aL′ , e.
Since c′c ∈ (B \H)∩Sq(G), from (1.1), there exists a′ ∈ A \H such that c′c = a′2. Pick ai ∈ L′. Let
φi(a′) = ati

i . Since a′4 = (c′c)2 = a−2
L′ and φi(aL′) = ai, we have ai

4ti = ai
−2, and so 4ti ≡ −2 (mod 2ei)

with ei ≥ 1, which implies 2ei−1 | 2ti+1. It follows that ei = 1, and so ai is an involution. Since ai ∈ L′

is arbitrary, one gets (c′c)2 = a−2
L′ = e. □

3. (0,β)-Regular set

In this section, we give some results concerning (0,β)-regular sets in Cayley sum graphs on
generalized dicyclic groups.

Lemma 3.1. Let a ∈ A and S be a normal and square-free subset of G. Suppose a ∈ BaL′aT ′ for some
L′ ⊆ L and T ′ ⊆ T. If S contains exactly t sets of type BaL′′aT ′b with L′′ ⊆ L, then |S ∩Hab| = t|H|/2|L|.

Proof. Let A be the set consisting of (L′′,T ′′) such that L′′ ⊆ L, T ′′ ⊆ T , and S ∩ BaL′′aT ′′b , ∅. In
view of Lemma 2.6, BaL′′aT ′′b is normal for (L′′,T ′′) ∈A . Since S is normal, (L′′,T ′′) ∈A if and only
if BaL′′aT ′′b ⊆ S for L′′ ⊆ L and T ′′ ⊆ T . By Lemma 2.11, we have ∪(L′′,T ′′)∈A BaL′′aT ′′b = S ∩Ab.

Since a ∈ BaL′aT ′ , there exists c ∈ B such that a = caL′aT ′ . Since aL′ ∈ H and c ∈ B, we get

|S ∩Hab| = |S ∩Ab∩HcaL′aT ′b|

= |S ∩Ab∩HcaT ′b|

= |(∪(L′′,T ′′)∈A BaL′′aT ′′b)∩HcaT ′b|

= |(∪(L′′,T ′′)∈A BaL′′aT ′′b)∩HaT ′b|. (3.1)

By Lemma 2.11, we get H = ⊔L′′⊆L(H ∩ B)aL′′ ⊆ ⊔L′′⊆LBaL′′ , and so HaT ′b ⊆ ⊔L′′⊆LBaL′′aT ′b. In view
of (1.1), BaK and BaK′ are pairwise disjoint for distinct subsets K and K′ of {a1, . . . ,aλ}, which implies
(∪(L′′,T ′′)∈A BaL′′aT ′′b)∩HaT ′b = (∪(L′′,T ′)∈A BaL′′aT ′b)∩HaT ′b.

By (3.1), we obtain |S ∩Hab| = |(∪(L′′,T ′)∈A BaL′′aT ′b)∩HaT ′b|. Since (L′′,T ′) ∈ A if and only if
BaL′′aT ′b ⊆ S for L′′ ⊆ L, from Lemmas 2.9 and 2.11, we get |S ∩Hab| = t|H|/2|L|, where S contains
exactly t sets of type BaL′′aT ′b with L′′ ⊆ L. □

In this section, let J be the union of Ha for a ∈ A \H satisfying Ha = Ha−1 and Ha∩A′ = ∅.

Lemma 3.2. If m > |L|, then J , ∅.
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Proof. Since m > |L|, we may assume

H = ⟨ai1⟩× · · · × ⟨ai|L|⟩× ⟨a
′
i|L|+1
⟩× · · · × ⟨a′im⟩× ⟨a

′
λ+1⟩× · · · × ⟨a

′
λ+µ⟩,

where 1 ≤ i1 < i2 < · · · < im ≤ λ, {e} , ⟨a′h⟩ ⊊ ⟨ah⟩ with i|L|+1 ≤ h ≤ im, and a′j ∈ ⟨a j⟩ with λ+1 ≤ j ≤ λ+µ.
Let l be the minimal positive integer such that al

im
∈ H. Since o(aim) = 2eim and {e} , ⟨a′im⟩ ⊊ ⟨aim⟩, one

gets l = 2e′im with 1 ≤ e′im < eim . It follows that 2 ≤ l < 2eim and al/2
im
∈ A \H. Then, Hal/2

im
= Ha−l/2

im
.

It suffices to show that Hal/2
im
∩A′ = ∅. Since Hal/2

im
∩H = ∅ and φi(Ha−l/2

im
) = φi(H) for 1 ≤ i ≤ λ+µ

with i , im, we have φim(Hal/2
im

)∩ φim(H) = φim(Hal/2
im

)∩ ⟨a′im⟩ = ∅. By the minimality of l, one gets
⟨a2eim−1

im ⟩ ⩽ ⟨a′im⟩ = ⟨a
l
im
⟩, and so φim(Hal/2

im
)∩ ⟨a2eim−1

im ⟩ = ∅, which implies φim(Hal/2
im

)∩A′ = ∅ from (2.1).
Then, Hal/2

im
∩A′ = ∅. □

A right transversal (resp. left transversal) of H in A is defined as a subset of A which contains
exactly one element in each right coset (resp. left coset) of H in A. Since A is abelian, every right
coset of any subgroup is also a left coset of the subgroup. For the sake of simplicity, we use the term
“transversal” to substitute for “right transversal” or “left transversal”.

Lemma 3.3. There exists a transversal I of H in A containing e such that I \ J is inverse-closed and I
contains a square element in each coset of H having nonempty intersection with Sq(G).

Proof. Let I be a transversal of H in A containing e such that I contains a square element in each coset
of H having nonempty intersection with Sq(G). Note that Ha , Ha−1, Ha = Ha−1, and Ha∩A′ , ∅, or
Ha=Ha−1 and Ha∩A′ = ∅ for each Ha ∈ A/H \{H}. For each Ha ∈ A/H \{H} satisfying Ha,Ha−1, let
ha ∈ Ha and h−1a−1 ∈ Ha−1 belong to I for some h ∈ H. For each Ha ∈ A/H \ {H} satisfying Ha = Ha−1

and Ha∩A′ , ∅, if Ha∩Sq(G) = ∅, then let ha ∈ Ha∩A′ belong to I for some h ∈ H; if Ha∩Sq(G) , ∅,
from Lemma 2.14, then let ha ∈ Ha∩A′∩Sq(G) belong to I for some h ∈ H. Since J is the union of
Ha for a ∈ A \H satisfying Ha = Ha−1 and Ha∩A′ = ∅, from Fact 2.5, I \ J is inverse-closed. □

3.1. H is a (0,β)-regular set of G

In this subsection, by giving an appropriate connection set S , we determine each possibility for β
such that H is a (0,β)-regular set of G. Recall L(H) =min{|Nsq(G)∩Hx| : x ∈G \H}.

Lemma 3.4. The following hold:

(1) If B∪{b2} ⊆ H, then L(H) = |H|;

(2) If B ⩽ H and b2 < H, then L(H) = |H| −1;

(3) If B ⩽̸ H, b2 < H∪B, and Hb2∩B , ∅, then L(H) = (2|L|−1)|H|/2|L|−1;

(4) If B ⩽̸ H, and b2 ∈ H∪B or Hb2∩B = ∅, then L(H) = (2|L|−1)|H|/2|L|.

Proof. By Fact 2.4, one gets Sq(G) = B∪ {b2}. It follows that Hx ⊆ Nsq(G) for each Hx ∈ G/H \ {H}
with Hx∩ (B∪ {b2}) = ∅. For each Hx ∈ G/H \ {H} with Hx∩ B , ∅ and b2 < Hx, there exists c ∈ B
such that Hx = Hc, which implies |Nsq(G)∩Hx| = |Nsq(G)∩Hc| = |Hc \ (Hc∩B)| = |Hc \ (H∩B)c| =
(2|L|−1)|H|/2|L| from Lemma 2.8 (1). To determine L(H), it suffices to consider the coset Hb2.

(1) Since B∪{b2} ⊆ H, one gets Hx ⊆ Nsq(G) for each x ∈G \H, and so L(H) = |H|.
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(2) Since B⩽ H, we have Hx∩B= ∅ for each Hx ∈G/H \{H}. Since B⩽ H and b2 < H, one obtains
Nsq(G)∩Hb2 = Hb2 \ {b2}, and so L(H) = |H| −1.

(3) Since Hb2∩B, ∅, one gets Hb2 =Ha for some a ∈ B. Since b2 <H∪B and Ba= B, from Lemma
2.8 (1), one gets |Nsq(G)∩Hb2| = |Ha \ (Ba∪{b2})| = |Ha \ (Ha∩Ba)| −1 = (2|L|−1)|H|/2|L|−1. Then
L(H) = (2|L|−1)|H|/2|L|−1.

(4) If b2 ∈ H, then L(H) = (2|L|−1)|H|/2|L|, and so (4) is valid. Now suppose b2 < H. If b2 ∈ B, from
Lemma 2.8 (1), then |Nsq(G)∩Hb2| = |Hb2 \ B| = |Hb2 \ (H ∩ B)b2| = (2|L| − 1)|H|/2|L|, which implies
that (4) holds. If b2 < B, then Hb2 ∩ B = ∅, and so |Nsq(G)∩Hb2| = |Hb2 \ {b2}| = |H| − 1. Thus, (4)
holds. □

Lemma 3.5. Suppose that I is a transversal of H in A containing e such that I contains a square
element in each coset of H having nonempty intersection with Sq(G). The following hold:

(1) If B∪{b2} ⊆ H, then (I \ {e})x is square-free for each x ∈ H;

(2) If B ⩽ H and b2 < H, then (I \ {e})x is square-free for each x ∈ H \B;

(3) If B ⩽̸ H, b2 < H∪B, and Hb2∩B , ∅, then (I \ {e})x is square-free for each x ∈ H \ (B∪Bb2);

(4) If B ⩽̸ H, and b2 ∈ H∪B or Hb2∩B = ∅, then (I \ {e})x is square-free for each x ∈ H \B.

Proof. Note that I \ {e} = ((I \ {e})∩ (∪a∈B∪{b2}Ha))∪ (I \ (∪a∈B∪{b2}Ha)). By Fact 2.4, one gets Sq(G) =
B∪ {b2} ⊆ ∪a∈B∪{b2}Ha. Since Hah = Ha for each h ∈ H with a ∈ A, one gets (I \ (∪a∈B∪{b2}Ha))h ⊆
A \ (B∪ {b2}), which implies that (I \ (∪a∈B∪{b2}Ha))h is square-free. It suffices to show that ((I \ {e})∩
(∪a∈B∪{b2}Ha))x is square-free for each case.

(1) Since B∪ {b2} ⊆ H, we get ∪a∈B∪{b2}Ha = H, and so (I \ {e})∩ (∪a∈B∪{b2}Ha) = (I \ {e})∩H = ∅,
which implies (I \ {e})x = (I \ (∪a∈B∪{b2}Ha))x for each x ∈ H. Thus, (1) is valid.

(2) Since b2 < H, one gets Hb2∩H = ∅. Since B ⩽ H, we have Hb2∩B = ∅ and ∪a∈B∪{b2}Ha = H∪
Hb2. Since I contains a square element in each coset of H having nonempty intersection with Sq(G) and
Hb2∩B= ∅, from Fact 2.4, we have b2 ∈ I, which implies (I \{e})∩(∪a∈B∪{b2}Ha)= (I \{e})∩(H∪Hb2)=
(I \ {e})∩Hb2 = {b2}. Then ((I \ {e})∩ (∪a∈B∪{b2}Ha))x = {b2x} ⊆ Hb2 \ (B∪Bb2) ⊆ A\ (B∪Bb2) for each
x ∈ H \B, and so ((I \ {e})∩ (∪a∈B∪{b2}Ha))x is square-free. Thus, (2) holds.

(3) Note that I contains a square element in each coset of H having nonempty intersection with
Sq(G). Since B ⩽̸ H, b2 < H∪B, and Hb2∩B , ∅, from Fact 2.4, one obtains (I \ {e})∩ (∪a∈B∪{b2}Ha) ⊆
B∪ {b2} ⊆ B∪ Bb2, which implies ((I \ {e})∩ (∪a∈B∪{b2}Ha))x ⊆ (B∪ Bb2)x ⊆ A \ (B∪ Bb2) for each
x ∈ H \ (B∪ Bb2). Then ((I \ {e})∩ (∪a∈B∪{b2}Ha))x is square-free for each x ∈ H \ (B∪ Bb2). Thus, (3)
is valid.

(4) Note that I contains a square element in each coset of H having nonempty intersection with
Sq(G). If b2 ∈ H, from Fact 2.4, then (I \ {e})∩ (∪a∈B∪{b2}Ha) = (I \ {e})∩ (∪a∈BHa) ⊆ B \ {e}, and so
((I \{e})∩ (∪a∈B∪{b2}Ha))x ⊆ A\ (H∪B) for each x ∈ H \B, which implies that ((I \{e})∩ (∪a∈B∪{b2}Ha))x
is square-free. If b2 ∈ B, then B∪ {b2} = B, and so ((I \ {e})∩ (∪a∈B∪{b2}Ha))x ⊆ Bx ⊆ A \ B for each
x ∈ H \B from Fact 2.4, which implies that ((I \ {e})∩ (∪a∈B∪{b2}Ha))x is square-free.

Now, suppose b2 < H ∪ B. It follows that Hb2 ∩ B = ∅. Since I contains a square element in each
coset of H having nonempty intersection with Sq(G), one has I∩Hb2 = {b2}. For each x ∈ H \B, since
Hb2 ∩ B = ∅, we obtain (I ∩Hb2)x = {b2x} ⊆ Hb2 \ Bb2 ⊆ A \ (B∪ {b2}) and ((I \ {e})∩ (∪a∈BHa))x ⊆
Bx ⊆ A \ (B∪ Bb2), which implies that ((I \ {e})∩ (∪a∈B∪{b2}Ha))x ⊆ A \ (B∪ {b2}). Then, ((I \ {e})∩
(∪a∈B∪{b2}Ha))x is square-free for each x ∈ H \B. Thus, (4) is valid. □
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Lemma 3.6. The subgroup H is a (0,β)-regular set in CayS(G,S ) if and only if β = t|H|/2|L| and one
of the following holds:

(1) 0 ≤ t ≤ 2|L|, B∪{b2} ⊆ H;

(2) 0 ≤ t ≤ 2|L|−1, B ⩽ H, and b2 < H;

(3) 0 ≤ t ≤ 2|L|−2, B ⩽̸ H, b2 < H∪B, and Hb2∩B , ∅;

(4) 0 ≤ t ≤ 2|L|−1, B ⩽̸ H, and b2 ∈ H∪B or Hb2∩B = ∅.

Proof. We first prove the necessity. Pick an element a ∈ A. In view of Lemma 2.11, one gets a ∈ BaL′aT ′

for some L′ ⊆ L and T ′ ⊆ T . Since S is normal, from Lemma 2.6, we may assume that S contains
exactly t sets of type BaL′′aT ′b with L′′ ⊆ L. In view of Lemmas 2.1 and 3.1, we get β = |S ∩Hab| =
t|H|/2|L| with 0 ≤ t ≤ L(H)·2|L|

|H| .
If B∪ {b2} ⊆ H, from Lemma 3.4 (1), then L(H) = |H|, and so 0 ≤ t ≤ 2|L|, which imply that (1)

is valid. If B ⩽ H and b2 < H, from Lemma 3.4 (2), one gets L(H) = |H| − 1, and so 0 ≤ t ≤ 2|L| − 1,
which implies that (2) holds. If B ⩽̸ H, b2 < H ∪ B, and Hb2 ∩ B , ∅, from Lemma 3.4 (3), then
L(H) = (2|L| − 1)|H|/2|L| − 1, and so, 0 ≤ t ≤ 2|L| − 2, which implies that (3) is valid. If B ⩽̸ H, and
b2 ∈ H ∪ B or Hb2∩ B , ∅, from Lemma 3.4 (4), then L(H) = (2|L| − 1)|H|/2|L|, and so 0 ≤ t ≤ 2|L| − 1,
which implies that (4) holds.

Next, we prove the sufficiency. If t = 2|L|, then β = |H|, and so S = G \H. Now, we consider
0 ≤ t ≤ 2|L| − 1. By Lemma 3.3, let I be a transversal of H in A containing e such that I \ J is inverse-
closed and I contains a square element in each coset of H having nonempty intersection with Sq(G).

In view of Lemma 2.10, there are 2|L| − 1 distinct aL′ for ∅ , L′ ⊆ L ⊆ H. By (1.1), BaK and BaK′

are pairwise disjoint for distinct subsets K and K′ of {a1, . . . ,aλ}. If b2 < H ∪ B and Hb2∩ B , ∅, then
H ∩ Bb2 , ∅, and there are 2|L| − 2 distinct aL′ for ∅ , L′ ⊆ L and aL′ < Bb2 from Lemma 2.11. Since
0 ≤ t|H|/2|L| ≤ L(H) from Lemma 3.4, each coset Hx with x ∈ G \H has at least t|H|/2|L| non-square
elements. Since aL′ ∈ H with L′ ⊆ L, from Lemma 2.8 (1), one has |H∩BaL′ | = |H|/2|L|.

If B ⩽̸ H, b2 < H∪B, and Hb2∩B , ∅, then let S be a union of t|H|/2|L|+1 sets of type {ha′,h−1a′−1}

with ha′ ∈ Nsq(G) and h ∈ H for each Ha′ ⊆ J, t sets of type ∪x∈H∩BaL′ (I \ (J∪{e}))x, and t sets of type
∪T ′⊆T BaL′aT ′b with ∅ , L′ ⊆ L and aL′ < Bb2. If B ⩽ H, or b2 ∈ H∪B, or Hb2∩B = ∅, then let S be a
union of t|H|/2|L|+1 sets of type {ha′,h−1a′−1} with ha′ ∈ Nsq(G) and h ∈ H for each Ha′ ⊆ J, t sets of
type ∪x∈H∩BaL′ (I \ (J∪{e}))x, and t sets of type ∪T ′⊆T BaL′aT ′b with ∅ , L′ ⊆ L.

We now claim that H is a (0, t|H|/2|L|)-regular set in CayS(G,S ). The proof proceeds in the following
steps.

Step 1. S is normal and square-free.

In view of Fact 2.4 and Lemma 2.6, ∪T ′⊆T BaL′aT ′b with ∅ , L′ ⊆ L is normal and square-free. By
Lemma 3.5, S is square-free.

Let L′ be a nonempty subset of L and d ∈ H ∩ BaL′ . Since d ∈ BaL′ , there exists c ∈ B such that
d = caL′ . By (1.1), we have a2

L′ ∈ B, and so d−1 = c−1a−1
L′ ∈ H ∩ Ba−1

L′ = H ∩ BaL′ . Since L′ and d are
arbitrary, H∩BaL′ is inverse-closed for each nonempty subset of L.

Since I \ (J ∪ {e}) is inverse-closed, ∪x∈H∩BaL′ (I \ (J ∪ {e}))x for each nonempty subset L′ of L,
{ha′,h−1a′−1} with ha′ ∈ Nsq(G), and h ∈ H for each Ha′ ⊆ J are normal by Corollary 2.7, which
implies that S is normal.

AIMS Mathematics Volume 10, Issue 12, 30186-30205.



30197

Thus, Step 1 holds.

Step 2. |S ∩Hab| = t|H|/2|L| for each a ∈ A.

Note that S contains t sets of type BaL′aT ′b with ∅ , L′ ⊆ L for each T ′ ⊆ T . For each a ∈ A, from
Lemma 2.11, one gets a ∈ BaL′′aT ′′ for some L′′ ⊆ L and T ′′ ⊆ T . By Lemma 3.1, we get |S ∩Hab| =
t|H|/2|L| for each a ∈ A.

Thus, Step 2 is valid.

Step 3. |S ∩Ha| = t|H|/2|L| for each a ∈ A \H.

Note that |I ∩Ha| = 1 for each a ∈ A \H. By Lemma 2.8 (1), we have |(∪x∈H∩BaL′ (I \ (J ∪ {e}))x)∩
Ha| = |H∩BaL′ | = |H|/2|L| with ∅ , L′ ⊆ L ⊆ H for each Ha satisfying Ha∩ J∩H = ∅. Since S contains
t sets of type ∪x∈H∩BaL′ (I \ (J∪{e}))x with ∅ , L′ ⊆ L, from Lemma 2.11, we get |S ∩Ha| = t|H|/2|L| for
each Ha satisfying Ha∩ J ∩H = ∅. If J = ∅, then the desired result follows. Now, suppose J , ∅. It
follows from Lemma 2.13 that m > |L|. By Lemma 2.8 (2), |H|/2|L| is even. Since S contains t|H|/2|L|+1

sets of type {ha′,h−1a′−1}with ha′ ∈Nsq(G) and h ∈H for each Ha′ ⊆ J, one obtains |S ∩Ha′|= t|H|/2|L|.
Thus, Step 3 holds. In view of Steps 1–3 and Lemma 2.1 (1), our claim is valid. □

3.2. ⟨H,zb⟩ is a (0,β)-regular set of G

In this subsection, we always assume that ⟨H,zb⟩ is a subgroup of G such that H has index 2 in
⟨H,zb⟩.

In the following lemma, by giving an appropriate connection set S with S ∩ A = ∅, we determine
each possibility for (α,β) such that ⟨H,zb⟩ is an (α,β)-regular set of G.

Lemma 3.7. Let S be a normal and square-free subset of G with S ∩A = ∅. Then ⟨H,zb⟩ is an (α,β)-
regular set in CayS(G,S ) if and only if one of the following holds:

(1) B ⩽ H, α = t′|H|/2|L|, and β = t|H|/2|L|;

(2) B ⩽̸ H and α = β = t|H|/2|L|.

Here, 0 ≤ t, t′ ≤ 2|L|.

Proof. Since H has index 2 in ⟨H,zb⟩, we have ⟨H,zb⟩ = H∪Hzb. Since S ∩A = ∅, we have

|S ∩⟨H,zb⟩a| = |S ∩ (H∪Hzb)a| = |S ∩Hzba| = |S ∩Hza−1b| (3.2)

for each a ∈ A. Since z ∈ A, from Lemma 2.11, one gets z ∈ BaL′aT ′ for some L′ ⊆ L and T ′ ⊆ T .
We first prove the necessity. Let a ∈ A\H. Since H has index 2 in ⟨H,zb⟩, we have ⟨H,zb⟩a, ⟨H,zb⟩.

In view of Lemma 2.11, one gets za−1 ∈ BaL′′aT ′′ for some L′′ ⊆ L and T ′′ ⊆ T . Since S is normal, from
Lemma 2.6, we may assume that S contains exactly t sets of type BaL0aT ′′b with L0 ⊆ L. By Lemma
2.1 (1), Lemma 3.1, and (3.2), one has β = |S ∩⟨H,zb⟩a| = |S ∩Hza−1b| = t|H|/2|L| with 0 ≤ t ≤ 2|L|.

Suppose B ⩽ H. Note that z ∈ BaL′aT ′ . Since S is normal, from Lemma 2.6, we may assume that S
contains exactly t′ sets of type BaL′′aT ′b with L′′ ⊆ L. By Lemma 2.1 (1), Lemma 3.1, and (3.2), we
get α = |S ∩⟨H,zb⟩| = |S ∩Hzb| = t′|H|/2|L| with 0 ≤ t′ ≤ 2|L|. Thus, (1) is valid.

