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Abstract: In this paper, we introduced a novel numerical approach for solving stochastic heat 

equations and multi-dimensional stochastic Poisson equations using shifted Vieta-Fibonacci 

polynomials (SVFPs), marking their first application in stochastic differential equations. The proposed 

method leveraged the orthogonality and recurrence properties of SVFPs to approximate solutions with 

high precision. By normalizing the polynomial basis and their derivatives, the technique ensured 

numerical stability and convergence, addressing challenges encountered in earlier implementations. 

The method was rigorously validated through comparisons with the fast discrete Fourier transform 

approach, other methods in the literature, and, where applicable, exact solutions, demonstrating 

superior accuracy. Five illustrative problems were analyzed, with results showcasing significantly 

reduced variance and absolute errors, particularly for higher-order approximations. The numerical 

simulations, executed using Mathematica 12, highlighted the robustness of the SVFPs-based algorithm 

in handling stochastic variability. This work not only extended the applicability of SVFPs to stochastic 

domains but also provided a reliable framework for future research on fractional and nonlinear 

stochastic systems. 
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Abbreviations: 

PDEs: partial differential equations; SPDEs: stochastic partial differential equations; SHE: stochastic 

heat equation; SPE: stochastic Poisson equation; BCs: boundary conditions; 2D: two dimensions; 3D: 

three dimensions; VFPs: Vieta-Fibonacci polynomials: SVFPs: shifted Vieta-Fibonacci polynomials; 

FDFT: fast discrete Fourier transform; TNPCS: ten non-polynomial cubic spline; QIMD: quasi-inverse 

matrix diagonalization 

1. Introduction 

The mathematical modeling of physical phenomena is fundamental to advancement in science 

and engineering, providing a framework to predict, optimize, and understand complex systems. Central 

to this endeavor are partial differential equations (PDEs), among which the heat equation and the 

Poisson equation stand as two of the most profound and universally applicable. The heat equation, a 

cornerstone of mathematical physics, is a parabolic PDE that describes the distribution of heat (or any 

diffusing quantity) in a region over time. Its deterministic form has been extensively studied due to its 

broad applicability in fields such as thermodynamics, material science, and biological systems, where 

it describes phenomena such as thermal conduction, diffusion processes, and chemical gradients [1]. 

Beyond these traditional domains, it has a pivotal role in cutting-edge fields, including quantum field 

theory, turbulence, signal processing, and population dynamics [1,2]. 

The Poisson equation is a fundamental elliptic PDE that models how a field (e.g., potential, 

temperature, and pressure) is influenced by distributed sources throughout a domain. It is widely 

applicable in numerous disciplines [3–6], including electrostatics (computing the electrostatic potential 

from charge distributions), magnetism (describing magnetic potential fields), mechanical engineering 

(modeling stress, strain, and heat conduction problems), fluid dynamics (linking pressure and velocity 

fields and describing potential flows), heat conduction (determining temperature distributions in 

steady-state scenarios), astrophysics and gravity (describing gravitational potential from mass 

distributions), and additive manufacturing (modeling heat conduction with moving sources, such as 

laser heads). 

The stochastic partial differential equations (SPDEs) are the mathematical framework that 

combines the deterministic structure of PDEs with the randomness inherent in stochastic differential 

equations. Generally, SPDEs involve randomness in one or more components, such as their 

coefficients, initial or boundary conditions, driving forces such as a noise term, or the domain in which 

they are defined. In our study, we emphasize SPDEs with a driving force associated with white noise 

that influences the behavior of the solution. 

However, real-world phenomena often involve inherent uncertainties due to external fluctuations, 

measurement errors, or environmental noise. To account for these stochastic influences, the 

deterministic heat and Poisson equations were extended to incorporate random terms, leading to the 

stochastic heat equation (SHE) and the stochastic Poisson equation (SPE). Solving SPDEs presents 

significant challenges due to the interplay between diffusion and noise. Unlike deterministic PDEs, 

stochastic counterparts rarely admit closed-form solutions, necessitating the development of robust 

numerical and analytical techniques. Advances in computational mathematics have introduced various 
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methods to approximate solutions to such equations. Among these, the fast discrete Fourier transform 

(FDFT) method [7] and the ten non-polynomial cubic spline (TNPCS) approach [8,9] have 

demonstrated efficacy in handling stochastic terms. Other notable techniques include operational 

matrices based on Legendre polynomials [10], spectral stochastic methods [11], the stochastic 

exponential method [12], the finite element and Tau-finite difference approach[13,14], and the 

Galerkin collocation hybrid method [15]. Additionally, specialized approaches such as the stochastic 

improved Simpson [16], conformable fractional discrete Temimi–Ansari techniques [17], and integral 

transform-based homotopy perturbation methods [18] have further enriched the toolkit for solving 

stochastic differential systems. Additionally, the finite difference and the meshfree methods are used 

to approximate the 2D stochastic time-fractional Sine–Gordon equation on the non-rectangular 

domains [19]. 

In this work, we introduce a novel numerical approach based on shifted Vieta-Fibonacci 

polynomials (SVFPs) to approximate solutions to the SHE and multi-dimensional SPE. Vieta-

Fibonacci polynomials (VFPs), named in honor of the mathematicians François Viète and Leonardo 

Fibonacci, are a class of orthogonal polynomials with deep connections to Fibonacci sequences and 

Chebyshev polynomials. VFPs have gained attention for their effectiveness in solving fractional-order 

differential and integro-differential equations, including the fractional Korteweg-de Vries (KdV) 

equation, advection-reaction-diffusion problems, and pantograph equations [20–26]. However, their 

application to stochastic differential equations, particularly those involving white noise, remains 

unexplored. This study bridges that gap by presenting the first systematic application of SVFPs to 

stochastic heat equations, offering a new perspective on noise-driven PDEs. In this work, we present 

a novel application of VFPs in the stochastic domain related to white noise analysis. This marks the 

first exploration of VFPs in such a setting, presenting a notable challenge. Ultimately, we successfully 

apply VFPs to the SHE, which takes the following forms as in [7,8]: 

𝜕

𝜕𝑡
𝜓(𝑡, 𝑥) = 𝜎

𝜕2

𝜕𝑥2
𝜓(𝑡, 𝑥) + 𝜀

𝜕

𝜕𝑥
𝜓(𝑡, 𝑥) + 𝜌𝜓(𝑡, 𝑥)𝑛(𝑡),    (1.1) 

𝜕

𝜕𝑡
𝜓(𝑡, 𝑥) = (𝜎 + 𝜌𝑛(𝑡))

𝜕2

𝜕𝑥2
𝜓(𝑡, 𝑥),       (1.2) 

𝜓(0, 𝑥) = 𝑔(𝑥), 𝜓(𝑡, 0) = 𝜓(𝑡, 𝑎) = 0, (𝑡, 𝑥) ∈ [0, 𝑇] × [𝑎, 𝑏], 

where 𝜎, 𝜀, and 𝜌 are real constants, and 𝜓(𝑡, 𝑥) is the unknown function. The system includes a 

Gaussian-white-noise term 𝑛(𝑡) = 𝜇
𝑑 

𝑑𝑡
ℬ(𝑡) , with zero expectation and variance 𝜇2 , and ℬ(𝑡) 

denotes the Brownian motion process, defined by the following characteristics: (i) It is a Gaussian 

process, (ii) it exhibits independent increments, and (iii) 𝑡 → ℬ(𝑡) is continuous with probability one. 

Moreover, we applied VFPs to the muti-dimensional SPE defined as: 

𝛁𝑑𝜓(𝒙) + 𝜌 𝑛(𝑡) = 𝑓(𝒙), 𝒙 ∈ [𝑎, 𝑏]
𝑑,      (1.3) 

with zero boundary conditions: 𝜓 = 0, and the exact solution for 𝜌 = 0 is: 𝜓(𝒙) = ∏ sin(2𝜋𝒙𝒍)
𝑑
𝑙=1 , 

where 𝛁𝑑  is the Laplacian operator, 𝜓(𝒙)  is the unknown function, and 𝑛(𝑡)  is the Gaussian-

white-noise. The parameter 𝑑 stands for number of dimensions such that: 𝑑 = 2 for 2D SPE, and 

the vector 𝒙 = (𝑥1, 𝑥2) ≡ (𝑡, 𝑥)  and 𝑑 = 3  for 3D Poisson equation, and the vector 𝒙 =

(𝑥1, 𝑥2, 𝑥3) ≡ (𝑡, 𝑥, 𝑦). 
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The major contributions of this work are as follows: 

• Derivation of a simplified first-order derivative operator for SVFPs, facilitating efficient 

numerical implementation. 

• Normalization of SVFP bases to enhance stability and convergence in stochastic settings. 

• Development of a novel SVFP-based algorithm for solving SHE and SPE, incorporating 

white noise representation via SVFPs instead of traditional finite difference schemes [7,8]. 

• Validation through comparative analysis, demonstrating superior accuracy and 

computational efficiency over existing methods such as FDFT [7] and TNPCS [8]. 

The remainder of this paper is organized as follows: In Section 2, we introduce the mathematical 

foundations of SVFPs, including their recurrence relations, orthogonality properties, and derivative 

operators. In Section 3, we detail the numerical implementation of SVFPs for SHE and SPE, 

addressing challenges such as noise discretization and system normalization. In Section 4, we present 

numerical experiments, comparing the proposed method with benchmark techniques and analyzing 

error convergence. Finally, in Section 5, we conclude with a discussion of the method’s broader 

implications and potential extensions to higher-dimensional and nonlinear stochastic systems. 

This research not only advances the theoretical understanding of orthogonal polynomial methods 

in stochastic settings but also provides a computationally efficient framework for practical applications. 

2. Theoretical foundations: shifted Vieta-Fibonacci polynomials in stochastic domains 

Here, we define the VFPs and their shifted counterparts (SVFPs), highlighting their orthogonality 

properties and recurrence relations. We derive their connection to Chebyshev polynomials and 

establish the groundwork for their application in stochastic settings. Key focus areas include the 

explicit forms of SVFPs, weight functions, and their adaptation to bounded domains. 

The VFPs denoted by ℱℓ(𝑥) are one of the orthogonal functions that may be defined as [20–27]: 

ℱℓ(𝑥) =
sin(ℓ𝜑)

sin(𝜑)
,         (2.1) 

where 𝜑 = cos−1 (
𝑥

2
), 𝜑 ∈ [0, 𝜋], 𝑥 ∈ [−2, 2], and ℓ = 0, 1, 2, … ,𝑀𝑥. Their recurrence relation is: 

ℱℓ(𝑥) = 𝑥ℱℓ−1(𝑥) − ℱℓ−2(𝑥), ℓ ≥ 2,     (2.2) 

where ℱ0(𝑥) = 0 , and ℱ1(𝑥) = 1 . Moreover, VFPs can be defined as a function of Chebyshev 

polynomials of the second kind (𝑈ℓ(𝑥)) as: 

ℱℓ(𝑥) = 𝑈ℓ−1 (
𝑥

2
), ℓ ≥ 1,        (2.3) 

where 𝑈0(𝑥) = 1, 𝑈1(𝑥) = 2𝑥, and for 𝑛 ≥ 2, 𝑈𝑛(𝑥) = 2𝑥 𝑈𝑛−1(𝑥) − 𝑈𝑛−2(𝑥). 

VFPs explicit formula is: 

ℱℓ(𝑥) =∑ (−1)𝑘 (
(ℓ−𝑘−1)!

𝑘! (ℓ−2𝑘−1)!
) 𝑥ℓ−2𝑘−1

⌊
ℓ−1

2
⌋

𝑘=0
, ℓ ≥ 1,     (2.4) 

where ⌊
ℓ−1

2
⌋ represents the floor function. 
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VFPs are orthogonal over interval [−2, 2] and their orthogonality condition is: 

〈ℱℓ(𝑥), ℱ𝑚(𝑥)〉𝜔 = ∫ ℱℓ(𝑥)ℱ𝑚(𝑥)𝜔(𝑥)𝑑𝑥
2

−2
= (2𝜋)𝛿ℓ𝑚 = {

2𝜋, ℓ = 𝑚,
0, ℓ ≠ 𝑚,

  (2.5) 

where 𝜔(𝑥) = √4 − 𝑥2 represents the weight function of VFPs. 

SVFPs denoted by ℱ̃ℓ(𝑥)  represent VFPs over 𝑥 ∈ [𝑎, 𝑏]  using a linear transformation: 𝑥̃ =

(
2

𝑏−𝑎
) [2𝑥 − (𝑎 + 𝑏)]. The recurrence relation of SVFPs is defined as:  

ℱ̃0(𝑥) = 0, ℱ̃1(𝑥) = 1, 

ℱ̃ℓ(𝑥) = (
2

𝑏−𝑎
) [2𝑥 − (𝑎 + 𝑏)]ℱ̃ℓ−1(𝑥) − ℱ̃ℓ−2(𝑥), ℓ ≥ 2.    (2.6) 

Additionally, SVFPs are orthogonal with the weight function 𝜔̃(𝑥) = √(𝑏 − 𝑥)(𝑥 − 𝑎), defined as: 

〈ℱ̃ℓ(𝑥), ℱ̃𝑚(𝑥)〉𝜔 = ∫ ℱ̃ℓ(𝑥)ℱ̃𝑚(𝑥)𝜔̃(𝑥)𝑑𝑥
𝑎

0
=
𝜋

8
(𝑏 − 𝑎)2𝛿ℓ𝑚 = {

(
𝜋

8
) (𝑏 − 𝑎)2, ℓ = 𝑚,

0, ℓ ≠ 𝑚.
  (2.7) 

This part presents a streamlined derivation of first- and higher-order derivative operators for SVFPs, 

expressed in matrix form for computational efficiency. We demonstrate how these operators enable 

efficient discretization of spatial derivatives, contrasting them with traditional finite-difference 

approximations. The first-order derivative of SVFPs is derived and implemented in a novel, simplified 

form to facilitate efficient application to enabling efficient application to the SHE, SPE, and other 

related problems. Its implicit formula is defined as: 

𝐷(1) (ℱ̃ℓ(𝑥)) = (
4

𝑏−𝑎
)∑ (ℓ − 2𝑘 + 1)ℱ̃ℓ−2𝑘+1(𝑥)

⌊
ℓ

2
⌋

𝑘=1 , ℓ = 1, 2,3, … ,𝑀𝑥,   (2.8) 

alternatively, in matrix form, it is expressed as: 

𝐷(1) (ℱ̃𝑖(𝑥)) = (
4

𝑏−𝑎
)𝐷𝑚,𝑖

(1)ℱ̃,        (2.9) 

where 𝑚 = 0,1,2, … ,𝑀𝑥 − 1, 𝑖 = 1,2,3, … ,𝑀𝑥, 

ℱ̃ = [ℱ̃1(𝑥), ℱ̃2(𝑥), ℱ̃3(𝑥),… , ℱ̃𝑀𝑥−1(𝑥), ℱ̃𝑀𝑥(𝑥)]
𝑇, 

and 𝐷𝑚,𝑖
(1) = {

0, 𝑚 = 0,
𝑖, 𝑚 ≠ 0 ∧ 𝑖 ≤ 𝑚 ∧ (𝑚 − 𝑖)
0, otherwise.

 is even, 

The second-order derivative of SVFPs is derived by applying the first-order derivative operator 

twice and is expressed as: 

𝐷(2) (ℱ̃ℓ(𝑥)) = 𝐷
(1) × 𝐷(1) (ℱ̃ℓ(𝑥)) = (

4

𝑏−𝑎
)
2

(𝐷𝑚,𝑖
(1) × 𝐷𝑚,𝑖

(1))ℱ̃.    (2.10) 

In general, the kth-order derivative of SVFPs is given as: 
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𝐷(𝑘) (ℱ̃ℓ(𝑥)) = 𝐷
(1) ×𝐷(1) ×…× 𝐷(1)⏟              

𝑘 times

(ℱ̃ℓ(𝑥)) = (
4

𝑏−𝑎
)
𝑘
(𝐷𝑚,𝑖

(1)
× 𝐷𝑚,𝑖

(1)
× …× 𝐷𝑚,𝑖

(1)
⏟              

𝑘 times

) ℱ̃.  (2.11) 

For 𝑀𝑥 = 10 , the first-order and second-order derivative operators of SVFPs are numerically 

expressed as: 

𝐷(1) = (
4

𝑏−𝑎
)

[
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
1 0 3 0 0 0 0 0 0 0
0 2 0 4 0 0 0 0 0 0
1 0 3 0 5 0 0 0 0 0
0 2 0 4 0 6 0 0 0 0
1 0 3 0 5 0 7 0 0 0
0 2 0 4 0 6 0 8 0 0
1 0 3 0 5 0 7 0 9 0]

 
 
 
 
 
 
 
 
 

, 

and 

𝐷(2) = (
4

𝑏−𝑎
)
2

[
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0 0
6 0 12 0 0 0 0 0 0 0
0 16 0 20 0 0 0 0 0 0
12 0 30 0 30 0 0 0 0 0
0 30 0 48 0 42 0 0 0 0
20 0 54 0 70 0 56 0 0 0
0 48 0 84 0 96 0 72 0 0]

 
 
 
 
 
 
 
 
 

. 

The proof of 𝐿2 convergence of the SVFPS as in [27] can be summarized as following: 

For 𝑥 ∈ [0, 1], assume a given function, 𝜓(𝑥) ∈ 𝐿𝜔̃
2 [0, 1], is defined as: 

𝜓(𝑥) = ∑ ℱ̃𝑚(𝑥)𝜐𝑚
𝑀+1
𝑚=1 = ℱ̃(𝑥)𝒱, 

where 𝐽  is the number of subintervals in the given domain, 𝜔̃  denotes the weight of SVFPs, 𝐿2 

represents 𝐿2  -norm, ℱ̃(𝑥) = [ℱ̃1(𝑥), ℱ̃2(𝑥), ℱ̃3(𝑥),… , ℱ̃𝐽(𝑥), ℱ̃𝐽+1(𝑥)]
𝑇
 , and 𝒱  is a vector of 

unknowns given as: 𝒱 = [𝜐1, 𝜐2, 𝜐3, … , 𝜐𝐽, 𝜐𝐽+1]
𝑇
. 

Moreover, consider 𝕍𝐽 = Span⟨ℱ̃1(𝑥), ℱ̃2(𝑥), ℱ̃3(𝑥), … , ℱ̃𝐽+1(𝑥)⟩  and denote the space 

spanned by the SVFPs bases. 

Theorem 1. [27] Let assume that 𝜓 ∈ 𝐶𝐽[0,1] and 𝑃𝐽(𝑥) denotes the interpolating function of 𝜓 

at 𝐽 Chebyshev points in interval [0, 1], Then, for every 𝑥 ∈ [0,1], we have 

|𝜓(𝑥) − 𝑃𝐽(𝑥)| ≤
𝑀𝜓,𝐽

2(2𝐽+1)(𝐽!)
, 𝑀𝜓,𝐽 = max𝜉∈[0,1]|𝜓

(𝐽)(𝜉)|. 

Theorem 2. [27] Suppose that 𝜓 ∈ 𝐶𝐽+1[0,1] ∩ 𝐿𝜔̃
2 [0,1]   If 𝜓𝐽(𝑥) = ℱ𝐽̃(𝑥)𝒱  denotes the best 

approximation of 𝜓(𝑥) out of 𝕍𝐽, we have 
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lim 
𝐽→∞

‖𝜓 − 𝜓𝐽‖𝜔̃ = 0. 

Proof of Theorem 2  

‖𝜓(𝑥) − 𝜓𝐽(𝑥)‖𝜔̃
2
≤ ‖𝜓(𝑥) − 𝑃𝐽(𝑥)‖𝜔̃

2
= ∫ |𝜓(𝑥) − 𝑃𝐽(𝑥)|

2
𝜔̃(𝑥)𝑑𝑥

1

0

 

= ∫ (
𝑀𝜓,𝐽

2(2𝐽+1)(𝐽!)
)
2

𝜔̃(𝑥)𝑑𝑥
1

0
= (

𝑀𝜓,𝐽

2(2𝐽+1)(𝐽!)
)
2

∫ 𝜔̃(𝑥)𝑑𝑥
1

0
= (

𝑀𝜓,𝐽

2(2𝐽+1)(𝐽!)
)
2

(
𝜋

8
). 

Hence, 

‖𝜓(𝑥) − 𝜓𝐽(𝑥)‖𝜔̃ ≤ (
𝑀𝜓,𝐽

2(2𝐽+1)(𝐽!)
)√

𝜋

8
, lim 
𝐽→ ∞

‖𝜓 − 𝜓𝐽‖𝜔̃ → 0. 

3. Methodology: a spectral approach to stochastic heat and muti-dimensional stochastic 

Poisson equations 

3.1. Discretizing functions and noise with SVFPs 

We propose a novel technique to represent functions and white noise using SVFP expansions, 

eliminating the need for finite-difference-based noise discretization. The Brownian motion process is 

approximated via SVFP series, and its derivative (white noise) is analytically computed using the 

derived SVFP differentiation matrices. 

The SVFPs can be utilized to approximate the functions 𝜓(𝑡, 𝑥) and 𝜓(𝑡, 𝑥, 𝑦) as follows: 

𝜓(𝑡, 𝑥) = ∑ ∑ ℱ̃𝑛(𝑡)ℱ̃𝑚(𝑥)𝜐𝑛𝑚
𝑀𝑥+1
𝑚=1

𝑀𝑡+1
𝑛=1 ,      (3.1) 

𝜓(𝑡, 𝑥, 𝑦) = ∑ ∑ ∑ ℱ̃𝑛(𝑡)ℱ̃𝑚(𝑥)ℱ̃ℓ(𝑦)𝜐𝑛𝑚ℓ
𝑀𝑦+1

ℓ=1
𝑀𝑥+1
𝑚=1

𝑀𝑡+1
𝑛=1 ,    (3.2) 

or, in matrix-form 

𝜓(𝑡𝑗 , 𝑥𝑖) = (ℱ̃(𝑡𝑗)⨂ℱ̃(𝑥𝑖))𝒱,       (3.3) 

𝜓(𝑡𝑗 , 𝑥𝑖 , 𝑦𝑘) = (ℱ̃(𝑡𝑗)⨂ℱ̃(𝑥𝑖)⨂ℱ̃(𝑦𝑘))𝒱,      (3.4) 

where ℱ̃𝑛(𝑡), ℱ̃𝑚(𝑥), and ℱ̃ℓ(𝑦) are SVFPs, 𝜐𝑛𝑚, and 𝜐𝑛𝑚ℓ are the unknown coefficients, 

ℱ̃(𝑡𝑗) = [ℱ̃1(𝑡𝑗), ℱ̃2(𝑡𝑗), ℱ̃3(𝑡𝑗), … , ℱ̃𝑀𝑡(𝑡𝑗), ℱ̃𝑀𝑡+1(𝑡𝑗)]
𝑇
, 

ℱ̃(𝑥𝑖) = [ℱ̃1(𝑥𝑖), ℱ̃2(𝑥𝑖), ℱ̃3(𝑥𝑖), … , ℱ̃𝑀𝑥(𝑥𝑖), ℱ̃𝑀𝑥+1(𝑥𝑖)]
𝑇
, 

ℱ̃(𝑦𝑘) = [ℱ̃1(𝑦𝑘), ℱ̃2(𝑦𝑘), ℱ̃3(𝑦𝑘),… , ℱ̃𝑀𝑦(𝑦𝑘), ℱ̃𝑀𝑦+1(𝑦𝑘)]
𝑇

, 
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𝒱 = [𝜐1,1, 𝜐1,2, 𝜐1,3, … , 𝜐1,𝑀𝑥+1, 𝜐2,1, … , 𝜐2,𝑀𝑥+1, … , 𝜐𝑀𝑡+1,1, … , 𝜐𝑀𝑡+1,𝑀𝑥+1]
𝑇
, 

for two variables, and 

𝒱 = [𝜐1,1,1, 𝜐1,1,2, … , 𝜐1,1,𝑀𝑦+1, 𝜐1,2,1, … , 𝜐1,2,𝑀𝑦+1, … , 𝜐1,𝑀𝑥+1,1, … , 𝜐1,𝑀𝑥+1,𝑀𝑦+1, 𝜐2,1,1, … , 𝜐𝑀𝑡+1,𝑀𝑥+1,𝑀𝑦+1]
𝑇
, 

for three variables, and the symbol ⨂ represents the Kronecker-product of two matrices. If 𝐴𝑚×𝑛 

matrix and 𝐵𝑝×𝑞 matrix, then 𝐴⨂𝐵 is the (𝑝𝑚 × 𝑞𝑛) matrix: 

𝐴⨂𝐵 = [
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵
]. 

The partial derivatives of 𝜓(𝑡, 𝑥) w r t 𝑥 and 𝑡 are defined by: 

𝜕𝓆+𝑝

𝜕𝑡𝓆𝜕𝑥𝓅
𝜓(𝑡, 𝑥) = ∑ ∑ ℱ̃𝑛

(𝓆)(𝑡)ℱ̃𝑚
(𝓅)(𝑥)𝜐𝑛𝑚

𝑀𝑥+1
𝑚=1

𝑀𝑡+1
𝑛=0 = (𝐷(𝓆)ℱ̃(𝑡𝑗)⨂𝐷

(𝓅)ℱ̃(𝑥𝑖))𝒱.  (3.5) 

Moreover, the partial derivatives of 𝜓(𝑡, 𝑥, 𝑦) w r t 𝑥, 𝑦, and 𝑡 are defined by: 

𝜕𝑞+𝓅+𝑟

𝜕𝑡𝓆𝜕𝑥𝓅𝜕𝑦𝑟
𝜓(𝑡, 𝑥) = ∑ ∑ ∑ ℱ̃𝑛

(𝓆)(𝑡)ℱ̃𝑚
(𝓅)(𝑥)ℱ̃ℓ

(𝑟)(𝑦)𝜐𝑛𝑚ℓ

𝑀𝑦+1

ℓ=1

𝑀𝑥+1

𝑚=1

𝑀𝑡+1

𝑛=0

 

= (𝐷(𝓆)ℱ̃(𝑡𝑗)⨂𝐷
(𝓅)ℱ̃(𝑥𝑖)⨂𝐷

(𝑟)ℱ̃(𝑦𝑘)).     (3.6) 

Additionally, the Brownian motion process ℬ(𝑡) and the white noise 𝑛(𝑡) should be defined using 

SVFPs. To achieve this in the stochastic setting, the Brownian motion ℬ(𝑡) is projected onto the SVFP 

basis to obtain a finite-dimensional surrogate suitable for spectral computation. Specifically, ℬ(𝑡) is 

approximated by 

ℬ(𝑡) = ∑ ℱ̃𝑛(𝑡)𝔟𝑛
𝑀𝑡+1
𝑛=1 , 

ℬ(𝑡𝑗) = ℱ̃(𝑡𝑗)𝔅, 𝑗 = 0,1,2, … ,𝑀𝑡, 

𝔅 = [ℱ̃(𝑡𝑗)]
−1
ℬ(𝑡𝑗),         (3.7) 

where 𝔟𝑛  represents the unknown coefficients, 𝔅 = [𝔟1, 𝔟2, 𝔟3, … , 𝔟𝑀𝑡+1]
𝑇
  and ℬ(𝑡)  values are 

obtained from a built-in function in Mathematica software. 

Since 𝑛(𝑡) = 𝜇
𝑑

𝑑𝑡
ℬ(𝑡), then 

𝑛(𝑡) = 𝜇 ∑ 𝐷(1)ℱ̃𝑛(𝑡)𝔟𝑛
𝑀𝑡+1
𝑛=1 ,     (3.8) 



30142 

AIMS Mathematics  Volume 10, Issue 12, 30134–30161. 

Hence, using the vector 𝔅 obtained by Eq (3.5), we can calculate the vector of 𝒩𝓌 which represents 

the white-noise values at each level 𝑗 ≥ 0 as follows: 

𝑛(𝑡𝑗) = 𝜇[𝐷
(1)ℱ̃(𝑡𝑗)]𝔅 ≡ 𝒩𝓌.       (3.9) 

This strategy mirrors standard spectral stochastic techniques, such as Fourier-based and polynomial-

chaos representations, where the derivative of the projection, not the true Brownian path, is used for 

numerical approximation. Despite the inherently rough nature of Brownian motion, this projection-

based formulation provides a stable and accurate stochastic forcing term for the SVFP solver. 

3.2. Applying spectral approach to stochastic heat equations 

The proposed technique can be applied to the SHE by substituting Eqs (3.3), (3.5), and (3.9) to 

SHE equations (1.1) and (1.2) at the point (𝑡𝑗 , 𝑥𝑖) as follows: 

−(𝐷(1)ℱ̃(𝑡𝑗)⨂ℱ̃(𝑥𝑖))𝒱 + 𝜎 (ℱ̃(𝑡𝑗)⨂𝐷
(2)ℱ̃(𝑥𝑖))𝒱 

+𝜀 (ℱ̃(𝑡𝑗)⨂𝐷
(1)ℱ̃(𝑥𝑖))𝒱 + 𝜌(𝒩𝓌) ∗ (ℱ̃(𝑡𝑗)⨂ℱ̃(𝑥𝑖))𝒱 = 0,  (3.10) 

and 

−(𝐷(1)ℱ̃(𝑡𝑗)⨂ℱ̃(𝑥𝑖))𝒱 + (𝜎) (ℱ̃(𝑡𝑗)⨂𝐷
(2)ℱ̃(𝑥𝑖))𝒱 + 𝜌(𝒩𝓌) ∗ (ℱ̃(𝑡𝑗)⨂𝐷

(2)ℱ̃(𝑥𝑖))𝒱 = [𝐎]. (3.11) 

Computing Eqs (3.10) and (3.11) for interior-grid point for 𝑗 = 1,2,3, … ,𝑀𝑡 and 𝑖 = 1,2,3, … ,𝑀𝑥 −

1, 

[−([ℱ̃𝓉]2:𝑀𝑡+1. 𝐷
(1)⨂[ℱ̃𝓍]2:𝑀𝑥) + 𝜎([ℱ̃𝓉]2:𝑀𝑡+1⨂[ℱ̃𝓍]2:𝑀𝑥 . 𝐷

(2)) 

+𝜀([ℱ̃𝓉]2:𝑀𝑡+1⨂[ℱ̃𝓍]2:𝑀𝑥 . 𝐷
(1)) + 𝜌(𝒩𝓌) ∘ ([ℱ̃𝓉]2:𝑀𝑡+1⨂[ℱ̃𝓍]2:𝑀𝑥)]𝒱 = [𝐎], (3.12) 

and 

[−([ℱ̃𝓉]2:𝑀𝑡+1. 𝐷
(1)⨂[ℱ̃𝓍]2:𝑀𝑥) + (𝜎)([ℱ̃𝓉]2:𝑀𝑡+1⨂[ℱ̃𝓍]2:𝑀𝑥 . 𝐷

(2)) 

+𝜌(𝒩𝓌) ∘ ([ℱ̃𝓉]2:𝑀𝑡+1⨂[ℱ̃𝓍]2:𝑀𝑥 . 𝐷
(2))]𝒱 = [𝐎]     (3.13) 

where [𝐎] represents a zero vector, the symbol ∘ denotes the Hadamard-product and [ℱ̃𝓉]2:𝑀𝑡+1, 

[ℱ̃𝓍]2:𝑀𝑥are submatrices of ℱ̃𝓉 and ℱ̃𝓍. [ℱ̃𝓍]2:𝑀𝑥 is a submatrix of rows 2:𝑀𝑥 and all columns of 

ℱ̃𝓍, the same for [ℱ̃𝓉]2:𝑀𝑡+1, 
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ℱ̃𝓍 =

[
 
 
 
 
ℱ̃1(𝑥0) ℱ̃2(𝑥0) ⋯ ℱ̃𝑀𝑥(𝑥0) ℱ̃𝑀𝑥+1(𝑥0)

ℱ̃1(𝑥1) ℱ̃2(𝑥1) ⋯ ℱ̃𝑀𝑥(𝑥1) ℱ̃𝑀𝑥+1(𝑥1)

⋮
ℱ̃1(𝑥𝑀𝑥)

⋮
ℱ̃2(𝑥𝑀𝑥)

 ⋯              ⋮              ⋮     
       ⋯ ℱ̃𝑀𝑥(𝑥𝑀𝑥) ℱ̃𝑀𝑥+1(𝑥𝑀𝑥)]

 
 
 
 
𝑇

, 

and 

ℱ̃𝓉 =

[
 
 
 
 
ℱ̃1(𝑡0) ℱ̃2(𝑡0) ⋯ ℱ̃𝑀𝑡(𝑡0) ℱ̃𝑀𝑡+1(𝑡0)

ℱ̃1(𝑡1) ℱ̃2(𝑡1) ⋯ ℱ̃𝑀𝑡(𝑡1) ℱ̃𝑀𝑡+1(𝑡1)

⋮
ℱ̃1(𝑡𝑀𝑡)

⋮
ℱ̃2(𝑡𝑀𝑡)

   ⋯              ⋮              ⋮     
      ⋯ ℱ̃𝑀𝑡(𝑡𝑀𝑡) ℱ̃𝑀𝑡+1(𝑡𝑀𝑡)]

 
 
 
 
𝑇

. 

Applying the initial and boundary conditions (BCs) as follows: 

1) 𝜓(0, 𝑥𝑖) = (ℱ̃(0)⨂ℱ̃(𝑥𝑖))𝒱 = 𝑔(𝑥𝑖), (initial condition) 

([ℱ̃𝓉]1⨂ℱ̃𝓍)𝒱 = [𝑔(𝑥0), 𝑔(𝑥1),… , 𝑔(𝑥𝑀𝑥)]
𝑇
,      (3.14) 

2) 𝜓(𝑡𝑗 , 𝑎) = (ℱ̃(𝑡𝑗)⨂ℱ̃(0))𝒱 = 0, (left BCs) 

(ℱ̃𝓉⨂[ℱ̃𝓍]1)𝒱 = [𝐎],         (3.15) 

3) 𝜓(𝑡𝑗 , 𝑏) = (ℱ̃(𝑡𝑗)⨂ℱ̃(𝑎))𝒱 = 0, (right BCs) 

(ℱ̃𝓉⨂[ℱ̃𝓍]𝑀𝑥+1)𝒱 = [𝐎].        (3.16) 

3.3. Applying spectral approach to multi-dimensional stochastic poisson equations 

The proposed technique can be applied to the 2D and 3D stochastic poisson equations by 

substituting Eqs (3.2) and (3.3) to the Poisson equation (1.3) for 𝑑 = 2 at the point (𝑡𝑗 , 𝑥𝑖) and for 

𝑑 = 3 at the point (𝑡𝑗 , 𝑥𝑖 , 𝑦𝑘) as follows: 

(𝐷(2)ℱ̃(𝑡𝑗)⨂ℱ̃(𝑥𝑖))𝒱 + (ℱ̃(𝑡𝑗)⨂𝐷
(2)ℱ̃(𝑥𝑖))𝒱 + 𝜌(𝒩𝓌) = 𝑓(𝑡𝑗 , 𝑥𝑖), for 𝑑 = 2, (3.17) 

(𝐷(2)ℱ̃(𝑡𝑗)⨂ℱ̃(𝑥𝑖)⨂ℱ̃(𝑦𝑘))𝒱 + (ℱ̃(𝑡𝑗)⨂𝐷
(2)ℱ̃(𝑥𝑖)⨂ℱ̃(𝑦𝑘))𝒱 

+(ℱ̃(𝑡𝑗)⨂ℱ̃(𝑥𝑖)⨂𝐷
(2)ℱ̃(𝑦𝑘))𝒱 + 𝜌(𝒩𝓌) = 𝑓(𝑡𝑗 , 𝑥𝑖 , 𝑦𝑘), for 𝑑 = 3.  (3.18) 
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Computing Eqs (3.17) and (3.18) at interior-grid point for 𝑗 = 1:𝑀𝑡 − 1, 𝑖 = 1: 𝑀𝑥 − 1 and 𝑘 =
1:𝑀𝑦 − 1, 

[([ℱ̃𝓉]2:𝑀𝑡 . 𝐷
(2)⨂[ℱ̃𝓍]2:𝑀𝑥) + ([ℱ̃𝓉]2:𝑀𝑡⨂[ℱ̃𝓍]2:𝑀𝑥 . 𝐷

(2))]𝒱 

= [[𝒻]1:𝑀𝑥−1
1:𝑀𝑡−1 − 𝜌(𝒩𝓌)]

1×(𝑀𝑡−1)(𝑀𝑥−1)
, for 𝑑 = 2,     (3.19) 

[([ℱ̃𝓉]2:𝑀𝑡 . 𝐷
(2)⨂[ℱ̃𝓍]2:𝑀𝑥⨂[ℱ̃𝓎]2:𝑀𝑦

) + ([ℱ̃𝓉]2:𝑀𝑡⨂[ℱ̃𝓍]2:𝑀𝑥 . 𝐷
(2)⨂[ℱ̃𝓎]2:𝑀𝑦

)

+ ([ℱ̃𝓉]2:𝑀𝑡⨂[ℱ̃𝓍]2:𝑀𝑥⨂[ℱ̃𝓎]2:𝑀𝑦
. 𝐷(2))]𝒱 

= [[𝒻]1:𝑀𝑥−1;1:𝑀𝑦−1
1:𝑀𝑡−1 − 𝜌(𝒩𝓌)]

1×(𝑀𝑡−1)(𝑀𝑥−1)(𝑀𝑦−1)
, for 𝑑 = 3,  (3.20) 

where [𝒻]1:𝑀𝑥−1
1:𝑀𝑡−1 = 𝑓(𝑡𝑗 , 𝑥𝑖), and [𝒻]1:𝑀𝑥−1;1:𝑀𝑦−1

1:𝑀𝑡−1 = 𝑓(𝑡𝑗 , 𝑥𝑖, 𝑦𝑘) are given column vectors. 

Applying the BCs as follows: 

• For 2D Poisson equation (4 BCs): 

([ℱ̃𝓉]1⨂ℱ̃𝓍)𝒱 = [𝐎], for 𝑡 = 𝑎,        (3.21) 

([ℱ̃𝓉]𝑀𝑡+1⨂ℱ̃𝓍)𝒱 = [𝐎], for 𝑡 = 𝑏,       (3.22) 

(ℱ̃𝓉⨂[ℱ̃𝓍]1)𝒱 = [𝐎], for 𝑥 = 𝑎,        (3.23) 

(ℱ̃𝓉⨂[ℱ̃𝓍]𝑀𝑥+1)𝒱 = [𝐎]for 𝑥 = 𝑏.        (3.24) 

• For 3D Poisson equation (6 BCs): 

([ℱ̃𝓉]1⨂ℱ̃𝓍⨂ℱ̃𝓎)𝒱 = [𝐎]for 𝑡 = 𝑎,       (3.25) 

([ℱ̃𝓉]𝑀𝑡+1⨂ℱ̃𝓍⨂ℱ̃𝓎)𝒱 = [𝐎], for 𝑡 = 𝑏,      (3.26) 

(ℱ̃𝓉⨂[ℱ̃𝓍]1⨂ℱ̃𝓎)𝒱 = [𝐎], for 𝑥 = 𝑎,       (3.27) 

(ℱ̃𝓉⨂[ℱ̃𝓍]𝑀𝑥+1⨂ℱ̃𝓎)𝒱 = [𝐎]for 𝑥 = 𝑏,      (3.28) 

(ℱ̃𝓉⨂ℱ̃𝓍⨂[ℱ̃𝓎]1
)𝒱 = [𝐎], for 𝑦 = 𝑎,       (3.29) 
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(ℱ̃𝓉⨂ℱ̃𝓍⨂[ℱ̃𝓎]𝑀𝑦+1
)𝒱 = [𝐎], for 𝑦 = 𝑏.      (3.30) 

3.4. Normalization matters: stabilizing solutions via orthonormal bases 

In this part, we address the initial divergence issues encountered with raw SVFPs and introduce 

a normalization strategy to ensure stability. We redefine the basis functions and their derivatives in 

orthonormal form, significantly improving convergence and accuracy in stochastic simulations. 

For the SHE, we solve the system of linear Eqs (3.12)–(3.16), which consists of 

(𝑀𝑥 + 1)(𝑀𝑡 + 1) equations with (𝑀𝑥 + 1)(𝑀𝑡 + 1) unknowns to get the values of the vector 𝒱, 

and then substitute this into Eq (3.1) to get the numerical solutions of the SHE at all of the grid points. 

However, the resulting solutions are diverging. After many attempts, we successfully adddress this 

issue and achieve convergence by normalizing all vectors in the system. Assume the new orthonormal 

vectors are defined as: 

Φ𝓍 =
ℱ̃𝓍

ℒ𝓍,0
, 𝐷(1)Φ𝓍 =

𝐷(1)∙ℱ̃𝓍

ℒ𝓍,1
, 𝐷(2)Φ𝓍 =

𝐷(2)∙ℱ̃𝓍

ℒ𝓍,2
, Φ𝓉 =

ℱ̃𝓉

ℒ𝓉,0
, 

𝐷(1)Φ𝓉 =
𝐷(1)∙ℱ̃𝓉

ℒ𝓉,1
, 𝐷(2)Φ𝓉 =

𝐷(2)∙ℱ̃𝓉

ℒ𝓉,2
, Φ𝓎 =

ℱ̃𝓎

ℒ𝓎,0
, and 𝐷(2)Φ𝓎 =

𝐷(2)∙ℱ̃𝓎

ℒ𝓎,2
,   (3.31) 

where 

ℒ𝓍,0 = ‖ℱ̃𝓍‖, ℒ𝓍,1 = ‖𝐷
(1) ∙ ℱ̃𝓍‖, ℒ𝓍,2 = ‖𝐷

(2) ∙ ℱ̃𝓍‖, ℒ𝓉,0 = ‖ℱ̃𝓉‖, 

ℒ𝓉,1 = ‖𝐷
(1) ∙ ℱ̃𝓉‖, ℒ𝓎,0 = ‖ℱ̃𝓎‖, ℒ𝓎,2 = ‖𝐷

(2) ∙ ℱ̃𝓉‖, 

and the symbol ‖. ‖ represents the infinity norm. 

Applying these orthonormal vectors to the stochastic heat system of Eqs (3.12)–(3.16), we get 

[−(ℒ𝓉,1) (([Φ𝓉]2:𝑀𝑡+1. 𝐷
(1))⨂[Φ𝓍]2:𝑀𝑥) + (𝜎 × ℒ𝓍,2) ([Φ𝓉]2:𝑀𝑡+1⨂([Φ𝓍]2:𝑀𝑥 . 𝐷

(2))) 

+(𝜀 × ℒ𝓍,1) ([Φ𝓉]2:𝑀𝑡+1⨂([Φ𝓍]2:𝑀𝑥 . 𝐷
(1))) + 𝜌(𝒩𝓌) ∘ ([Φ𝓉]2:𝑀𝑡+1⨂[Φ𝓍]2:𝑀𝑥)]𝒱 = [𝐎],(3.32) 

or 

[−(ℒ𝓉,1) ([Φ𝓉]2:𝑀𝑡+1. (𝐷
(1)⨂[Φ𝓍]2:𝑀𝑥)) + (𝜎 × ℒ𝓍,2) ([Φ𝓉]2:𝑀𝑡+1⨂([Φ𝓍]2:𝑀𝑥 . 𝐷

(2))) 

+(𝜌 × ℒ𝓍,2)(𝒩𝓌) ∘ ([Φ𝓉]2:𝑀𝑡+1⨂([Φ𝓍]2:𝑀𝑥 . 𝐷
(2)))]𝒱 = [𝐎],   (3.33) 

with the initial and boundary conditions: 

([Φ𝓉]1⨂Φ𝓍)𝒱 = [𝑔(𝑥0), 𝑔(𝑥1),… , 𝑔(𝑥𝑀𝑥)]
𝑇
,       (3.34) 

(Φ𝓉⨂[Φ𝓍]1)𝒱 = [𝐎],        (3.35) 



30146 

AIMS Mathematics  Volume 10, Issue 12, 30134–30161. 

and 

(Φ𝓉⨂[Φ𝓍]𝑀𝑥+1)𝒱 = [𝐎].       (3.36) 

We determine the values of the vector 𝒱 by solving the updated system of Eq (3.32) or Eq (3.33) with 

Eqs (3.34)–(3.36), and then use Eq (3.1) to get the proposed numerical solutions for the SHEs. 

By the same manner for the SPEs, applying these orthonormal vectors to: 

• Use the 2D Poisson system of Eqs (3.19) and (3.21)–(3.24), and we get 

[(ℒ𝓉,2)([Φ𝓉]2:𝑀𝑡 . 𝐷
(2)⨂[Φ𝓍]2:𝑀𝑥) + (ℒ𝓍,2)([Φ𝓉]2:𝑀𝑡⨂[Φ𝓍]2:𝑀𝑥 . 𝐷

(2))]𝒱 

= [[𝒻]1:𝑀𝑥−1
1:𝑀𝑡−1 − 𝜌(𝒩𝓌)]

1×(𝑀𝑡−1)(𝑀𝑥−1)
,       (3.37) 

([Φ𝓉]1⨂Φ𝓍)𝒱 = [𝐎], for 𝑡 = 𝑎,         (3.38) 

([Φ𝓉]𝑀𝑡+1⨂Φ𝓍)𝒱 = [𝐎], for 𝑡 = 𝑏,        (3.39) 

(Φ𝓉⨂[Φ𝓍]1)𝒱 = [𝐎], for 𝑥 = 𝑎,         (3.40) 

(Φ𝓉⨂[Φ𝓍]𝑀𝑥+1)𝒱 = [𝐎], for 𝑥 = 𝑏.        (3.41) 

• To use the 3D Poisson system of Eqs (3.20) and (3.25)–(3.30), and we get 

[(ℒ𝓉,2) ([Φ𝓉]2:𝑀𝑡 . 𝐷
(2)⨂[Φ𝓍]2:𝑀𝑥⨂[Φ𝓎]2:𝑀𝑦

) + (ℒ𝓍,2) ([Φ𝓉]2:𝑀𝑡⨂[Φ𝓍]2:𝑀𝑥 . 𝐷
(2)⨂[Φ𝓎]2:𝑀𝑦

)

+ (ℒ𝓎,2) ([Φ𝓉]2:𝑀𝑡⨂[Φ𝓍]2:𝑀𝑥⨂[Φ𝓎]2:𝑀𝑦
. 𝐷(2))]𝒱 

= [[𝒻]1:𝑀𝑥−1;1:𝑀𝑦−1
1:𝑀𝑡−1 − 𝜌(𝒩𝓌)]

1×(𝑀𝑡−1)(𝑀𝑥−1)(𝑀𝑦−1)
,   (3.42) 

([Φ𝓉]1⨂Φ𝓍⨂Φ𝓎)𝒱 = [𝐎], for 𝑡 = 𝑎,       (3.43) 

([Φ𝓉]𝑀𝑡+1⨂Φ𝓍⨂Φ𝓎)𝒱 = [𝐎], for 𝑡 = 𝑏,       (3.44) 

(Φ𝓉⨂[Φ𝓍]1⨂Φ𝓎)𝒱 = [𝐎], for 𝑥 = 𝑎,       (3.45) 

(Φ𝓉⨂[Φ𝓍]𝑀𝑥+1⨂Φ𝓎)𝒱 = [𝐎], for 𝑥 = 𝑏,       (3.46) 

(Φ𝓉⨂Φ𝓍⨂[Φ𝓎]1
)𝒱 = [𝐎], for 𝑦 = 𝑎,       (3.47) 

(Φ𝓉⨂Φ𝓍⨂[Φ𝓎]𝑀𝑦+1
)𝒱 = [𝐎], for 𝑦 = 𝑏.      (3.48) 

We determine the values of the vector 𝒱 by solving the updated linear system of Eqs (3.37)–(3.41) 

or Eqs (3.42)–(3.48) using matrix inversion or any other linear solver, and then use Eq (3.1) or Eq (3.2) 

to get the proposed numerical solutions for the 2D and 3D stochastic Poisson equations. 
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Finally, to handle the given stochastic equations, we need to utilize a variety of samples 

(𝒦 = 1, 2, 3, … ) of the Brownian motion (or, Wiener) process. Then, we solve this linear system for 

𝒦 = 1  and redo the same procedure for 𝒦 = 2, 3, 4, … . Hence, we get the solution-sequences 

{𝜓𝑖,𝑗
1 ,𝜓𝑖,𝑗

2 ,𝜓𝑖,𝑗
3 , … ,𝜓𝑖,𝑗

𝒦 }. Subsequently, we calculate the mean and variance of the resulting solutions to 

analyze the approximate solutions of the proposed stochastic Eqs (1.1)–(1.3). 

The solution steps algorithm can be summarized as follows: 

Step 1) Define all required parameters: 

• Set grid sizes: 𝑀𝑥, 𝑀𝑡 and 𝑀𝑦; 

• Set domain limits: 𝑎, 𝑏, and 𝑇; 

• Define grid nodes: 𝑥𝑖, 𝑡𝑗, and 𝑦𝑘; 

• Set the number of Monte-Carlo runs: 𝒦runs; 

• Set the SPDE constants: 𝜎, 𝜀, and 𝜌; 

• Set the SPDEs initial and boundary conditions. 

Step 2) Generate basis functions (SVFPs): 

• Initialize SVFPs basis functions and their derivatives: ℱ̃(𝑡𝑗) , ℱ̃(𝑥𝑖) , ℱ̃(𝑦𝑘) , 𝐷
(𝓆)ℱ̃(𝑡𝑗) , 

𝐷(𝓅)ℱ̃(𝑥𝑖), and 𝐷(𝑟)ℱ̃(𝑦𝑘), as defined in Eqs (2.6)–(2.10); 

• Compute the basis functions and their derivatives on the grid points: ℱ̃𝓍, 𝐷(1)ℱ̃𝓍, 𝐷(2)ℱ̃𝓍, ℱ̃𝓉, 

𝐷(1)ℱ̃𝓉, 𝐷
(2)Φ𝓉, ℱ̃𝓎, and 𝐷(2)ℱ̃𝓎, as defined in Eqs (3.12)–(3.30); 

• Normalize the basis functions and their derivatives on the grid points: Φ𝓍, 𝐷(1)Φ𝓍, 𝐷(2)Φ𝓍, Φ𝓉, 

𝐷(1)Φ𝓉, 𝐷
(2)Φ𝓉, Φ𝓎, and 𝐷(2)Φ𝓎, as defined in Eq (3.31). 

Step 3) Generate noise realizations: 

• Generate 𝒦-paths of the Wiener Process on the time grid; 

• Discretizing it with an equal step in time to get its value at each node 𝑗 in time space; 

• Generate the ℬ(𝑡) matrix and used it to get the vector of white noise 𝒩𝓌, as illustrated in 

Eqs (3.7)–(3.9). 

Step 4) Precompute system matrices: 

• Construct the system matrices using Kronecker products of the basis function and their derivatives 

submatrices for the interior points: [Φ𝓍]2:𝑀𝑥 , 𝐷(1)⨂[Φ𝓍]2:𝑀𝑥 , 𝐷(2)⨂[Φ𝓍]2:𝑀𝑥 , [Φ𝓉]2:𝑀𝑥 , 

𝐷(1)⨂[Φ𝓉]2:𝑀𝑥, 𝐷(2)⨂[Φ𝓉]2:𝑀𝑥,[Φ𝓎]2:𝑀𝑥
, and 𝐷(2)⨂[Φ𝓎]2:𝑀𝑥

, as defined in Eqs (3.32)–(3.48), 

• Set up storage array to hold the solution vector for each 𝒦. 

Step 5) Monte Carlo simulation loop: 

➢ For 𝒦 = 1 to 𝒦𝑟𝑢𝑛𝑠; 

• Generate the white noise vector 𝒩𝓌 for the current 𝒦; 

• Set the vector of unknown spectral coefficients; 

• Formulate all matrices which represent the solution function and its derivatives using the required 
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Kronecker products of the defined matrices given in previous step; 

• Formulate a set of linear algebraic equations at the interior grid points; 

• Formulate a set of linear algebraic equations from the initial and boundary conditions; 

• Combine the interior equations, initial equations and boundary equations, and solve it using 

matrix inversion to get the vector 𝒱; 

• Then, compute the full solution using Eq (3.1) or Eq (3.2); 

• Store the current solution in the results array. 

➢ End For loop  

Step 6) Computing the statistics: 

• The numerical solutions across all 𝒦runs: 𝜓
(𝒦) = {𝜓𝑖,𝑗

1 , 𝜓𝑖,𝑗
2 , 𝜓𝑖,𝑗

3 , … , 𝜓𝑖,𝑗
𝒦runs}; 

• Calculate the Mean and Variance of the reconstructed solutions as follows: 

𝜓𝑚𝑒𝑎𝑛 =
1

𝒦runs
∑ 𝜓(𝒦)
𝒦runs
𝒦=1 ,        (3.49) 

𝜓𝑣𝑎𝑟 =
1

𝒦runs
∑ (𝜓(𝒦) − 𝜓𝑚𝑒𝑎𝑛)

2𝒦runs
𝒦=1 .      (3.50) 

4. Results 

We validate the proposed method through numerical experiments on four benchmark problems 

for SHE and one benchmark problem for SPE, comparing absolute errors and convergence rates with 

the FDFT [7], TNPCS [8], Tau [28], Galerkin [28], and Quasi-Inverse Matrix Diagonalization (QIMD) [29] 

approaches. Tables and contour plots illustrate the superior precision of SVFPs, particularly for problems with 

exact solutions. 

We set the spatial and temporal discretization parameters to 𝑀 = 16 and employ 2000 samples 

of the Brownian motion ℬ(𝑡). The mean of the solutions and the variance under the influence of noise 

for four SHEs are illustrated and visualized in Figures 1–4. For the multi-dimensional SPE, we 

configure discretization parameters to 𝑀 = 16  across all dimensions, yielding high-accuracy 

solutions. The results are shown in Figures 5 and 6 and are detailed in Tables 3 and 4. 

The visual representations highlight the robustness of our orthonormal SVFPs method in 

effectively addressing and managing stochastic variability. Using Monte Carlo samples of Brownian 

motion, we analyze the variance of SVFP solutions against competing methods. Our results 

demonstrate that SVFPs achieve orders-of-magnitude lower variance, highlighting their robustness to 

stochastic fluctuations. 

Tables 1–4 present a quantitative comparison of absolute errors obtained via the FDFT method, 

literature approaches, and our approach. These tables redemonstrate that our proposed method reduces 

computational time and resource requirements with a high-level of accuracy. 

In [7], the authors demonstrated that the solutions obtained using the FDFT method are more 

reliable than those derived from the stochastic TNPCS approach [8]. In this work, we compare the 

proposed approach, based on SVFPs, with the FDFT method. The results show that the proposed 

approach achieves greater reliability and efficiency, as evidenced by the lower variance in the solutions 

compared to those obtained by the FDFT method. 

By increasing the number of samples of the noise term, our SVFPs approach demonstrates 

unwavering reliability, consistently yielding robust results across all analyzed problems. All 
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computations are executed by Mathematica 12 software, ensuring an environment of reliability for our 

analysis. 

Table 1. The absolute errors of problem (3) at 𝑡 = 1. 

𝑥 Exact 
Errors by SVFPs Errors by FDFT [7] 

𝜌 = 0 𝜌 = 0.01 𝜌 = 0 

0.125 0.140781367244039 5.254 × 10−12 1.767 × 10−10 1.173 × 10−6 

0.250 0.260130047511444 4.458 × 10−12 3.262 × 10−10 2.167 × 10−6 

0.375 0.339876286129985 7.198 × 10−12 4.262 × 10−10 2.832 × 10−6 

0.500 0.36787944117144 7.559 × 10−12 4.613 × 10−10 3.066 × 10−6 

0.625 0.339876286129985 7.198 × 10−12 4.262 × 10−10 2.832 × 10−6 

0.750 0.260130047511444 5.254 × 10−12 3.262 × 10−10 2.167 × 10−6 

0.875 0.140781367244039 4.458 × 10−12 1.767 × 10−10 1.173 × 10−6 

1.000 0 0 0 0 

Table 2. The absolute errors of problem (4) at 𝑡 = 1. 

𝑥 Exact 
Errors by SVFPs Errors by FDFT [7] 

𝜌 = 0 𝜌 = 0.01 𝜌 = 0 

0.125 0.095696496510411 1.025 × 10−9 4.965 × 10−9 1.173 × 10−6 
0.250 0.135335283236612 8.991 × 10−10 6.476 × 10−9 2.167 × 10−6 
0.375 0.095696496510411 5.038 × 10−10 4.447 × 10−9 2.832 × 10−6 
0.500 0 0 0 3.066 × 10−6 
0.625 −0.095696496510411 5.038 × 10−10 4.447 × 10−9 2.832 × 10−6 
0.750 −0.135335283236612 8.991 × 10−10 6.476 × 10−9 2.167 × 10−6 
0.875 −0.095696496510411 1.025 × 10−9 4.965 × 10−9 1.173 × 10−6 
1.000 0 0 0 0 

Table 3. The maximum absolute errors of problem (5) related to 2D and 3D SPE. 

Method 𝑀 𝐸𝑚𝑎𝑥 (2D) 𝐸𝑚𝑎𝑥 (3D) 

SVFPs 
16 5.75 × 10−4 3.33 × 10−4 

32 1.39 × 10−15 1.28 × 10−15 

FDFT [7] 
16 7.41 × 10−5 7.41 × 10−5 

32 1.12 × 10−6 1.12 × 10−6 

Tau [28] 
16 1.45 × 10−6 1.34 × 10−6 

32 1.55 × 10−15 4.62 × 10−15 

Galerkin [28] 16 6.37 × 10−6 8.32 × 10−6 

32 1.41 × 10−15 9.2 × 10−15 

Table 4. The relative L2-norm errors of problem (5) related to 2D and 3D SPE. 

Method 𝑀 RL2 error (2D) RL2 error (3D) 

SVFPs 
16 4.71 × 10−4 2.28 × 10−4 
32 1.18 × 10−15 1. .12 × 10−15 

FDFT [7] 
16 7.40 × 10−5 7.40 × 10−5 
32 1.13 × 10−6 1.13 × 10−6 

QIMD [29] 
16 1.75 × 10−6 2.83 × 10−7 
32 1.43 × 10−15 3.62 × 10−15 
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Problem (1). Recognize the initial-boundary value problem [8]. 

𝜕

𝜕𝑡
𝜓(𝑡, 𝑥) = 0.01

𝜕2

𝜕𝑥2
𝜓(𝑡, 𝑥) + 0.01

𝜕

𝜕𝑥
𝜓(𝑡, 𝑥) − 0.02𝜓(𝑡, 𝑥)𝑛(𝑡), 

𝜓(0, 𝑥) = 𝑥2(1 − 𝑥)2, 𝑥 ∈ [0, 1], 

𝜓(𝑡, 0) = 𝜓(𝑡, 1) = 0, 𝑡 ∈ [0, 0.3]. 

Problem (2). Consider the stochastic PDE [8]. 

𝜕

𝜕𝑡
𝜓(𝑡, 𝑥) =

𝜕2

𝜕𝑥2
𝜓(𝑡, 𝑥) − 0.01 𝜓(𝑡, 𝑥) 𝑛(𝑡), 

𝜓(0, 𝑥) = sin(𝜋𝑥), 𝑥 ∈ [0, 1], 

𝜓(𝑡, 0) = 𝜓(𝑡, 1) = 0, 𝑡 ∈ [0, 0.3]. 

The mean results, its contour plots, and the variance for problems (1) and (2) are obtained using the 

SVFP approach and visualized in Figures 1 and 2. The SVFP method achieves a variance of solutions 

in the order of 𝑂(10−11) in problem (1), and 𝑂(10−9) in problem (2), demonstrating superior 

accuracy compared to the solutions obtained via FDFT. 

Problem (3). Recognize the linear stochastic equation [7,8]. 

𝜕

𝜕𝑡
𝜓(𝑡, 𝑥) = (

1

𝜋2
+ 0.01 𝑛(𝑡))

𝜕2

𝜕𝑥2
𝜓(𝑡, 𝑥), 

𝜓(0, 𝑥) = sin(𝜋𝑥), 𝑥 ∈ [0, 1], 

𝜓(𝑡, 0) = 𝜓(𝑡, 1) = 0, 𝑡 ∈ [0, 1], 

and the exact solution for 𝛽 = 0 is: 𝜓(𝑡, 𝑥) = 𝑒−𝑡 sin(𝜋𝑥). 

Problem (4). Let the stochastic equation [7,8]. 

𝜕

𝜕𝑡
𝜓(𝑡, 𝑥) = (

1

2𝜋2
+ 0.01 𝑛(𝑡))

𝜕2

𝜕𝑥2
𝜓(𝑡, 𝑥), 

𝜓(𝑡, 0) = sin(2𝜋𝑥), 𝑥 ∈ [0, 1], 

𝜓(𝑡, 0) = 𝜓(𝑡, 1) = 0, 𝑡 ∈ [0, 1], 

and the exact solution for 𝛽 = 0 is: 𝜓(𝑡, 𝑥) = 𝑒−2𝑡 sin(2𝜋𝑥). 

The solution and absolute errors for problems (3) and (4), with noise term coefficients 𝜌 = 0 

and 𝜌 = 0.01 , are presented in Tables 1 and 2, confirming the high accuracy of our approach. 

Additionally, the mean results, its contour plots, and the variance for these problems, are visualized in 

Figures 3 and 4. This method achieves a variance of solutions in the order of 𝑂(10−15) in problem (3), 

and 𝑂(10−11)  in problem (4), significantly outperforming the FDFT method, as evidenced by the 

comparative results shown in the figures. 

Problem (5). Consider the muti-dimensional SPE (1.3) with [𝑎, 𝑏] = [−1,1] and in the absence of 

noise, 𝑓(𝒙) = −𝑑(4𝜋2)∏ sin(2𝜋𝒙𝒍)
𝑑
𝑙=1 . 
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In Tables 3 and 4, the accuracy of the solutions is evaluated using SVFPs, FDFT [8], Tau [28], 

Galerkin [28], and QIMD [29] methods for 𝜌 = 0, 𝑀 = 16, and 32. To assess the accuracy of the 

proposed numerical scheme, we compute the maximum absolute error, which quantifies the largest 

pointwise deviation between the numerical approximation and the exact solution. It is defined as: 

𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖|𝜓𝑒𝑥𝑎𝑐𝑡(𝑡𝑖) − 𝜓𝑛𝑢𝑚(𝑡𝑖)|. 

Additionally, we compute the relative L2-norm error, which is defined as: RL2Error =

‖𝑢numerical−𝑢exact‖2

‖𝑢exact‖2
. 

These metrics provide a clear measure of the method’s performance across the computational 

domain, and they are used in the tables to compare the accuracy of the schemes. 

Furthermore, for 𝜌 = 0.01 , the mean and variance of solutions for 2D and 3D SPEs across 

different values of 𝑦 are presented in Figures 5 and 6. These results validate the effectiveness of the 

proposed technique in multi-dimensional stochastic domains. 

 

Figure 1. Spatial profile of the mean field and variance field for the solution of the 

stochastic heat equation (Problem 1), with stochastic forcing intensity 𝜌 = 0.01: (a) mean 

field and its contour plot, and the variance field given by (b) SVFPs and (c) FDFT. 
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Figure 2. Spatial profile of the mean field and variance field for the solution of the 

stochastic heat equation (Problem 2), with stochastic forcing intensity 𝜌 = 0.01: (a) mean 

field and its contour plot, and the variance field given by (b) SVFPs and (c) FDFT. 
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Figure 3. Spatial profile of the mean field and variance field for the solution of the 

stochastic heat equation (Problem 3), with stochastic forcing intensity 𝜌 = 0.01: (a) exact 

solution (𝜌 = 0), (b) mean field and its contour plot, and the variance field given by (c) 

SVFPs and (d) FDFT. 
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Figure 4. Spatial profile of the mean field and variance field for the solution of the 

stochastic heat equation (Problem 4), with stochastic forcing intensity 𝜌 = 0.01: (a) exact 

solution (𝜌 = 0), (b) mean field and its contour plot, and the variance field given by (c) 

SVFPs and (d) FDFT. 
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Figure 5. The numerical simulation of the 2D deterministic Poisson equation (Problem 5): 

(a) approximated solution and its contour plot and (b) absolute error of the solutions, and 

the spatial profile of the mean field and variance field of its stochastic version with a 

stochastic forcing intensity 𝜌 = 0.01: (c) mean field and its contour plot and (d) variance 

field given by SVFPs. 
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Figure 6. Spatial profile of the mean field and variance field for the solution of the three-

dimensional stochastic Poisson equation (Problem 5) at different values of the spatial 

coordinate 𝑦, with stochastic forcing intensity 𝜌 = 0.01. The mean field represents the 

expected solution, while the variance quantifies the uncertainty around this mean due to 

the stochastic source term.  
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5. Discussion and conclusions 

5 1  Discussion 

The numerical experiments conducted in this study reveal several important insights about the 

behavior and performance of SVFPs in solving stochastic equations. Three key findings emerge from 

the analysis that warrant careful consideration. 

First, the spectral convergence properties of SVFPs demonstrate clear advantages over traditional 

finite difference methods. As shown in Tables 2–5, the SVFP approach achieves significantly smaller 

absolute errors compared to FDFT, TNPCS, Tau, Galerkin, and QIMD methods across all test cases. 

This superior accuracy can be attributed to the inherent properties of orthogonal polynomial 

expansions, which provide exponential convergence rates for smooth solutions. The normalization 

procedure developed in Section 3.2 proves particularly effective in maintaining this high accuracy 

while preventing the ill-conditioning issues that often plague high-order polynomial methods. 

Second, the variance analysis presented in Figures 1–6 reveals the method's robustness in 

handling stochastic perturbations. The SVFP solutions exhibit consistently lower variance compared 

to FDFT results, suggesting greater stability in the presence of noise. This improved performance stems 

from the method's ability to represent the stochastic terms through orthogonal expansions rather than 

finite difference approximations, thereby reducing spurious oscillations and numerical artifacts. 

However, several practical considerations must be noted regarding computational implementation. 

While the SVFP method requires more extensive pre-processing for matrix assembly compared to 

finite difference schemes, this initial investment pays dividends in long-time simulations. The method's 

memory requirements grow quadratically with the number of basis functions, which may limit its 

immediate some application to very high-order muti-dimensional problems. In future work, 

researchers could explore sparse implementations or adaptive basis selection to mitigate these scaling 

challenges. 

This study leaves open several promising directions for future research. Extending the method to 

nonlinear stochastic PDEs would require developing appropriate linearization techniques while 

preserving the favorable convergence properties. Additionally, investigating time-adaptive versions of 

the algorithm could further improve computational efficiency for problems with multiple temporal 

scales. The potential combination of SVFPs with reduced-order modeling techniques presents another 

interesting avenue for handling multi-dimensional stochastic systems. 

The numerical outcomes provide a direct physical interpretation of stochastic diffusion processes. 

The obtained mean solution represents the expected field, such as the average temperature distribution 

in a stochastic heat transfer problem, while the computed variance quantifies the spatial map of 

uncertainty around this mean arising from random forcing or material fluctuations. The observed decay 

and smooth distribution of variance with increased resolution reflect a fundamental property of 

diffusive systems: The natural damping of high-frequency stochastic noise, leading to more predictable 

macroscopic behavior. This characterization of uncertainty is vital for risk-aware engineering as 

regions of concentrated variance highlight system sensitivities critical for robust design and reliability 

analysis. 

While the numerical results demonstrate the high accuracy and stability of the SVFPs method for 

SPDEs, we evaluate the combined error from the spectral discretization and Monte Carlo sampling. A 

formal convergence analysis separating these error components, along with a detailed study of 
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convergence rates in polynomial degree and number of stochastic trajectories, represents a valuable 

direction for future research. Such a study would provide further theoretical underpinning and is 

planned as a separate, detailed investigation. 

These results collectively suggest that SVFPs offer a viable alternative to numerical methods for 

stochastic PDEs, particularly in scenarios where high accuracy and noise robustness are prioritized. 

The method's strong theoretical foundation and promising numerical performance establishes it as a 

valuable addition to the computational mathematician's toolkit for stochastic problems. Further 

development of the technique may open new possibilities for solving challenging problems in 

stochastic modeling and uncertainty quantification. 

5 2  Conclusions 

This investigation represents the inaugural implementation of SVFPs for stochastic PDEs, 

marking a significant departure from conventional numerical approaches. The developed methodology 

demonstrates three principal advancements: First, it establishes SVFPs as viable basis functions for 

stochastic systems; second, it introduces a stabilization protocol that preserves spectral accuracy while 

mitigating noise amplification; and third, it provides a framework for orthogonal polynomial 

expansions in stochastic settings that maintains superior accuracy. 

The demonstrated success of this approach suggests several meaningful extensions that would 

broaden its applicability while maintaining mathematical rigor. A logical progression involves 

generalization to spatially extended systems, where the inherent tensor-product structure of polynomial 

bases could be judiciously employed to balance accuracy with dimensionality constraints. Such 

extension would necessitate careful consideration of basis selection strategies to maintain numerical 

stability in higher dimensions. 

Furthermore, the incorporation of fractional calculus operators presents an opportunity to model 

non-local diffusion processes while preserving the method's convergence properties. This extension 

would be particularly relevant for systems exhibiting anomalous transport characteristics, where 

traditional approaches often struggle with accuracy preservation. The polynomial structure of SVFPs 

appears naturally compatible with such generalizations, given their established performance in 

fractional-order problems. 

The method's novel application to stochastic systems also motivates investigation of more 

sophisticated noise models. In future work, researchers should examine correlated noise structures and 

state-dependent stochasticity, which would require development of weighted polynomial expansions 

or hybrid numerical-analytical approaches. These extensions would substantially broaden the method's 

applicability to real-world systems where noise characteristics deviate from idealized white noise 

assumptions. 

From an implementation perspective, adaptive refinement strategies could enhance the method's 

efficiency for problems with localized features or multiple scales. The development of such adaptive 

schemes would build upon the method's inherent accuracy while addressing potential computational 

bottlenecks in complex applications. 

In this work, we establish SVFPs as a new computational tool for stochastic systems, with 

demonstrated advantages in accuracy and stability. Its successful application to stochastic heat and 

stochastic Poisson equations suggests broader potential in areas requiring precise stochastic modeling, 

while the outlined extensions point toward meaningful future developments in numerical analysis for 
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stochastic systems. The methodology's novelty lies not only in its implementation but also in its 

potential to inspire new approaches to stochastic computation through orthogonal polynomial 

expansions. 

Author contributions 

A.G.K.: Conceptualization, supervision, investigation, validation, mathematical analysis, writing 

the original draft, and formal analysis. D.A.H.: Investigation, validation, writing review, and editing. 

M.S.S.: Mathematical analysis, validation, formal analysis, writing review, and editing. E.A.M: 

Investigation, validation, formal analysis, and editing. I.M.: Investigation and validation. A.F.F.: 

Formal analysis, investigation, literature review, writing review, and editing. All authors have read 

and agreed to the published version of the manuscript. 

Use of Generative-AI tools declaration 

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this 

article. 

Acknowledgments 

The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this 

research work through the project number (PSAU/2025/01/34567). 

Conflict of interest 

The authors declare no conflicts of interest in this paper. 

References 

1. B. Øksendal, Stochastic differential equations: an introduction with applications, Springer, 2003. 

https://doi.org/10.1007/978-3-642-14394-6 

2. G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, 2 Eds., Cambridge 

University Press, 2014. 

3. L. Gorelick, M. Galun, E. Sharon, R. Basri, A. Brandt, Shape representation and classification 

using the poisson equation, IEEE Trans. Pattern Anal. Mach. Intell., 28 (2006), 1991–2005. 

https://doi.org/10.1109/TPAMI.2006.253 

4. A. Frckowiak, J. V. Wolfersdorf, M. Ciałkowski, Solution of the inverse heat conduction problem 

described by the Poisson equation for a cooled gas-turbine blade, Int. J. Heat Mass Transf., 54 

(2011), 1236–1243. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.001 

5. C. Dick, M. Rogowsky, R. Westermann, Solving the fluid pressure poisson equation using 

multigrid– evaluation and improvements, IEEE Trans. Vis. Comput. Graph., 22 (2016), 2480–

2492. https://doi.org/10.1109/TVCG.2015.2511734 

6. P. Koehl, Electrostatics calculations: latest methodological advances, Curr. Opin. Struct. Biol., 

16 (2006), 142–151. https://doi.org/10.1016/j.sbi.2006.03.001  

https://doi.org/10.1007/978-3-642-14394-6
https://doi.org/10.1109/TPAMI.2006.253
https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.001
https://doi.org/10.1109/TVCG.2015.2511734
https://doi.org/10.1016/j.sbi.2006.03.001


30160 

AIMS Mathematics  Volume 10, Issue 12, 30134–30161. 

7. A. G. Khattab, M. S. Semary, D. A. Hammad, A. F. Fareed, Exploring stochastic heat equations: 

a numerical analysis with fast discrete fourier transform techniques, Axioms, 13 (2024), 886. 

https://doi.org/10.3390/axioms13120886 

8. A. F. Fareed, A. G. Khattab, M. S. Semary, A novel stochastic ten non-polynomial cubic splines 

method for heat equations with noise term, Partial Differ. Equations Appl. Math., 10 (2024), 

100677. https://doi.org/10.1016/j.padiff.2024.100677 

9. D. A. Hammad, M. S. Semary, A. G. Khattab, Ten non-polynomial cubic splines for some classes 

of Fredholm integral equations, Ain Shams Eng. J., 13 (2022), 101666. 

https://doi.org/10.1016/j.asej.2021.101666 

10. D. Uma, H. Jafari, S. Raja Balachandar, S. G. Venkatesh, An approximation method for stochastic 

heat equation driven by white noise, Int. J. Appl. Comput. Math., 8 (2022), 274. 

https://doi.org/10.1007/s40819-022-01376-4 

11. A. Nouy, Recent developments in spectral stochastic methods for the numerical solution of 

stochastic partial differential equations, Arch. Comput. Methods Eng., 16 (2009), 251–285. 

https://doi.org/10.1007/s11831-009-9034-5 

12. R. Anton, D. Cohen, L. Quer-Sardanyons, A fully discrete approximation of the one-dimensional 

stochastic heat equation, IMA J. Numer. Anal., 40 (2020), 247–284. 

https://doi.org/10.1093/imanum/dry060 

13. Y. H. Youssri, M. M. Muttardi, A mingled tau-finite difference method for stochastic first-order 

partial differential equations, Int. J. Appl. Comput. Math., 9 (2023), 14. 

https://doi.org/10.1007/s40819-023-01489-4 

14. M. Gerencsér, I. Gyöngy, Finite difference schemes for stochastic partial differential equations in 

Sobolev spaces, Appl. Math. Optim., 72 (2015), 77–100. https://doi.org/10.1007/s00245-014-

9272-2 

15. I. Masti, K. Sayevand, On collocation-Galerkin method and fractional B-spline functions for a 

class of stochastic fractional integro-differential equations, Math. Comput. Simul., 216 (2024), 

263–287. https://doi.org/10.1016/j.matcom.2023.09.013 

16. A. F. Fareed, M. S. Semary, Stochastic improved Simpson for solving nonlinear fractional-order 

systems using product integration rules, Nonlinear Eng., 14 (2025), 20240070. 

https://doi.org/10.1515/nleng-2024-0070 

17. A. F. Fareed, E. A. Mohamed, M. Aly, M. S. Semary, A novel numerical method for stochastic 

conformable fractional differential systems, AIMS Math., 10 (2025), 7509–7525. 

https://doi.org/10.3934/math.2025345 

18. A. F. Fareed, E. A. Mohamed, A. Mokhtar, M. S. Semary, A novel fractional integral transform-

based homotopy perturbation method for some nonlinear differential systems, Fractal Fract., 9 

(2025), 212. https://doi.org/10.3390/fractalfract9040212 

19. F. Mirzaee, S. Rezaei, N. Samadyar, Numerical solution of two-dimensional stochastic time-

fractional Sine–Gordon equation on non-rectangular domains using finite difference and meshfree 

methods, Eng. Anal. Bound. Elem., 127 (2021), 53–63. 

https://doi.org/10.1016/j.enganabound.2021.03.009 

20. R. Sharma, Rajeev, A numerical approach based on Vieta–Fibonacci polynomials to solve 

fractional order advection–reaction diffusion problem, J. Anal., 33 (2025), 1251–1275. 

https://doi.org/10.1007/s41478-024-00804-6  

https://doi.org/10.3390/axioms13120886
https://doi.org/10.1016/j.padiff.2024.100677
https://doi.org/10.1016/j.asej.2021.101666
https://doi.org/10.1007/s40819-022-01376-4
https://doi.org/10.1007/s11831-009-9034-5
https://doi.org/10.1093/imanum/dry060
https://doi.org/10.1007/s40819-023-01489-4
https://doi.org/10.1007/s00245-014-9272-2
https://doi.org/10.1007/s00245-014-9272-2
https://doi.org/10.1016/j.matcom.2023.09.013
https://doi.org/10.1515/nleng-2024-0070
https://doi.org/10.3934/math.2025345
https://doi.org/10.3390/fractalfract9040212
https://doi.org/10.1016/j.enganabound.2021.03.009
https://doi.org/10.1007/s41478-024-00804-6


30161 

AIMS Mathematics  Volume 10, Issue 12, 30134–30161. 

21. A. Moumen, A. Mennouni, M. Bouye, A novel Vieta–Fibonacci projection method for solving a 

system of fractional integrodifferential equations, Mathematics, 11 (2023), 3985. 

https://doi.org/10.3390/math11183985 

22. S. M. Sivalingam, P. Kumar, V. Govindaraj, R. A. Qahiti, W. Hamali, Z. M. Mutum, An 

operational matrix approach with Vieta-Fibonacci polynomial for solving generalized Caputo 

fractal-fractional differential equations, Ain Shams Eng. J., 15 (2024), 102678. 

https://doi.org/10.1016/j.asej.2024.102678 

23. H. Azin, M. H. Heydari, F. Mohammadi, Vieta–Fibonacci wavelets: application in solving 

fractional pantograph equations, Math. Methods Appl. Sci., 45 (2022), 411–422. 

https://doi.org/10.1002/mma.7783 

24. K. Sadri, K. Hosseini, D. Baleanu, S. Salahshour, C. Park, Designing a matrix collocation method 

for fractional delay integro-differential equations with weakly singular kernels based on vieta–

fibonacci polynomials, Fractal Fract., 6 (2022), 2. https://doi.org/10.3390/fractalfract6010002 

25. P. Agarwal, A. A. El-Sayed, J. Tariboon, Vieta–Fibonacci operational matrices for spectral 

solutions of variable-order fractional integro-differential equations, J. Comput. Appl. Math., 382 

(2021), 113063. https://doi.org/10.1016/j.cam.2020.113063 

26. M. H. Heydari, Z. Avazzadeh, A. Atangana, Shifted Vieta-Fibonacci polynomials for the fractal-

fractional fifth-order KdV equation, Math. Methods Appl. Sci., 44 (2021), 6716–6730. 

https://doi.org/10.1002/mma.7219 

27. Z. Abbasi, M. Izadi, M. M. Hosseini, A highly accurate matrix method for solving a class of 

strongly nonlinear BVP arising in modeling of human shape corneal, Math. Methods Appl. Sci., 

46 (2023), 1511–1527. https://doi.org/10.1002/mma.8592 

28. K. Julien, M. Watson, Efficient multi-dimensional solution of PDEs using Chebyshev spectral 

methods, J. Comput. Phys., 228 (2009), 1480–1503. https://doi.org/10.1016/j.jcp.2008.10.043 

29. S. Oh, An efficient spectral method to solve multi-dimensional linear partial different equations 

using Chebyshev polynomials, Mathematics, 7 (2019), 90. https://doi.org/10.3390/math7010090 

©2025 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (https://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.3390/math11183985
https://doi.org/10.1016/j.asej.2024.102678
https://doi.org/10.1002/mma.7783
https://doi.org/10.3390/fractalfract6010002
https://doi.org/10.1016/j.cam.2020.113063
https://doi.org/10.1002/mma.7219
https://doi.org/10.1002/mma.8592
https://doi.org/10.1016/j.jcp.2008.10.043
https://doi.org/10.3390/math7010090

