Research article

A novel spectral framework for stochastic differential equations: leveraging shifted Vieta-Fibonacci polynomials

  • Published: 24 December 2025
  • MSC : 65C30, 65L12

  • In this paper, we introduced a novel numerical approach for solving stochastic heat equations and multi-dimensional stochastic Poisson equations using shifted Vieta-Fibonacci polynomials (SVFPs), marking their first application in stochastic differential equations. The proposed method leveraged the orthogonality and recurrence properties of SVFPs to approximate solutions with high precision. By normalizing the polynomial basis and their derivatives, the technique ensured numerical stability and convergence, addressing challenges encountered in earlier implementations. The method was rigorously validated through comparisons with the fast discrete Fourier transform approach, other methods in the literature, and, where applicable, exact solutions, demonstrating superior accuracy. Five illustrative problems were analyzed, with results showcasing significantly reduced variance and absolute errors, particularly for higher-order approximations. The numerical simulations, executed using Mathematica 12, highlighted the robustness of the SVFPs-based algorithm in handling stochastic variability. This work not only extended the applicability of SVFPs to stochastic domains but also provided a reliable framework for future research on fractional and nonlinear stochastic systems.

    Citation: Ahmed G. Khattab, D.A. Hammad, Mourad S. Semary, Emad A. Mohamed, Iram Malik, Aisha F. Fareed. A novel spectral framework for stochastic differential equations: leveraging shifted Vieta-Fibonacci polynomials[J]. AIMS Mathematics, 2025, 10(12): 30134-30161. doi: 10.3934/math.20251324

    Related Papers:

  • In this paper, we introduced a novel numerical approach for solving stochastic heat equations and multi-dimensional stochastic Poisson equations using shifted Vieta-Fibonacci polynomials (SVFPs), marking their first application in stochastic differential equations. The proposed method leveraged the orthogonality and recurrence properties of SVFPs to approximate solutions with high precision. By normalizing the polynomial basis and their derivatives, the technique ensured numerical stability and convergence, addressing challenges encountered in earlier implementations. The method was rigorously validated through comparisons with the fast discrete Fourier transform approach, other methods in the literature, and, where applicable, exact solutions, demonstrating superior accuracy. Five illustrative problems were analyzed, with results showcasing significantly reduced variance and absolute errors, particularly for higher-order approximations. The numerical simulations, executed using Mathematica 12, highlighted the robustness of the SVFPs-based algorithm in handling stochastic variability. This work not only extended the applicability of SVFPs to stochastic domains but also provided a reliable framework for future research on fractional and nonlinear stochastic systems.



    加载中


    [1] B. Øksendal, Stochastic differential equations: an introduction with applications, Springer, 2003. https://doi.org/10.1007/978-3-642-14394-6
    [2] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, 2 Eds., Cambridge University Press, 2014.
    [3] L. Gorelick, M. Galun, E. Sharon, R. Basri, A. Brandt, Shape representation and classification using the poisson equation, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006), 1991–2005. https://doi.org/10.1109/TPAMI.2006.253 doi: 10.1109/TPAMI.2006.253
    [4] A. Frckowiak, J. V. Wolfersdorf, M. Ciałkowski, Solution of the inverse heat conduction problem described by the Poisson equation for a cooled gas-turbine blade, Int. J. Heat Mass Transf., 54 (2011), 1236–1243. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.001 doi: 10.1016/j.ijheatmasstransfer.2010.11.001
    [5] C. Dick, M. Rogowsky, R. Westermann, Solving the fluid pressure poisson equation using multigrid– evaluation and improvements, IEEE Trans. Vis. Comput. Graph., 22 (2016), 2480–2492. https://doi.org/10.1109/TVCG.2015.2511734 doi: 10.1109/TVCG.2015.2511734
    [6] P. Koehl, Electrostatics calculations: latest methodological advances, Curr. Opin. Struct. Biol., 16 (2006), 142–151. https://doi.org/10.1016/j.sbi.2006.03.001 doi: 10.1016/j.sbi.2006.03.001
    [7] A. G. Khattab, M. S. Semary, D. A. Hammad, A. F. Fareed, Exploring stochastic heat equations: a numerical analysis with fast discrete fourier transform techniques, Axioms, 13 (2024), 886. https://doi.org/10.3390/axioms13120886 doi: 10.3390/axioms13120886
    [8] A. F. Fareed, A. G. Khattab, M. S. Semary, A novel stochastic ten non-polynomial cubic splines method for heat equations with noise term, Partial Differ. Equations Appl. Math., 10 (2024), 100677. https://doi.org/10.1016/j.padiff.2024.100677 doi: 10.1016/j.padiff.2024.100677
    [9] D. A. Hammad, M. S. Semary, A. G. Khattab, Ten non-polynomial cubic splines for some classes of Fredholm integral equations, Ain Shams Eng. J., 13 (2022), 101666. https://doi.org/10.1016/j.asej.2021.101666 doi: 10.1016/j.asej.2021.101666
    [10] D. Uma, H. Jafari, S. Raja Balachandar, S. G. Venkatesh, An approximation method for stochastic heat equation driven by white noise, Int. J. Appl. Comput. Math., 8 (2022), 274. https://doi.org/10.1007/s40819-022-01376-4 doi: 10.1007/s40819-022-01376-4
    [11] A. Nouy, Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations, Arch. Comput. Methods Eng., 16 (2009), 251–285. https://doi.org/10.1007/s11831-009-9034-5 doi: 10.1007/s11831-009-9034-5
    [12] R. Anton, D. Cohen, L. Quer-Sardanyons, A fully discrete approximation of the one-dimensional stochastic heat equation, IMA J. Numer. Anal., 40 (2020), 247–284. https://doi.org/10.1093/imanum/dry060 doi: 10.1093/imanum/dry060
    [13] Y. H. Youssri, M. M. Muttardi, A mingled tau-finite difference method for stochastic first-order partial differential equations, Int. J. Appl. Comput. Math., 9 (2023), 14. https://doi.org/10.1007/s40819-023-01489-4 doi: 10.1007/s40819-023-01489-4
    [14] M. Gerencsér, I. Gyöngy, Finite difference schemes for stochastic partial differential equations in Sobolev spaces, Appl. Math. Optim., 72 (2015), 77–100. https://doi.org/10.1007/s00245-014-9272-2 doi: 10.1007/s00245-014-9272-2
    [15] I. Masti, K. Sayevand, On collocation-Galerkin method and fractional B-spline functions for a class of stochastic fractional integro-differential equations, Math. Comput. Simul., 216 (2024), 263–287. https://doi.org/10.1016/j.matcom.2023.09.013 doi: 10.1016/j.matcom.2023.09.013
    [16] A. F. Fareed, M. S. Semary, Stochastic improved Simpson for solving nonlinear fractional-order systems using product integration rules, Nonlinear Eng., 14 (2025), 20240070. https://doi.org/10.1515/nleng-2024-0070 doi: 10.1515/nleng-2024-0070
    [17] A. F. Fareed, E. A. Mohamed, M. Aly, M. S. Semary, A novel numerical method for stochastic conformable fractional differential systems, AIMS Math., 10 (2025), 7509–7525. https://doi.org/10.3934/math.2025345 doi: 10.3934/math.2025345
    [18] A. F. Fareed, E. A. Mohamed, A. Mokhtar, M. S. Semary, A novel fractional integral transform-based homotopy perturbation method for some nonlinear differential systems, Fractal Fract., 9 (2025), 212. https://doi.org/10.3390/fractalfract9040212 doi: 10.3390/fractalfract9040212
    [19] F. Mirzaee, S. Rezaei, N. Samadyar, Numerical solution of two-dimensional stochastic time-fractional Sine–Gordon equation on non-rectangular domains using finite difference and meshfree methods, Eng. Anal. Bound. Elem., 127 (2021), 53–63. https://doi.org/10.1016/j.enganabound.2021.03.009 doi: 10.1016/j.enganabound.2021.03.009
    [20] R. Sharma, Rajeev, A numerical approach based on Vieta–Fibonacci polynomials to solve fractional order advection–reaction diffusion problem, J. Anal., 33 (2025), 1251–1275. https://doi.org/10.1007/s41478-024-00804-6 doi: 10.1007/s41478-024-00804-6
    [21] A. Moumen, A. Mennouni, M. Bouye, A novel Vieta–Fibonacci projection method for solving a system of fractional integrodifferential equations, Mathematics, 11 (2023), 3985. https://doi.org/10.3390/math11183985 doi: 10.3390/math11183985
    [22] S. M. Sivalingam, P. Kumar, V. Govindaraj, R. A. Qahiti, W. Hamali, Z. M. Mutum, An operational matrix approach with Vieta-Fibonacci polynomial for solving generalized Caputo fractal-fractional differential equations, Ain Shams Eng. J., 15 (2024), 102678. https://doi.org/10.1016/j.asej.2024.102678 doi: 10.1016/j.asej.2024.102678
    [23] H. Azin, M. H. Heydari, F. Mohammadi, Vieta–Fibonacci wavelets: application in solving fractional pantograph equations, Math. Methods Appl. Sci., 45 (2022), 411–422. https://doi.org/10.1002/mma.7783 doi: 10.1002/mma.7783
    [24] K. Sadri, K. Hosseini, D. Baleanu, S. Salahshour, C. Park, Designing a matrix collocation method for fractional delay integro-differential equations with weakly singular kernels based on vieta–fibonacci polynomials, Fractal Fract., 6 (2022), 2. https://doi.org/10.3390/fractalfract6010002 doi: 10.3390/fractalfract6010002
    [25] P. Agarwal, A. A. El-Sayed, J. Tariboon, Vieta–Fibonacci operational matrices for spectral solutions of variable-order fractional integro-differential equations, J. Comput. Appl. Math., 382 (2021), 113063. https://doi.org/10.1016/j.cam.2020.113063 doi: 10.1016/j.cam.2020.113063
    [26] M. H. Heydari, Z. Avazzadeh, A. Atangana, Shifted Vieta-Fibonacci polynomials for the fractal-fractional fifth-order KdV equation, Math. Methods Appl. Sci., 44 (2021), 6716–6730. https://doi.org/10.1002/mma.7219 doi: 10.1002/mma.7219
    [27] Z. Abbasi, M. Izadi, M. M. Hosseini, A highly accurate matrix method for solving a class of strongly nonlinear BVP arising in modeling of human shape corneal, Math. Methods Appl. Sci., 46 (2023), 1511–1527. https://doi.org/10.1002/mma.8592 doi: 10.1002/mma.8592
    [28] K. Julien, M. Watson, Efficient multi-dimensional solution of PDEs using Chebyshev spectral methods, J. Comput. Phys., 228 (2009), 1480–1503. https://doi.org/10.1016/j.jcp.2008.10.043 doi: 10.1016/j.jcp.2008.10.043
    [29] S. Oh, An efficient spectral method to solve multi-dimensional linear partial different equations using Chebyshev polynomials, Mathematics, 7 (2019), 90. https://doi.org/10.3390/math7010090 doi: 10.3390/math7010090
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(201) PDF downloads(13) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog