Research article Special Issues

Hermite-Hadamard, Fejér and Jensen-type inequalities via $ p $-harmonic convex functions with numerical validation and graphical insights

  • Published: 23 December 2025
  • MSC : 26A15, 26A51, 26D10, 26D15

  • This paper deals with the generalized version of Hermite-Hadamard and Fejér-type inequalities. Some classical results are extended to a newly introduced category of $ p $-harmonic convex functions for which explicit bounds are also established. Additionally, novel discrete versions of existing inequalities for univariate $ p $-harmonic convex functions over linear spaces are also provided. For validation, the classical results are retrieved by letting $ p\rightarrow1 $, which clearly indicates the accuracy of the achieved results. Finally, tabular and graphical analysis is presented to show the improved results with $ p $-harmonic convex functions over existing literature.

    Citation: Faiza Azhar, Muhammad Imran Asjad, Imran Abbas Baloch, Manuel De la Sen. Hermite-Hadamard, Fejér and Jensen-type inequalities via $ p $-harmonic convex functions with numerical validation and graphical insights[J]. AIMS Mathematics, 2025, 10(12): 30109-30133. doi: 10.3934/math.20251323

    Related Papers:

  • This paper deals with the generalized version of Hermite-Hadamard and Fejér-type inequalities. Some classical results are extended to a newly introduced category of $ p $-harmonic convex functions for which explicit bounds are also established. Additionally, novel discrete versions of existing inequalities for univariate $ p $-harmonic convex functions over linear spaces are also provided. For validation, the classical results are retrieved by letting $ p\rightarrow1 $, which clearly indicates the accuracy of the achieved results. Finally, tabular and graphical analysis is presented to show the improved results with $ p $-harmonic convex functions over existing literature.



    加载中


    [1] J. E. N. Valdés, F. Rabossi, A. D. Samaniego, Convex functions: Ariadne's thread or Charlotte's spiderweb? Adv. Math. Models Appl., 5 (2020), 176–191.
    [2] Z. Pavić, Generalized inequalities for convex functions, J. Math. Ext., 10 (2016), 77–87.
    [3] G. D. Anderson, M. K. Vamanamurtby, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294–1308. https://doi.org/10.1016/j.jmaa.2007.02.016 doi: 10.1016/j.jmaa.2007.02.016
    [4] C. Y. Chen, M. S. Saleem, M. S. Zahoor, Some inequalities of generalized $p$-convex functions concerning Raina's fractional integral operators, J. Math., 2021 (2021), 3089553. https://doi.org/10.1155/2021/3089553 doi: 10.1155/2021/3089553
    [5] S. S. Dragomir, Inequalities of Hermite-Hadamard type for HA-convex functions, Moroccan J. Pure Appl. Anal., 3 (2017), 83–101. https://doi.org/10.1515/mjpaa-2017-0008 doi: 10.1515/mjpaa-2017-0008
    [6] S. S. Dragomir, Inequalities of Hermite-Hadamard type for HH-convex functions, Acta Comment. Univ. Tartu. Math., 22 (2018), 179–190. https://doi.org/10.12697/ACUTM.2018.22.15 doi: 10.12697/ACUTM.2018.22.15
    [7] Z. Eken, S. Kemali, G. Tınaztepe, G. Adilov, The Hermite-Hadamard inequalities for $p$-convex functions, Hacet. J. Math. Stat. 50 (2021), 1268–1279.
    [8] N. Mehreen, M. Anwar, Hadamard and Fejér type inequalities for $p$-convex functions via Caputo fractional derivatives, Int. J. Nonlinear Anal. Appl., 13 (2022), 253–266. http://doi.org/10.22075/ijnaa.2020.21549.2269 doi: 10.22075/ijnaa.2020.21549.2269
    [9] M. A. Noor, K. I. Noor, S. Iftikhar, Hermite-Hadamard inequalities for harmonic preinvex functions, Saussurea, 6 (2016), 34–53.
    [10] G. Zabandan, F. Tahmasbnia, Jensen's inequality for $(p-q)$-convex functions and related results, Int. J. Nonlinear Anal. Appl., 16 (2025), 13–26. https://doi.org/10.22075/ijnaa.2024.32004.4748 doi: 10.22075/ijnaa.2024.32004.4748
    [11] I. Işcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942.
    [12] M. A. Latif, Fejér type inequalities for harmonically convex functions, AIMS Math., 7 (2022), 15234–15257. https://doi.org/10.3934/math.2022835 doi: 10.3934/math.2022835
    [13] R. Li, T. Y. Lian, X. N. Dang, Jensen and Jensen-Mercer inequalities for harmonic $(p, s)$-convex functions on fractal sets and their applications, Pure Math., 13 (2023), 2803–2814.
    [14] I. Işcan, S. H. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
    [15] S. S. Dragomir, Inequalities of Jensen type for $HA$-convex functions, An. Univ. Oradea Fasc. Mat., XXVII (2020), 103–124.
    [16] I. A. Baloch, Y. M. Chu, Petrović‐type inequalities for harmonic $h$‐convex functions, J. Funct. Spaces, 2020 (2020), 3075390. https://doi.org/10.1155/2020/3075390 doi: 10.1155/2020/3075390
    [17] I. A. Baloch, M. De La Sen, I. Işcan, Characterizations of classes of harmonic convex functions and applications, Int. J. Anal. Appl., 17 (2019), 722–733.
    [18] I. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, M. De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Math., 5 (2020), 6404–6418. https://doi.org/10.3934/math.2020412 doi: 10.3934/math.2020412
    [19] A. A. Mughal, H. Almusawa, A. U. Haq, I. A. Baloch, Properties and bounds of Jensen-type functionals via harmonic convex functions, J. Math., 2021 (2021), 5561611. https://doi.org/10.1155/2021/5561611 doi: 10.1155/2021/5561611
    [20] M. A. Noor, K. I. Noor, S. Iftikhar, Newton inequalities for $p$-harmonic convex functions, Honam Math. J., 40 (2018), 239–250. https://doi.org/10.5831/HMJ.2018.40.2.239 doi: 10.5831/HMJ.2018.40.2.239
    [21] M. A. Noor, K. I. Noor, S. Iftikhar, Integral inequalities for differentiable $p$-harmonic convex functions, Filomat, 31 (2017), 6575–6584. https://doi.org/10.2298/FIL1720575N doi: 10.2298/FIL1720575N
    [22] I. A. Baloch, I. Işcan, Some Hermite-Hadamard type integral inequalities for harmonically $(p, (s, m))$-convex functions, J. Inequal Spec. Funct., 8 (2017), 65–84.
    [23] F. Azhar, M. I. Asjad, M. A. Yousif, A. A. Lupas, I. A. Baloch, P. O. Mohammed, A novel family of discrete variant inequality for Jensen and Hermite-Hadamard types in the p-harmonic convex function setting, Contemp. Math., 2025, In press.
    [24] A. A. Mughal, D. Afzal, T. Abdeljawad, A. Mukheimer, I. A. Baloch, Refined estimates and generalization of some recent results with applications, AIMS Math., 6 (2021), 10728–10741. https://doi.org/10.3934/math.2021623 doi: 10.3934/math.2021623
    [25] I. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, M. De La Sen, Improvement and generalization of some results related to the class of harmonically convex functions and applications, J. Math. Comput. Sci., 22 (2021), 282–294. https://doi.org/10.22436/jmcs.022.03.07 doi: 10.22436/jmcs.022.03.07
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(231) PDF downloads(21) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog