To better capture the long-term memory, non-stationary increments, self-similarity, and stochastic nature of interest rates in financial markets, we introduce the Vasicek stochastic interest rate model within a mixed sub-fractional Brownian motion framework to study European option pricing. Using actuarial pricing methods, we derived a closed-form solution for European options under this model. Through numerical simulations and empirical analysis, we examined how variables such as the underlying asset's initial price, strike price, maturity time, volatility, Hurst index, and correlation coefficients influence option prices.
Citation: Fangling Ren, Hui Feng. Actuarial pricing of European options under mixed sub-fractional Brownian motion with the Vasicek interest rate[J]. AIMS Mathematics, 2025, 10(12): 30162-30185. doi: 10.3934/math.20251325
To better capture the long-term memory, non-stationary increments, self-similarity, and stochastic nature of interest rates in financial markets, we introduce the Vasicek stochastic interest rate model within a mixed sub-fractional Brownian motion framework to study European option pricing. Using actuarial pricing methods, we derived a closed-form solution for European options under this model. Through numerical simulations and empirical analysis, we examined how variables such as the underlying asset's initial price, strike price, maturity time, volatility, Hurst index, and correlation coefficients influence option prices.
| [1] |
M. Zili, Mixed sub-fractional Brownian motion, Random Operators Sto, 22 (2014), 163–178. http://doi.org/10.1515/rose-2014-0017 doi: 10.1515/rose-2014-0017
|
| [2] |
R. C. Merton, An analytic derivation of the cost of the deposit insurance and loan guarantees: An application of modern option pricing theory, J Bank Financ, 1 (1977), 3–11. http://doi.org/10.1016/0378-4266(77)90015-2 doi: 10.1016/0378-4266(77)90015-2
|
| [3] | H. U. Gerber, E. S. W. Shiu, Option pricing by Esscher transforms, Trans. Soc. Actuaries, 46 (1994), 99–191. |
| [4] | H. U. Gerber, E. S. W. Shiu, Actuarial bridges to dynamic hedging and option pricing, Insur: Math. Econ., 18 (1996), 183–218. |
| [5] |
M. Bladt, T. H. Rydberg, An actuarial approach to option pricing under the physical measure and without market assumptions, Insur: Math. Econ., 22 (1998), 65–73. http://doi.org/10.1016/s0167-6687(98)00013-4 doi: 10.1016/s0167-6687(98)00013-4
|
| [6] |
L. N. Girard, Market value of insurance liabilities: Reconciling the actuarial appraisal and option pricing methods, N. Am. Actuar. J., 4 (2000), 31–49. https://doi.org/10.1080/10920277.2000.10595871 doi: 10.1080/10920277.2000.10595871
|
| [7] |
J. Liu, L. Yan, C. Ma, Pricing options and convertible bonds based on an actuarial approach, J. Math. Probl. Eng., 2013 (2013), 676148. http://doi.org/10.1155/2013/676148 doi: 10.1155/2013/676148
|
| [8] |
F. Shokrollahi, A. Kılıçman, Actuarial approach in a mixed fractional Brownian motion with jumps environment for pricing currency option, Adv. Differ. Equ., 2015 (2015), 257. https://doi.org/10.1186/s13662-015-0590-8 doi: 10.1186/s13662-015-0590-8
|
| [9] |
W. L. Wu, M. X. Shen, Mixed fractional jump-diffusion environment reinsurance pricing, Journal of Anshan Normal University, 27 (2025), 15–22. In Chinese. http://doi.org/10.20212/j.issn.1008-2441.2025.04.003 doi: 10.20212/j.issn.1008-2441.2025.04.003
|
| [10] |
A. S. Deakin, M. Davison, An analytic solution for a Vasicek interest rate convertible bond model, J. Appl. Math., 2010 (2010), 263451. http://doi.org/10.1155/2010/263451 doi: 10.1155/2010/263451
|
| [11] |
W. L. Huang, G. M. Liu, S. H. Li, A. Wang, European option pricing under fractional stochastic interest rate model, Adv. Mater. Res., 171-172 (2010), 787–790. http://doi.org/10.4028/www.scientific.net/AMR.171-172.787 doi: 10.4028/www.scientific.net/AMR.171-172.787
|
| [12] |
Y. L. Wang, H. Xue, Pricing of backward options under double fractional Vasicek interest rate environment, World Sci-Tech R D, 38 (2016), 840–844. In Chinese. http://doi.org/10.16507/j.issn.1006-6055.2016.04.021 doi: 10.16507/j.issn.1006-6055.2016.04.021
|
| [13] |
K. H. Kim, S. Yun, N. U. Kim, J. H. Ri, Pricing formula for European currency option and exchange option in a generalized jump mixed fractional Brownian motion with time-varying coefficients, Physica A, 522 (2019), 215–231. http://doi.org/10.1016/j.physa.2019.01.145 doi: 10.1016/j.physa.2019.01.145
|
| [14] |
L. Tao, Y. Lai, Y. Ji, X. Tao, Asian option pricing under sub-fractional vasicek mode, Quant. Financ. Econ., 7 (2023), 403–419. http://doi.org/10.3934/QFE.2023020 doi: 10.3934/QFE.2023020
|
| [15] |
Y. Fu, S. Zhou, X. Li, F. Rao, Multi-assets Asian rainbow options pricing with stochastic interest rates obeying the Vasicek model, AIMS Mathematics, 8 (2023), 10685–10710. http://doi.org/10.3934/math.2023542 doi: 10.3934/math.2023542
|
| [16] |
E. Djeutcha, J. S. Kamdem, L. A. Fono, Interest rate options in one-factor mixed modified fractional Vasicek model, Int. J. Finan. Eng., 12 (2025), 2550013. http://doi.org/10.1142/S2424786325500136 doi: 10.1142/S2424786325500136
|
| [17] |
T. M. Fullerton, M. Pokojovy, A. T. Anum, E. Nkum, Maximum trimmed likelihood estimation for discrete multivariate vasicek processes, Economies, 13 (2025), 68. https://doi.org/10.3390/economies13030068 doi: 10.3390/economies13030068
|
| [18] |
O. Samimia, F. Mehrdoust, Vasicek interest rate model under Lévy process and pricing bond option, Commun. Stat.-Simul. Comput., 53 (2024), 529–545. http://doi.org/10.1080/03610918.2022.2025837 doi: 10.1080/03610918.2022.2025837
|
| [19] |
X. Wang, C. Wang, Pricing geometric average Asian options in the mixed sub-fractional Brownian motion environment with Vasicek interest rate model, AIMS Mathematics, 9 (2024), 26579–26601. http://doi.org/10.3934/math.20241293 doi: 10.3934/math.20241293
|
| [20] |
H. Zhi, Z. D. Guo, Pricing of geometric average Asian option with fixed strike price under mixed fractional Brownian motion mechanism, Journal of Anqing Normal University, 31 (2025), 21–26. In Chinese. http://doi.org/10.13757/j.cnki.cn34-1328/n.2025.01.004 doi: 10.13757/j.cnki.cn34-1328/n.2025.01.004
|
| [21] |
H. Zhi, Z. D. Guo, Pricing model of foreign exchange options under the mixed subfractional Brownian motion mechanism, Journal of Liaoning University of Technolog, 45 (2025), 61–66. In Chinese. http://doi.org/10.15916/j.issn1674-3261.2025.01.010 doi: 10.15916/j.issn1674-3261.2025.01.010
|
| [22] | L. Li, R. L. Song, Pricing of gap options under mixed fractional Vasicek stochastic interest rate model, Journal of Shandong University, 2025. https://link.cnki.net/urlid/37.1389.N.20251022.1553.008 |
| [23] |
A. A. Araneda, N. Bertschinger, The sub-fractional CEV model, Physica A, 573 (2021), 125974. https://doi.org/10.1016/j.physa.2021.125974 doi: 10.1016/j.physa.2021.125974
|
| [24] |
H. Zhou, Research on binary option pricing, China University of Mining and Technology, 2022. In Chinese. http://doi.org/10.27623/d.cnki.gzkyu.2022.000830 doi: 10.27623/d.cnki.gzkyu.2022.000830
|
| [25] |
C. H. Cai, Q. Wang, W. L. Xiao, Mixed sub-fractional Brownian motion and drift estimation of related Orstein-Uhlenbeck process, Commun. Math. Stat., 11 (2022), 229–255. http://doi.org/10.1007/S40304-021-00245-8 doi: 10.1007/S40304-021-00245-8
|
| [26] |
J. T. Merfeld, "Market value of insurance liabilities: Reconciling the actuarial appraisal and option pricing methods", Luke N. Girard, January 2000, N. Am. Actuar. J., 4 (2013), 56–57. http://doi.org/10.1080/10920277.2000.10595874 doi: 10.1080/10920277.2000.10595874
|
| [27] |
P. C. Lukman, B. D. Handari, H. Tasman, Study on European put option pricing with underlying asset zero-coupon bond and interest rate following the Vasicek model with jump, J. Phys: Conf. Ser., 1725 (2021), 012092. http://doi.org/10.1088/1742-6596/1725/1/012092 doi: 10.1088/1742-6596/1725/1/012092
|
| [28] |
O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 5 (1977), 177–188. http://doi.org/10.1016/0304-405x(77)90016-2 doi: 10.1016/0304-405x(77)90016-2
|
| [29] |
M. Yu, Z. Y. Cheng, J. Deng, S. Y. Wang, A new option pricing method: A new perspective based on mixed sub-fractional Brownian motion, Systems Engineering—Theory and Practice, 41 (2021), 2761–2776. In Chinese. http://doi.org/10.12011/SETP2019-2880 doi: 10.12011/SETP2019-2880
|