Suppose B ⩽̸ H. It follows that B\H , ∅. Since z ∈ BaL′aT ′ , we have zc−1 ∈ BaL′aT ′ with c ∈ B\H.
By Lemma 3.1, we have |S ∩Hzb| = |S ∩Hzc−1b|. In view of Lemma 2.1 (1) and (3.2), one gets
α = |S ∩⟨H,zb⟩| = |S ∩Hzb| = |S ∩Hzc−1b| = |S ∩⟨H,zb⟩c| = β. Thus, (2) holds.
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We next prove the sufficiency. In view of Fact 2.4 and Lemma 2.6, BaL′′aT ′′b is normal and square-
free for each L′′ ⊆ L and T ′′ ⊆ T .

Suppose B ⩽ H. It follows from Lemma 2.11 that H = ⊔L′′⊆LBaL′′ . Since z ∈ BaL′aT ′ ⊆ HaL′aT ′ =

HaT ′ , one gets Hz = HaT ′ = ∪L′′⊆LBaL′′aT ′ , which implies (∪L′′⊆LBaL′′aT ′)∩ (A \Hz) = ∅. Let S be
a union of t′ sets of type BaL′′aT ′b with L′′ ⊆ L, and t sets of type BaL′′aT ′′b with L′′ ⊆ L for each
T ′′ ⊆ T with (∪L′′⊆LBaL′′aT ′′)∩ (A \Hz) , ∅. Since z ∈ BaL′aT ′ , from (3.2) and Lemma 3.1, we obtain
|S ∩ ⟨H,zb⟩| = |S ∩Hzb| = t′|H|/2|L|. For each x ∈ A \H, since zx−1 ∈ A, from Lemma 2.11, one gets
zx−1 ∈ BaL′′aT ′′ for some L′′ ⊆ L and T ′′ ⊆ T , which implies zx−1 ∈ BaL′′aT ′′ ∩ (A\Hz). In view of (3.2)
and Lemma 3.1, one gets |S ∩ ⟨H,zb⟩x| = |S ∩Hzx−1b| = t|H|/2|L| for each x ∈ A \H. By Lemma 2.1
(1), ⟨H,zb⟩ is a (t′|H|/2|L|, t|H|/2|L|)-regular set in CayS(G,S ) with 0 ≤ t, t′ ≤ 2|L|.

Suppose B ⩽̸ H. Let S be a union of t sets of type ∪T ′′⊆T BaL′′aT ′′b with L′′ ⊆ L. For each za−1 ∈ A,
from Lemma 2.11, one gets za−1 ∈ BaL′′aT ′′ for some L′′ ⊆ L and T ′′ ⊆ T . By (3.2) and Lemma 3.1,
one gets |S ∩⟨H,zb⟩a| = |S ∩Hza−1b| = t|H|/2|L| for each a ∈ A. In view of Lemma 2.1 (1), ⟨H,zb⟩ is a
(t|H|/2|L|, t|H|/2|L|)-regular set in CayS(G,S ) with 0 ≤ t ≤ 2|L|. □

In the following lemma, by giving an appropriate connection set S with S ⊆ A, we determine each
possibility for β such that ⟨H,zb⟩ is a (0,β)-regular set of G.

Since b2 = (zb)2, one gets b2 ∈ H.

Lemma 3.8. Let S be a normal and square-free subset of G with S ⊆ A. Then ⟨H,zb⟩ is a (0,β)-regular
set in CayS(G,S ) if and only if one of the following holds:

(1) B ⩽ H and 0 ≤ β ≤ |H|;

(2) B ⩽̸ H and 0 ≤ β ≤ (2|L|−1)|H|/2|L|.

Moreover, if m > |L|, then 2 | β.

Proof. Since H has index 2 in ⟨H,zb⟩ and S ⊆ A, one gets

S ∩⟨H,zb⟩x = S ∩ (H∪Hzb)x = S ∩Hx (3.3)

for each x ∈ A \H.
We first prove the necessity. Since |G : A| = 2, one has G = A∪Ab. By Fact 2.4, we have |Nsq(G)∩

Hab| = |H| for each a ∈ A. It follows that L(H) =min{|Nsq(G)∩Hx| : x ∈G \H} =min{|Nsq(G)∩Hx| :
x ∈ A \H}. Let L(H) = |Nsq(G)∩Hx0| with x0 ∈ A \H. Since S is square-free, one gets S ∩Hx0 ⊆

Nsq(G)∩Hx0. By Lemma 2.1 (1) and (3.3), one obtains β = |S ∩⟨H,zb⟩x| = |S ∩Hx| for all x ∈ A \H.
It follows that β = |S ∩Hx0| ≤ |Nsq(G)∩Hx0| =L(H).

Suppose B ⩽ H. Since b2 ∈ H, from Lemma 3.4 (1), we have β ≤ L(H) = |H| for each x ∈ A \H.
Thus, (1) is valid.

Suppose B ⩽̸ H. Since b2 ∈ H, from Lemma 3.4 (4), one gets β ≤ L(H) = (2|L|−1)|H|/2|L| for each
x ∈ A \H. Thus, (2) holds.

Now, suppose m > |L|. In view of Lemma 3.2, one has J , ∅. By Lemma 2.1 (1) and (3.3), we
get β = |S ∩Ha| for Ha ⊆ J. For each ha ∈ S ∩Ha with Ha ⊆ J and h ∈ H, since S is normal and
Ha∩A′ = ∅, we have h−1a−1 ∈ S ∩Ha−1 = S ∩Ha from Lemma 2.6. Since Ha∩A′ = ∅, from Fact 2.5,
one obtains 2 | |S ∩Ha|, and so 2 | β. The second statement follows.
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Next, we prove the sufficiency. By Lemma 3.3, let I be a transversal of H in A containing e such that
I \ J is inverse-closed and I contains a square element in each coset of H having nonempty intersection
with Sq(G).

By Lemma 2.8 (1), we have |H \ B| = (2|L| −1)|H|/2|L|, |H∩A′| = 2m, and |(H∩A′) \ B| = 2m −2m−r.
Note that b2 ∈ H. It follows that ⟨b2⟩ ⩽ H, and so |H∩A′| = 2m ≥ 2, which implies m ≥ 1. By Lemma
3.4 (1) and (4), we have β ≤ L(H), which implies that each coset ⟨H,zb⟩x with x ∈ A \H has at least
β non-square elements in A by (3.3). Let σ(n) = 1−(−1)n

2 for an integer n. Now, we give an appropriate
connection set S for each case respectively.

• Suppose B ⩽ H, m = |L|, and β ≤ 2m. Let S be a union of β sets of type (I \ {e})a′ with a′ ∈ H∩A′.

• Suppose B ⩽ H, m = |L|, and β > 2m. Let S be a union of 2m −σ(β) sets of type (I \ {e})a′ with
a′ ∈ H∩A′ and β−(2m−σ(β))

2 sets of type (I \ {e})a∪ (I \ {e})a−1 with a ∈ H \A′.

• Suppose B ⩽̸ H, m = |L|, and β ≤ 2m − 2m−r. Let S be a union of β sets of type (I \ {e})c′ with
c′ ∈ (H∩A′) \B.

• Suppose B ⩽̸ H, m = |L|, and β > 2m−2m−r. Let S be a union of 2m−2m−r −σ(β)+ (−1)β+1 · δm,r sets
of type (I \ {e})c′ with c′ ∈ (H∩A′) \B and β−(2m−2m−r−σ(β)+(−1)β+1·δm,r)

2 sets of type (I \ {e})c∪ (I \ {e})c−1

with c ∈ H \ (A′∪B), where δ is Kronecker’s delta.

• Suppose B⩽ H, m > |L|, and β ≤ 2m. Let S be a union of β sets of type (I \ (J∪{e}))a′ with a′ ∈ H∩A′

and β/2 sets of type {ha′′,h−1a′′−1} with ha′′ ∈ Nsq(G) and h ∈ H for each Ha′′ ⊆ J.

• Suppose B ⩽ H, m > |L|, and β > 2m. Let S be a union of 2m sets of type (I \ (J ∪ {e}))a′ with
a′ ∈ H ∩A′, β−2m

2 sets of type (I \ (J ∪ {e}))a∪ (I \ (J ∪ {e}))a−1 with a ∈ H \A′, and β/2 sets of type
{ha′′,h−1a′′−1} with ha′′ ∈ Nsq(G) and h ∈ H for each Ha′′ ⊆ J.

• Suppose B ⩽̸ H, m > |L|, and β ≤ 2m − 2m−r. Let S be a union of β sets of type (I \ (J ∪ {e}))c′ with
c′ ∈ (H∩A′) \B and β/2 sets of type {ha′′,h−1a′′−1} with ha′′ ∈ Nsq(G) and h ∈ H for each Ha′′ ⊆ J.

• Suppose B ⩽̸ H, m > |L|, and β > 2m−2m−r. Let S be a union of 2m−2m−r sets of type (I \ (J∪{e}))c′

with c′ ∈ (H ∩A′) \ B, β−(2m−2m−r)
2 sets of type (I \ (J ∪ {e}))c∪ (I \ (J ∪ {e}))c−1 with c ∈ H \ (A′ ∪ B),

and β/2 sets of type {ha′′,h−1a′′−1} with ha′′ ∈ Nsq(G) and h ∈ H for each Ha′′ ⊆ J.

We now claim that H is a (0,β)-regular set in CayS(G,S ). The proof proceeds in the following
steps.

Step 1. S is normal.

Suppose m = |L|. By Lemma 2.13, we get J = ∅, and so I \ {e} is inverse-closed, which implies that
S is normal from Corollary 2.7.

Suppose m > |L|. In view of Lemma 3.2, one obtains J , ∅. Since I \ (J ∪ {e}) is inverse-closed,
and moreover, for each Ha′′ ⊆ J, {ha′′,h−1a′′−1} with ha′′ ∈ Nsq(G) and h ∈ H is also inverse-closed, it
follows from Corollary 2.7 that S is normal.

Step 2. S is square-free.

If B ⩽ H, from Lemma 3.5 (1), then S is square-free; if B ⩽̸ H, from Lemma 3.5 (4), then S is
square-free.
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Step 3. |S ∩⟨H,zb⟩x| = β for each x ∈ A \H.

By (3.3), one gets S ∩⟨H,zb⟩x = S ∩Hx for each x ∈ A \H. We only need to prove |S ∩Hx| = β for
each x ∈ A \H.

Suppose m = |L|. Note that J = ∅. Since |(I \ {e})∩Hx| = 1 for each x ∈ A \H, we have |S ∩Hx| = β.
Suppose m> |L|. By Lemma 3.2, one has J , ∅. Since |(I \ (J∪{e}))∩Hd|= 1 for each Hd satisfying

Hd∩ J ∩H = ∅, we have |S ∩Hd| = β. Since S contains β/2 sets of type {ha′′,h−1a′′−1} with ha′′ ∈
Nsq(G) and h ∈ H for each Ha′′ ⊆ J, we have |S ∩Ha′′| = β.

In view of Steps 1–3 and Lemma 2.1 (1), our claim is valid. □

4. Proofs of Theorems 1.1 and 1.2

To give the proofs of Theorems 1.1 and 1.2, we need some auxiliary lemmas.

Lemma 4.1. The subgroup H is an (α,0)-regular set of G if and only if one of the following occurs:

(1) 0 ≤ α ≤ |H|/2−1 and α is even, when m = |L| = 1 and b2 ∈ H \B;

(2) 0 ≤ α ≤ (2|L|−1)|H|/2|L|−1, when m ≥ |L| ≥ 1, m , 1, and b2 ∈ H \B;

(3) 0 ≤ α ≤ (2|L|−1)|H|/2|L| and α is even, when r = 0 and b2 < H \B;

(4) 0 ≤ α ≤ (2|L|−1)|H|/2|L|, when r > 0 and b2 < H \B.

Proof. Let H be an (α,0)-regular set in CayS(G,S ) for some subset S of G. By Lemma 2.1 (1), one
obtains S = S ∩H. Since b2 ∈ A′ from Fact 2.4, we get

S = S ∩H ⊆ Nsq(G)∩H

= (Nsq(G)∩ (H∩A′))∪ (Nsq(G)∩ (H \A′))
= ((H∩A′) \ (B∪{b2}))∪ (H \ (A′∪B)). (4.1)

We divide the proof into the following two cases.
Case 1. b2 ∈ H \B.

By Fact 2.4, one gets Nsq(G)∩H = H \ ((H ∩ B)∪ {b2}). If |L| = 0, from Lemma 2.8 (1), then
|H∩B| = |H|, and so H ⩽ B, contrary to b2 ∈ H \B. Then |L| ≥ 1. In view of Lemma 2.1 (2) and Lemma
2.8 (1), we have 0 ≤ α ≤ |H \ ((H∩B)∪{b2})| = (2|L|−1)|H|/2|L|−1.

Suppose m = 1. It follows that m = |L| = 1. By Lemma 2.8 (1), we have |H ∩A′| = 2. Since ⟨b2⟩ ⩽
H∩A′, we get H∩A′ = ⟨b2⟩, and so H∩A′ ⊆ Sq(G) from Fact 2.4. Since S is square-free and S = S ∩H,
we have S ⊆Nsq(G)∩H = H \Sq(G). Since H∩A′ ⊆ Sq(G), from Fact 2.5, S has no involution. Since
S is normal, from Lemma 2.6, S is a union of α/2 sets of type {a,a−1} with a ∈ H \ ((H∩B)∪{b2}). It
follows that α is even. Thus, (1) holds.

Suppose m , 1. Then m ≥ |L| ≥ 1 and m , 1. By Lemma 2.8 (1), we have |(H∩A′) \B| = 2m−2m−r.
Since b2 ∈ H \B and b2 ∈ A′, from Fact 2.5, one gets |(H∩A′)\ (B∪{b2})| = 2m−2m−r−1, which implies
that S has at most 2m−2m−r−1 involutions from (4.1). If α ≤ 2m−2m−r−1, from Lemma 2.6 and (4.1),
then S can be a union of α sets of type {a′} with a′ ∈ (H∩A′) \ (B∪{b2}) since S is normal.

We only need to consider the case α> 2m−2m−r−1. Note that S is normal. If α is even, from Lemma
2.6 and (4.1), then S can be a union of 2m−2m−r−2+δm,r sets of type {a′} with a′ ∈ (H∩A′)\ (B∪{b2})
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and α−(2m−2m−r−2+δm,r)
2 sets of type {a,a−1} with a ∈ H \ (A′∪ B). If α is odd, from Lemma 2.6 and (4.1)

again, then S can be a union of 2m − 2m−r − 1− δm,r sets of type {a′} with a′ ∈ (H ∩A′) \ (B∪ {b2}) and
α−(2m−2m−r−1−δm,r)

2 sets of type {a,a−1} with a ∈ H \ (A′∪B). Thus, (2) is valid.
Case 2. b2 < H \B.

Since b2 < H \B, from Fact 2.4, we have Nsq(G)∩H = H \ (H∩B). It follows from Lemma 2.1 (2)
and Lemma 2.8 (1) that 0 ≤ α ≤ |H \ (H∩B)| = (2|L|−1)|H|/2|L|.

Suppose r = 0. By Lemma 2.8 (1), one has |H∩A′| = |H∩A′∩B| = 2m, and so H∩A′ ⊆ B. Since S
is square-free and S = S ∩H, we have S ⊆Nsq(G)∩H = H \ (H∩B). Since H∩A′ ⊆ B, from Fact 2.5,
S has no involution. Since S is normal, from Lemma 2.6, S is a union of α/2 sets of type {a,a−1} with
a ∈ H \ (H∩B). It follows that α is even. Thus, (3) holds.

Suppose r > 0. Since b2 <H \B, we get (H∩A′)\ (B∪{b2})= (H∩A′)\B. By Lemma 2.8 (1), we get
|(H∩A′) \B| = 2m−2m−r. By (4.1) and Fact 2.5, S has at most 2m−2m−r involutions. If α ≤ 2m−2m−r,
from Lemma 2.6 and (4.1), then S can be a union of α sets of type {a′} with a′ ∈ (H∩A′)\B since S is
normal.

We only need to consider the case α > 2m−2m−r. Note that S is normal. If α is even, from Lemma
2.6 and (4.1), then S can be a union of 2m − 2m−r − δm,r sets of type {a′} with a′ ∈ (H ∩ A′) \ B and
α−(2m−2m−r−δm,r)

2 sets of type {a,a−1} with a ∈ H \ (A′∪ B). If α is odd, from Lemma 2.6 and (4.1) again,
then S can be a union of 2m−2m−r −1+ δm,r sets of type {a′} with a′ ∈ (H∩A′) \B and α−(2m−2m−r−1+δm,r)

2
sets of type {a,a−1} with a ∈ H \ (A′∪B). Thus, (4) is valid. □

Lemma 4.2. The subgroup ⟨H,zb⟩ is an (α,β)-regular set of G if and only if there exists a normal and
square-free subset S of G such that ⟨H,zb⟩ is an (η,ζ)-regular set in CayS(G,S ∩A) and an (α−η,β−ζ)-
regular set in CayS(G,S ∩Ab) for some η ∈ {0,1, . . . ,α} and ζ ∈ {0,1, . . . ,β}.

Proof. We first prove the necessity. Suppose that ⟨H,zb⟩ is an (α,β)-regular set in CayS(G,S ). By
Lemma 2.1 (1), one gets |S ∩ ⟨H,zb⟩| = α and |S ∩ ⟨H,zb⟩x| = β for each x ∈ A \H, which imply that
S is the union of S ∩ ⟨H,zb⟩ and β pairwise disjoint subsets T j ⊆ Nsq(G) with 1 ≤ j ≤ β, where each
T j∪{e} is a right transversal of ⟨H,zb⟩ in G. Without loss of generality, we may assume that |S ∩H|= η,
∪
ζ
h=1Th ⊆ A, and ∪βh=ζ+1Th ⊆ Ab for some η ∈ {0,1, . . . ,α} and ζ ∈ {0,1, . . . ,β}. Since H has index 2 in
⟨H,zb⟩, we have |S ∩Hzb|=α−η. Then, |S ∩A∩⟨H,zb⟩|= η, |S ∩A∩⟨H,zb⟩x|= ζ for each x ∈ A\H and
|S ∩Ab∩⟨H,zb⟩| = α−η, |S ∩Ab∩⟨H,zb⟩x| = β−ζ for each x ∈ A\H. Note that S = (S ∩A)∪ (S ∩Ab).
Since S is a normal and square-free subset of G, S ∩ A and S ∩ Ab are both normal and square-free.
By Lemma 2.1 (1), ⟨H,zb⟩ is an (η,ζ)-regular set in CayS(G,S ∩A) and an (α−η,β− ζ)-regular set in
CayS(G,S ∩Ab).

Next, we prove the sufficiency. Suppose that ⟨H,zb⟩ is an (η,ζ)-regular set in CayS(G,S ∩A) and
an (α−η,β− ζ)-regular set in CayS(G,S ∩Ab). By Lemma 2.1 (1), S ∩A contains exactly η elements
of ⟨H,zb⟩ and ζ elements of ⟨H,zb⟩x for each x ∈ A \H, and S ∩Ab contains exactly α−η elements of
⟨H,zb⟩ and β−ζ elements of ⟨H,zb⟩x for each x ∈ A\H. Since G = A∪Ab, one gets S = (S ∩A)∪ (S ∩
Ab), which implies that S contains exactly α elements of ⟨H,zb⟩ and β elements of ⟨H,zb⟩x for each
x ∈ A \H. Since S ∩A and S ∩Ab are both normal and square-free, from Lemma 2.1 (1), ⟨H,zb⟩ is an
(α,β)-regular set in CayS(G,S ). □

Lemma 4.3. Let S be a normal and square-free subset of G with S ⊆ A. Then ⟨H,zb⟩ is an (α,β)-
regular set in CayS(G,S ) if and only if H is an (α,0)-regular set in CayS(G,S ∩H) and ⟨H,zb⟩ is a
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(0,β)-regular set of CayS(G,S \H).

Proof. Since S ⊆ A and H has index 2 in ⟨H,zb⟩, we have S ∩⟨H,zb⟩ = S ∩H and S ∩ (G \ ⟨H,zb⟩) =
S ∩ (A \H).

We first prove the necessity. Since H is a normal subgroup of G and S , S ∩H are normal and
square-free, S \H is normal and square-free. Since ⟨H,zb⟩ is an (α,β)-regular set in CayS(G,S ), from
Lemma 2.1 (1), one has |S ∩H| = |S ∩⟨H,zb⟩| = α and |(S \H)∩⟨H,zb⟩x| = |S ∩⟨H,zb⟩x| = β for each
x ∈ A \H. Since S ∩Hb = ∅, from Lemma 2.1 (1) again, H is an (α,0)-regular set in CayS(G,S ∩H)
and ⟨H,zb⟩ is a (0,β)-regular set in CayS(G,S \H).

We next prove the sufficiency. Since H is an (α,0)-regular set in CayS(G,S ∩H) and ⟨H,zb⟩ is
a (0,β)-regular set in CayS(G,S \H), from Lemma 2.1 (1), one gets |S ∩ ⟨H,zb⟩| = |S ∩H| = α and
|S ∩ ⟨H,zb⟩x| = |(S \H)∩ ⟨H,zb⟩x| = β for each x ∈ A \H. Since S = (S ∩H)∪ (S \H), from Lemma
2.1 (1), ⟨H,zb⟩ is an (α,β)-regular set in CayS(G,S ). □

Now, we are ready to give a proof of Theorem 1.1.

Proof of Theorem 1.1. By Lemma 2.3, H is an (α,β)-regular set of G if and only if H is an (α,0)-regular
set and a (0,β)-regular set of G. The desired result is valid from Lemmas 3.6 and 4.1. □

Next, we give a proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 4.2, ⟨H,zb⟩ is an (α,β)-regular set of G if and only if ⟨H,zb⟩ is
an (η,ζ)-regular set in CayS(G,S ∩ A) and an (α− η,β− ζ)-regular set in CayS(G,S ∩ Ab) for some
η ∈ {0,1, . . . ,α}, ζ ∈ {0,1, . . . ,β}, and normal, square-free subset S . In view of Lemma 4.3, ⟨H,zb⟩ is
an (α,β)-regular set of G if and only if H is an (η,0)-regular set in CayS(G,S ∩H), and ⟨H,zb⟩ is an
(0, ζ)-regular set in CayS(G, (S ∩A) \H) and an (α− η,β− ζ)-regular set in CayS(G,S ∩Ab) for some
η ∈ {0,1, . . . ,α}, ζ ∈ {0,1, . . . ,β}, and normal, square-free subset S . The desired result follows from
Lemma 2.8 (2) and Lemmas 3.7, 3.8, and 4.1. □

5. Conclusions

In this paper, we study regular sets in Cayley sum graphs on a generalized dicyclic group. For each
subgroup H of a generalized dicyclic group G, by giving an appropriate connection set S , we determine
each possibility for (α,β) such that H is an (α,β)-regular set of G. Future work may investigate the
regular sets in Cayley sum graphs on other non-abelian groups.
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