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Abstract: In this paper, we introduced a novel numerical approach for solving stochastic heat
equations and multi-dimensional stochastic Poisson equations using shifted Vieta-Fibonacci
polynomials (SVFPs), marking their first application in stochastic differential equations. The proposed
method leveraged the orthogonality and recurrence properties of SVFPs to approximate solutions with
high precision. By normalizing the polynomial basis and their derivatives, the technique ensured
numerical stability and convergence, addressing challenges encountered in earlier implementations.
The method was rigorously validated through comparisons with the fast discrete Fourier transform
approach, other methods in the literature, and, where applicable, exact solutions, demonstrating
superior accuracy. Five illustrative problems were analyzed, with results showcasing significantly
reduced variance and absolute errors, particularly for higher-order approximations. The numerical
simulations, executed using Mathematica 12, highlighted the robustness of the SVFPs-based algorithm
in handling stochastic variability. This work not only extended the applicability of SVFPs to stochastic
domains but also provided a reliable framework for future research on fractional and nonlinear
stochastic systems.
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Abbreviations:

PDE:s: partial differential equations; SPDEs: stochastic partial differential equations; SHE: stochastic
heat equation; SPE: stochastic Poisson equation; BCs: boundary conditions; 2D: two dimensions; 3D:
three dimensions; VFPs: Vieta-Fibonacci polynomials: SVFPs: shifted Vieta-Fibonacci polynomials;
FDFT: fast discrete Fourier transform; TNPCS: ten non-polynomial cubic spline; QIMD: quasi-inverse
matrix diagonalization

1. Introduction

The mathematical modeling of physical phenomena is fundamental to advancement in science
and engineering, providing a framework to predict, optimize, and understand complex systems. Central
to this endeavor are partial differential equations (PDEs), among which the heat equation and the
Poisson equation stand as two of the most profound and universally applicable. The heat equation, a
cornerstone of mathematical physics, is a parabolic PDE that describes the distribution of heat (or any
diffusing quantity) in a region over time. Its deterministic form has been extensively studied due to its
broad applicability in fields such as thermodynamics, material science, and biological systems, where
it describes phenomena such as thermal conduction, diffusion processes, and chemical gradients [1].
Beyond these traditional domains, it has a pivotal role in cutting-edge fields, including quantum field
theory, turbulence, signal processing, and population dynamics [1,2].

The Poisson equation is a fundamental elliptic PDE that models how a field (e.g., potential,
temperature, and pressure) is influenced by distributed sources throughout a domain. It is widely
applicable in numerous disciplines [3-6], including electrostatics (computing the electrostatic potential
from charge distributions), magnetism (describing magnetic potential fields), mechanical engineering
(modeling stress, strain, and heat conduction problems), fluid dynamics (linking pressure and velocity
fields and describing potential flows), heat conduction (determining temperature distributions in
steady-state scenarios), astrophysics and gravity (describing gravitational potential from mass
distributions), and additive manufacturing (modeling heat conduction with moving sources, such as
laser heads).

The stochastic partial differential equations (SPDEs) are the mathematical framework that
combines the deterministic structure of PDEs with the randomness inherent in stochastic differential
equations. Generally, SPDEs involve randomness in one or more components, such as their
coefficients, initial or boundary conditions, driving forces such as a noise term, or the domain in which
they are defined. In our study, we emphasize SPDEs with a driving force associated with white noise
that influences the behavior of the solution.

However, real-world phenomena often involve inherent uncertainties due to external fluctuations,
measurement errors, or environmental noise. To account for these stochastic influences, the
deterministic heat and Poisson equations were extended to incorporate random terms, leading to the
stochastic heat equation (SHE) and the stochastic Poisson equation (SPE). Solving SPDEs presents
significant challenges due to the interplay between diffusion and noise. Unlike deterministic PDEs,
stochastic counterparts rarely admit closed-form solutions, necessitating the development of robust
numerical and analytical techniques. Advances in computational mathematics have introduced various
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methods to approximate solutions to such equations. Among these, the fast discrete Fourier transform
(FDFT) method [7] and the ten non-polynomial cubic spline (TNPCS) approach [8,9] have
demonstrated efficacy in handling stochastic terms. Other notable techniques include operational
matrices based on Legendre polynomials [10], spectral stochastic methods [11], the stochastic
exponential method [12], the finite element and Tau-finite difference approach[13,14], and the
Galerkin collocation hybrid method [15]. Additionally, specialized approaches such as the stochastic
improved Simpson [16], conformable fractional discrete Temimi—Ansari techniques [17], and integral
transform-based homotopy perturbation methods [18] have further enriched the toolkit for solving
stochastic differential systems. Additionally, the finite difference and the meshfree methods are used
to approximate the 2D stochastic time-fractional Sine—Gordon equation on the non-rectangular
domains [19].

In this work, we introduce a novel numerical approach based on shifted Vieta-Fibonacci
polynomials (SVFPs) to approximate solutions to the SHE and multi-dimensional SPE. Vieta-
Fibonacci polynomials (VFPs), named in honor of the mathematicians Frangis Viéte and Leonardo
Fibonacci, are a class of orthogonal polynomials with deep connections to Fibonacci sequences and
Chebyshev polynomials. VFPs have gained attention for their effectiveness in solving fractional-order
differential and integro-differential equations, including the fractional Korteweg-de Vries (KdV)
equation, advection-reaction-diffusion problems, and pantograph equations [20-26]. However, their
application to stochastic differential equations, particularly those involving white noise, remains
unexplored. This study bridges that gap by presenting the first systematic application of SVFPs to
stochastic heat equations, offering a new perspective on noise-driven PDEs. In this work, we present
a novel application of VFPs in the stochastic domain related to white noise analysis. This marks the
first exploration of VFPs in such a setting, presenting a notable challenge. Ultimately, we successfully
apply VFPs to the SHE, which takes the following forms as in [7,8]:

29(t,2) = o2 (%) + e = (6, x) + p (6, n(e), (L1)

29t %) = (0 + pn(D)) (L, ), (1.2)

Y(0,x) = g(x), Y(£,0) =9(t,a) =0, (t,x) €[0,T] x [a,b],
where o, €, and p are real constants, and (¢, x) is the unknown function. The system includes a
Gaussian-white-noise term n(t) = ,u%B(t), with zero expectation and variance p?, and B(t)

denotes the Brownian motion process, defined by the following characteristics: (i) It is a Gaussian
process, (ii) it exhibits independent increments, and (iii) t — B(t) is continuous with probability one.
Moreover, we applied VFPs to the muti-dimensional SPE defined as:

Vap(x) + pn(t) = f(x), x € [a,b]%, (1.3)

with zero boundary conditions: ¥ = 0, and the exact solution for p = 0 is: Y(x) = [[%, sin(2mx;,),
where V,; is the Laplacian operator, ¥(x) is the unknown function, and n(t) is the Gaussian-
white-noise. The parameter d stands for number of dimensions such that: d = 2 for 2D SPE, and
the vector x = (x1,x,) = (t,x) and d =3 for 3D Poisson equation, and the vector x =

(xll X2, x3) = (t, X, )’)
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The major contributions of this work are as follows:

. Derivation of a simplified first-order derivative operator for SVFPs, facilitating efficient
numerical implementation.

. Normalization of SVFP bases to enhance stability and convergence in stochastic settings.

. Development of a novel SVFP-based algorithm for solving SHE and SPE, incorporating
white noise representation via SVFPs instead of traditional finite difference schemes [7,8].

. Validation through comparative analysis, demonstrating superior accuracy and

computational efficiency over existing methods such as FDFT [7] and TNPCS [8].

The remainder of this paper is organized as follows: In Section 2, we introduce the mathematical
foundations of SVFPs, including their recurrence relations, orthogonality properties, and derivative
operators. In Section 3, we detail the numerical implementation of SVFPs for SHE and SPE,
addressing challenges such as noise discretization and system normalization. In Section 4, we present
numerical experiments, comparing the proposed method with benchmark techniques and analyzing
error convergence. Finally, in Section 5, we conclude with a discussion of the method’s broader
implications and potential extensions to higher-dimensional and nonlinear stochastic systems.

This research not only advances the theoretical understanding of orthogonal polynomial methods
in stochastic settings but also provides a computationally efficient framework for practical applications.

2. Theoretical foundations: shifted Vieta-Fibonacci polynomials in stochastic domains

Here, we define the VFPs and their shifted counterparts (SVFPs), highlighting their orthogonality
properties and recurrence relations. We derive their connection to Chebyshev polynomials and
establish the groundwork for their application in stochastic settings. Key focus areas include the
explicit forms of SVFPs, weight functions, and their adaptation to bounded domains.

The VFPs denoted by F,(x) are one of the orthogonal functions that may be defined as [20-27]:

__sin(£o)
Fe(x) = 0y (2.1)

where ¢ = cos™?! (E), p €0,], x €[-2,2],and £ =0,1,2,..., M,. Their recurrence relation is:

Fo(x) = xFp_1(x) = Fp_p(x), £ =2, (2.2)
where Fy(x) =0, and F;(x) = 1. Moreover, VFPs can be defined as a function of Chebyshev

polynomials of the second kind (U,(x)) as:

Fo) =Upa (3). €21, (23)

where Uy(x) =1, U;(x) = 2x,and for n = 2, U,(x) = 2x Up,_1(x) — U,_,(x).
VFPs explicit formula is:

Fox) = th_lj(—l)k (S xt 2t p 21, (2.4)

k=0 k! (£=2k—1)!

£-1 :
where [TJ represents the floor function.
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VEFEPs are orthogonal over interval [—2,2] and their orthogonality condition is:

2w, £ =m,

(Fo (), Frn () = [, Fo()Fn (D (x)dx = (27)8pn = { 0, ¢+m,

(2.5)

where w(x) = V4 — x? represents the weight function of VFPs.
SVFPs denoted by F,(x) represent VEPs over x € [a, b] using a linear transformation: ¥ =

(l:—a) [2x — (a + b)]. The recurrence relation of SVFPs is defined as:

Fo(x) =0, F1(x) =1,

Fo(x) = (32=) [2x = (@ + D) Fpos (1) — Fop(x), £2 2. (2.6)

Additionally, SVFPs are orthogonal with the weight function @(x) = \/ (b — x)(x — a), defined as:

(Fo (), Fn()ey = J FrO)Fm (D) dx = 5 (b — @)y, = {@ b=af f=m 3
0, £ #= m.

This part presents a streamlined derivation of first- and higher-order derivative operators for SVFPs,
expressed in matrix form for computational efficiency. We demonstrate how these operators enable
efficient discretization of spatial derivatives, contrasting them with traditional finite-difference
approximations. The first-order derivative of SVFPs is derived and implemented in a novel, simplified
form to facilitate efficient application to enabling efficient application to the SHE, SPE, and other
related problems. Its implicit formula is defined as:

{
~ 4 = ~
D™ (Tf(x)) = (m) Z,lfil({’ =2k + DF; pp41(x), £=1,2,3,..,M,, (2.8)
alternatively, in matrix form, it is expressed as:
~ 4 ~
o0 (7) = () i 29
where m =0,1,2,..., M, — 1, i =1,23,..,M,,

F= [jf'1(x),j':2(x),j':3(x), ---'ﬁMx—l(x)'ﬁMx(x)]Ta

0, m=0,
and Dr(nlz ={i,m#0Ai<mA(m—i) iseven,
0, otherwise.

The second-order derivative of SVFPs is derived by applying the first-order derivative operator
twice and is expressed as:

D@ (g?'{,(x)) — p x p® (g?'{,(x)) - (1:7)2 (Dfrj,)i X Df,f{)f (2.10)

In general, the k"-order derivative of SVFPs is given as:
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3 3 k _
NG (?f(x)) — DD pWx  xp® (T{;(x)) = (ﬁ) (D}j}i X DS X .. X D,%%):F. (2.11)

k times

k times

For M, = 10, the first-order and second-order derivative operators of SVFPs are numerically
expressed as:

0 0 0 00 0O O 0 0 O
100 00 0O0O0UO O
02000O0UO0TU0O0O0
103 00000 UO0 O
D(D:(L)OZO4000000
b-a/|1 0 3 0 5 0 0 0 0 of
0204060000
103 0507 000
0204060800
1 0 305 0 7 0 9 o
and
0 0 0 0O 0 O 0O 0 00
0 0 0 0 0 O O 0 0O
2 0 0 0 0 0O O 0 0O
0 6 0 0 0 0O O 0 0O
D(2)=(L)z 6 0 12 0 0 0 0 0 0 O
b-aJ {0 16 0 20 0 0 O O O O
12 0 30 0 30 0 0 0 0 O
0 30 0 48 0 42 0 0 0 O
20 0 54 0 70 0 5 0 0 O
L) 48 0 84 0 9 0 72 0 O

The proof of L, convergence of the SVFPS as in [27] can be summarized as following:
For x € [0, 1], assume a given function, ¥(x) € L4][0, 1], is defined as:

P(x) = Rt Fn(vy = F()V,
where J is the number of subintervals in the given domain, @ denotes the weight of SVFPs, L?

represents L, -norm, F(x) = [fl(x),fz(x),f3(x),...,f](x),fjﬂ(x)]T, and V is a vector of
unknowns given as: V = [vl,vz,vg, e, V), v]+1]T.

Moreover, consider V; = Span(F, (x), F,(x), F3(x), ..., Fj+1(x)) and denote the space
spanned by the SVFPs bases.

Theorem 1. [27] Let assume that ) € C/[0,1] and P;(x) denotes the interpolating function of
at | Chebyshev points in interval [0, 1], Then, for every x € [0,1], we have

My, _
lw(x) — P(x)| < DY My, ; = maxge[o )| (&)].

Theorem 2. [27] Suppose that P € C'*1[0,1] N L5[0,1]. If ¥;(x) = F;(x)V denotes the best

approximation of P (x) out of V;, we have
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tim [l =, = 0

Proof of Theorem 2.

@) -, @I; < e - B, = f [(x) - P ()| B(x)dx
0

=y (i) 90x = (qartiyy) Jy aax = (i) ()

Hence,

o) — I, < (o) J; tim [l = ], = 0.

3. Methodology: a spectral approach to stochastic heat and muti-dimensional stochastic
Poisson equations

3.1. Discretizing functions and noise with SVFPs

We propose a novel technique to represent functions and white noise using SVFP expansions,
eliminating the need for finite-difference-based noise discretization. The Brownian motion process is
approximated via SVFP series, and its derivative (white noise) is analytically computed using the
derived SVFP differentiation matrices.

The SVFPs can be utilized to approximate the functions ¥(t,x) and Y (t,x,y) as follows:

Pt x) = Xpey Tt B (O Fn (O v, 3.1)
Y6, x,y) = Tt St s e (O o (O F 0 (3) Unimes (3.2)
or, in matrix-form
Y(t,x) = (ff (t;)®F (xl-)) v, (3.3)
w(tyxv) = (F(5)®F ) ®F (3) ) V. (3.4)

where F,(t), F,,(x),and F,(y) are SVFPS, Uy, and v, are the unknown coefficients,
~ ~ ~ ~ ~ ~ T
Ft) = [F1(4). Fa (), Fa(6), . P, (), Fua ()]
jf'(xi) = [jf'l(xi)ﬁjf'z(xi)'ﬁ?;(xi)' ""jf'Mx(xi)'jf'Mx+1(xi)]Ta

Fow) = [Fr 00 Fo 010, Fs 0 e Faty 00, Faty 1 00|
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V= [U1,1'U1,2' U1,3r =y UL Me+ 1 V2,10 =0 U2 My 410 =+ UM 41,10 o) UMt+1,Mx+1] 5

for two variables, and

T
V= [v1,1,1»U1,1,2: oV My+ 1 VL2, 10 = VL2, My+ 1 - VL M+ 1,1 -+ VLM +1,My,+ 1 V2,110 ---rUMt+1,Mx+1,My+1] >

for three variables, and the symbol @ represents the Kronecker-product of two matrices. If A,,xn
matrix and B, matrix, then A®B isthe (pm X qn) matrix:

a;1B - aiu,B
A®B = . :

amiB - amnB
The partial derivatives of ¥(t,x) w.rt x and t are defined by:

9a+p
ot40x?

Wit x) = Yt M"“T(‘”(t)}"("p)(x)vn (D(@)f(tj)®p(ﬁ)f'(xi))v. (3.5)

n=0

Moreover, the partial derivatives of Y (t,x,y) w.rt x, y, and t are defined by:

Mi+1 My+1 My+1

ﬂ — (@) @) (@)
ot40x?oy" Wit x) = nz(:) mzl Z FVY OFT OF," ) nme
- (D(%)f'(tj)®]_)(W)f:'(xi)®D(r)j:"(yk))_ (3.6)

Additionally, the Brownian motion process B(t) and the white noise n(t) should be defined using
SVFPs. To achieve this in the stochastic setting, the Brownian motion B(t) is projected onto the SVFP
basis to obtain a finite-dimensional surrogate suitable for spectral computation. Specifically, B(t) is
approximated by

B(6) = Znty Fa(6)by,
B(t;) =F(¢)8, j = 0,12, .., M,,
% = [#(1)]"B(t). (3.7)

) T
where b, represents the unknown coefficients, B = [bl,bz,b3, Y 1] and B(t) values are
obtained from a built-in function in Mathematica software.

Since n(t) = M%B(t), then

n(t) = u it DOFE, ()b, (3.8)
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Hence, using the vector 8B obtained by Eq (3.5), we can calculate the vector of IV, which represents
the white-noise values at each level j > 0 as follows:

n(t;) = u[DVF(t)]B = N,,. (3.9)

This strategy mirrors standard spectral stochastic techniques, such as Fourier-based and polynomial-
chaos representations, where the derivative of the projection, not the true Brownian path, is used for
numerical approximation. Despite the inherently rough nature of Brownian motion, this projection-
based formulation provides a stable and accurate stochastic forcing term for the SVFP solver.
3.2. Applying spectral approach to stochastic heat equations

The proposed technique can be applied to the SHE by substituting Eqgs (3.3), (3.5), and (3.9) to
SHE equations (1.1) and (1.2) at the point (tj, xl-) as follows:

- (D(l)f'(tj)@)f'(xi)) V+o (:ﬁ(tj)@oD(Z):ﬁ(xi)) v

+e (f'(t})@l)(l)f'(xi))v + p(IV,,) * (f’(t])®f'(xl)) V=0, (3.10)
and
— (DWF(;)®F (x)) V + (o) (F(t;)@DDF(x)) ) V + p(V,,.) * (F(t;)®DDF(x) ) V = [0]. (3.11)

Computing Eqs (3.10) and (3.11) for interior-grid point for j = 1,2,3,...,M; and i = 1,2,3,..., M, —
1,

[— ([Tt]z Me+1- DWR[E,]o.m ) + 0( Felom,+1®IF, ]z:Mx.D(Z))

+e([Felom+1®[Fed 2, D) + p(V) © ([Felzm,+1®[Felon, )]V = [0], (3.12)

and

= ([Tt]z M+ DWRIE],. My ) + (0)( [Fela: me+1®[F, ]z:Mx-D(Z))
+p (Vo) © ([Felzm+1®1F 2, DP)IV = [0] (3.13)

where [g] represents a zero vector, the symbol o denotes the Hadamard-product and [F,],. Mp+15
[F]2.m, are submatrices of Fy and F. [F,lp, is a submatrix of rows 2: M, and all columns of

F,, the same for [F;lz.p,+1.
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jf‘l (x0) fz (x0)
F = 7?1(‘951) 7?2('351)

|7, () Falian,)

and

Fite)  Falto)
F, = Fit)  Fr(ty)

(7, (t) ()

f‘Mx(xo) jf'Mx+1(xO)
f‘Mx(xl) jf'Mx+1(x1)

9

F Mx(:xMx) F Mx+1:(xMx)J

- - T
Fu,(to)  Fupe1(to)

f'Mt(tl) jf'Mt+1(t1)

F Mt(;Mt) F Mt+1(tMt)J

Applying the initial and boundary conditions (BCs) as follows:
1) ¥(0,x,) = (ﬁ(0)®ﬁ(xi))v = g(x,), (initial condition)

([ﬁth@ﬁx)v = [g(xo)»g(x1): ---:g(xMx)]T,

2) ¥(t;,a) = (F(t;)®F(0))V = 0, (left BCs)

(ﬁt®[~‘j§x]1)v = [9],

3) ¥(t;,b) = (F(t;)®F () V = 0, (right BCs)

(ﬁt®[ﬁx]Mx+1)v = [Q]

3.3. Applying spectral approach to multi-dimensional stochastic poisson equations

(3.14)

(3.15)

(3.16)

The proposed technique can be applied to the 2D and 3D stochastic poisson equations by

substituting Eqs (3.2) and (3.3) to the Poisson equation (1.3) for d = 2 at the point (tj, xl-) and for

d = 3 at the point (tj,xl-,yk) as follows:

(DDF()®F (x))V + (F(£)®DDF(x) ) V + p(N,,) = f(tj,x;). for d = 2.

(DPF(5)BF ()®F (1)) V + (F(4)®DPF(x)BF (7)) v

+ (ﬁ(tj)®f(xi)®D(2)jf(yk))V +p(INV,) = f(tj,xi,yk), for d = 3.

AIMS Mathematics

(3.17)

(3.18)
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Computing Eqs (3.17) and (3.18) at interior-grid point for j =1:M; — 1, i=1:M, —1 and k =
1:M, -1
y s

[([jf't]Z:Mt' D(2)®[j§x]2:Mx) + ([jf't]Z:Mt®[jf'x]2:Mx' D(Z))]V

= [[#lim ") — (V)] for d =2, (3.19)

1X(Mp—1)(My—1)’

[([g?t]z:Mt_ D(z)®[fx]2:Mx®[ﬂ?"y]2:My) + ([ft]z:Mt®[fx]2;Mx. D(2)®[T~y]2:My>
+ ([P e ®F L BIF, ], -0 )|V

= (A1 1y — POV ford=3, (3.0

1 (Mp=1) (My—1)(My—1)”

where [#]1%;:11 =f (tj,xi), and [)ﬁ]iiﬁizll;lmy_l =f (tj, X, yk) are given column vectors.

Applying the BCs as follows:
e For 2D Poisson equation (4 BCs):

([F1,®F,)V = [0], for t = a, (3.21)
([Felm,+1®F)V = [0], for t = b, (3.22)
(F:®[F.]1)V = [0], for x = a, (3.23)
(Fe®[Flm,+1)V = [O]for x = b. (3.24)

e For 3D Poisson equation (6 BCs):

([F 1, ®F.QF,)V = [0]for t = a, (3.25)
([Felm,+1®FQF,)V = [0], for t = b, (3.26)
(F:®[F.1,®F,)V = [0], for x =a, (3.27)
(Fe®[F ], +1®F,)V = [O]for x = b, (3.28)
(7.0%8[7,],)v=[0].for y=a, (3.29)

AIMS Mathematics Volume 10, Issue 12, 30134-30161.
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(:ﬁt®ﬁx®[@]My+l)v = [0], for y = b. (3.30)

3.4. Normalization matters: stabilizing solutions via orthonormal bases

In this part, we address the initial divergence issues encountered with raw SVFPs and introduce
a normalization strategy to ensure stability. We redefine the basis functions and their derivatives in
orthonormal form, significantly improving convergence and accuracy in stochastic simulations.

For the SHE, we solve the system of linear Eqs (3.12)—(3.16), which consists of
(M, + 1)(M; + 1) equations with (M, + 1)(M; + 1) unknowns to get the values of the vector V,
and then substitute this into Eq (3.1) to get the numerical solutions of the SHE at all of the grid points.
However, the resulting solutions are diverging. After many attempts, we successfully adddress this
issue and achieve convergence by normalizing all vectors in the system. Assume the new orthonormal
vectors are defined as:

@, =f—0 DD, = D(:" D@, = D(Z)ZT @, =Z—2
PO, = D(j'f t p@g, = D(Zi"f £ o, = % and D@, DZ? (3.31)
where
Loo = |Ell, Loa = (DD E], Ly, =@ - E|,
Ly =[DD-Fell, Lyo = [1Fyll. Ly = DD - Fe,
and the symbol ||.|| represents the infinity norm.

Applying these orthonormal vectors to the stochastic heat system of Eqs (3.12)—(3.16), we get

[(£e1) ([l DO)B®L s, ) + (0% L22) (19 Lorge 18[00, DP))

+(5 X Ly, 1)( (D] 2Mt+1®( 2Mx D(l))) + p(WVy) © ( [P] 2Mt+1®[ ]2:Mx)]v = [9]9(3-32)

or

~(£e1) ([q)f]Z:Mt“' (DDR[®,]om )) + (0 X Ly) ( (@201, 41 ([P ) 200, D(Z)))

+(p X L1 2) M) o ([0 ]2, 1@ ([@1 ]z, DP) )1V = [0], (333)

with the initial and boundary conditions:
T
([2¢:®P,)V = [g(x0), g(x1), .., g (xm,)] (3.34)

(¢, ®[@,])V =[0], (3.35)
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and

(2 ®[P,]u,+1)V = [O] (3.36)
We determine the values of the vector V by solving the updated system of Eq (3.32) or Eq (3.33) with
Eqgs (3.34)—(3.36), and then use Eq (3.1) to get the proposed numerical solutions for the SHEs.

By the same manner for the SPEs, applying these orthonormal vectors to:
e Use the 2D Poisson system of Eqgs (3.19) and (3.21)—(3.24), and we get

[(£e2)([@el2m,: D(2)®[q)x]2:Mx) + (L22) ([P ]2, Bl P 2] 22, D@y

_ 1:Mp—1
= [[#lim=s = PV, (3.37)
([q)«t']1®q)x)v = [Q]a for t = a, (338)
([®ely 4199, )V = [0], for ¢ = b, (3.39)
(@, 8[P,],)V = [0], for x = a, (3.40)
(0,Q[P,lum,+1)V = [0], for x = b. (3.41)
e To use the 3D Poisson system of Eqgs (3.20) and (3.25)—(3.30), and we get
[(Lt"z) ([q)t]z:Mt'D(2)®[®W]Z:Mx®[q)%]2:My) + (Lx'z) <[¢t]2:Mt®[¢x]2:M"'D(2)®[q)y‘]2:My>

+(£42) ([0 @0 L20, 810, ], D) |V

= [ s — POV)] ety (3.42)
([0:]1,92,8P,)V = [0], for t = a, (3.43)
([Pe]y,+1@P.®D,)V = [0], for t = b, (3.44)
(0,Q[,],99,)V =[0], for x = a, (3.45)
(0,Q[P, ], +:19P,)V = [0], for x = b, (3.46)
(¢.®@0,8[@,] )V =[0]. for y =a, (3.47)
(‘Dt®q’x®[%]My+1>V = [0], for y = b. (3.48)

We determine the values of the vector V by solving the updated linear system of Egs (3.37)—(3.41)
or Eqgs (3.42)—(3.48) using matrix inversion or any other linear solver, and then use Eq (3.1) or Eq (3.2)
to get the proposed numerical solutions for the 2D and 3D stochastic Poisson equations.
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Finally, to handle the given stochastic equations, we need to utilize a variety of samples
(X =1,2,3,...) of the Brownian motion (or, Wiener) process. Then, we solve this linear system for
K =1 and redo the same procedure for K = 2,3,4,.... Hence, we get the solution-sequences

{zp}’j,zpf'j,wf”j, zpf“]} Subsequently, we calculate the mean and variance of the resulting solutions to

analyze the approximate solutions of the proposed stochastic Eqgs (1.1)—(1.3).
The solution steps algorithm can be summarized as follows:

Step 1) Define all required parameters:
e Set grid sizes: My, M; and M,;

e Set domain limits: a, b, and T;

e Define grid nodes: x;, t;, and yy;

e  Set the number of Monte-Carlo runs: Kyns;
e Set the SPDE constants: o, ¢, and p;
e Set the SPDEs initial and boundary conditions.

Step 2) Generate basis functions (SVFPs):
e Initialize SVFPs basis functions and their derivatives: F (tj), F(x), Flvy), DDF (tj),

DPF(x,),and DM F(y,), as defined in Egs (2.6)—~(2.10);
e Compute the basis functions and their derivatives on the grid points: F,, DVF,, DPF,, F,,

DWF,, D@D, F, and DDF,, as defined in Eqs (3.12)~(3.30);
e Normalize the basis functions and their derivatives on the grid points: @, pWVao,, DPo,, o,

DWa,, D@, &, and D@, as defined in Eq (3.31).

Step 3) Generate noise realizations:

e Generate X -paths of the Wiener Process on the time grid,

e Discretizing it with an equal step in time to get its value at each node j in time space;

e Generate the B(t) matrix and used it to get the vector of white noise V,,, as illustrated in
Eqgs (3.7)-(3.9).

Step 4) Precompute system matrices:
e Construct the system matrices using Kronecker products of the basis function and their derivatives

submatrices for the interior points: [®,]lop, » D[P, om, » DP®[P,lom, » [Pelom, »

DOR[D ]z, DP B[P Lo, [Py], ,, »and DP®[D,] ., as defined in Egs (3.32)(3.48),
e Set up storage array to hold the solution vector for each XK.

Step 5) Monte Carlo simulation loop:

» For X =1 to Kpyns;

e  Generate the white noise vector NV, for the current K;

e  Set the vector of unknown spectral coefficients;

e  Formulate all matrices which represent the solution function and its derivatives using the required
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Kronecker products of the defined matrices given in previous step;

e  Formulate a set of linear algebraic equations at the interior grid points;

e Formulate a set of linear algebraic equations from the initial and boundary conditions;

e Combine the interior equations, initial equations and boundary equations, and solve it using
matrix inversion to get the vector V;

e  Then, compute the full solution using Eq (3.1) or Eq (3.2);

e  Store the current solution in the results array.

» End For loop.

Step 6) Computing the statistics:

. . X
e  The numerical solutions across all Hpyns: Y& = {¢§j,¢§j, (VLSRR jruns};

e (Calculate the Mean and Variance of the reconstructed solutions as follows:

1 :Kruns
Ymean = o Ygnums 430, (3.49)
1 j(‘runs 2
Yyar = Kruns Zg(:l l/}(x) - l/}mean) . (3.50)
4, Results

We validate the proposed method through numerical experiments on four benchmark problems
for SHE and one benchmark problem for SPE, comparing absolute errors and convergence rates with
the FDFT [7], TNPCS [8], Tau [28], Galerkin [28], and Quasi-Inverse Matrix Diagonalization (QIMD) [29]
approaches. Tables and contour plots illustrate the superior precision of SVFPs, particularly for problems with
exact solutions.

We set the spatial and temporal discretization parameters to M = 16 and employ 2000 samples
of the Brownian motion B(t). The mean of the solutions and the variance under the influence of noise
for four SHEs are illustrated and visualized in Figures 1-4. For the multi-dimensional SPE, we
configure discretization parameters to M = 16 across all dimensions, yielding high-accuracy
solutions. The results are shown in Figures 5 and 6 and are detailed in Tables 3 and 4.

The visual representations highlight the robustness of our orthonormal SVFPs method in
effectively addressing and managing stochastic variability. Using Monte Carlo samples of Brownian
motion, we analyze the variance of SVFP solutions against competing methods. Our results
demonstrate that SVFPs achieve orders-of-magnitude lower variance, highlighting their robustness to
stochastic fluctuations.

Tables 14 present a quantitative comparison of absolute errors obtained via the FDFT method,
literature approaches, and our approach. These tables redemonstrate that our proposed method reduces
computational time and resource requirements with a high-level of accuracy.

In [7], the authors demonstrated that the solutions obtained using the FDFT method are more
reliable than those derived from the stochastic TNPCS approach [8]. In this work, we compare the
proposed approach, based on SVFPs, with the FDFT method. The results show that the proposed
approach achieves greater reliability and efficiency, as evidenced by the lower variance in the solutions
compared to those obtained by the FDFT method.

By increasing the number of samples of the noise term, our SVFPs approach demonstrates
unwavering reliability, consistently yielding robust results across all analyzed problems. All
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computations are executed by Mathematica 12 software, ensuring an environment of reliability for our

analysis.
Table 1. The absolute errors of problem (3) at t = 1.
Errors by SVFPs Errors by FDFT [7]
X Exact p=0 p =001 p=0
0.125 0.140781367244039 5.254 x 10712 1.767 x 10710 1.173 x 107
0.250 0.260130047511444 4458 x 10712 3.262 x 10710 2.167 x 107°
0.375 0.339876286129985 7.198 x 10~12 4262 x 10710 2.832x107°
0.500 0.36787944117144 7.559 x 10~12 4613 x 10710 3.066 x 107°
0.625 0.339876286129985 7.198 x 10~12 4262 x 10710 2.832x107°
0.750 0.260130047511444 5.254 x 10712 3.262 x 10710 2.167 x 107°
0.875 0.140781367244039 4458 x 10712 1.767 x 10710 1.173 x 107
1.000 0 0 0 0
Table 2. The absolute errors of problem (4) at t = 1.
Errors by SVFPs Errors by FDFT [7]
X Exact
p=0 p = 0.01 p=0
0.125 0.095696496510411 1.025 x 107° 4,965 x 107° 1.173 x 107°
0.250 0.135335283236612 8.991 x 1010 6.476 x 107° 2.167 x 107°
0.375 0.095696496510411 5.038 x 10710 4,447 x 107° 2.832x107°
0.500 0 0 0 3.066 x 107°
0.625 —0.095696496510411 5.038 x 10710 4.447 x 107° 2.832x107°
0.750 —0.135335283236612 8.991 x 1010 6.476 x 107° 2.167 x 107°
0.875  —0.095696496510411 1.025 x 107° 4965 x 107° 1.173 x 107
1.000 0 0 0 0
Table 3. The maximum absolute errors of problem (5) related to 2D and 3D SPE.
Method M Emax (2D) Emax (3D)
16 5.75 x 1074 3.33x107*
SVFPs 15 15
32 1.39 x 10 1.28 X 10
16 41x 1075 41x 1075
FDFT [7] 7 0_6 7 0_6
32 1.12x 10 1.12 x 10
16 1.45x 107° 1.34 x 107°
Tau [28] o o
32 1.55 %X 10 4.62 x 10
Galerkin [28] 16 6.37 x 107° 8.32x107°
32 1.41 x 10715 9.2x 10715
Table 4. The relative L2-norm errors of problem (5) related to 2D and 3D SPE.
Method M RL, error (2D) RL; error (3D)
16 471 x107* 2.28x107*
SVEPs 32 1.18 x 1015 1..12 x 10715
16 7.40 X 1075 7.40 X 1075
FDFT[7] 32 1.13 x 107° 1.13 x 107°
16 1.75x 107° 2.83x 1077
QIMD [29] 32 1.43 x 10715 3.62 X 10715
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Problem (1). Recognize the initial-boundary value problem [8].

2 (t,x) = 0.01 2538, x) + 0.01Z1(t, %) — 0.02h(t, X)n (),

l/)(o'x) = xZ(l - X)Z, X € [0' 1]’
Y(t,0) =y(t,1) =0, t €[0,0.3].
Problem (2). Consider the stochastic PDE [8].

2(t,x) = Z5p(t,x) — 0.01 (8, x) n(o),

Y (0,x) = sin(mx), x € [0, 1],
Y(t,0) =y(t,1) =0, t €[0,0.3].

The mean results, its contour plots, and the variance for problems (1) and (2) are obtained using the
SVFP approach and visualized in Figures 1 and 2. The SVFP method achieves a variance of solutions
in the order of 0(10711) in problem (1), and 0(107%) in problem (2), demonstrating superior
accuracy compared to the solutions obtained via FDFT.

Problem (3). Recognize the linear stochastic equation [7,8].

%lp(t, x) = (% +0.01 n(t))aa—;lli(t. x),

Y (0,x) = sin(mx), x € [0, 1],
Y(t,0) =yt 1)=0,te0,1],
and the exact solution for f = 0 is: Y(t,x) = e~ ¢ sin(mx).

Problem (4). Let the stochastic equation [7,8].

%tp(t, x) = (# +0.01 n(t)) aa—;t/z(t, x),

Y(t,0) = sin(2mx), x € [0,1],
Y(t,0)=y(t1)=0, te[0,1],

and the exact solution for f = 0 is: Y (t,x) = e 2t sin(2mx).

The solution and absolute errors for problems (3) and (4), with noise term coefficients p = 0
and p = 0.01, are presented in Tables 1 and 2, confirming the high accuracy of our approach.
Additionally, the mean results, its contour plots, and the variance for these problems, are visualized in
Figures 3 and 4. This method achieves a variance of solutions in the order of 0(1071%) in problem (3),
and 0(1071) in problem (4), significantly outperforming the FDFT method, as evidenced by the
comparative results shown in the figures.

Problem (5). Consider the muti-dimensional SPE (1.3) with [a, b] = [—1,1] and in the absence of
noise, f(x) = —d(4m?) [1%, sin(2mx;).
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In Tables 3 and 4, the accuracy of the solutions is evaluated using SVFPs, FDFT [8], Tau [28],
Galerkin [28], and QIMD [29] methods for p = 0, M = 16, and 32. To assess the accuracy of the
proposed numerical scheme, we compute the maximum absolute error, which quantifies the largest
pointwise deviation between the numerical approximation and the exact solution. It is defined as:

Enax = maxillpexact(ti) - lpnum(ti)l-

Additionally, we compute the relative L2-norm error, which is defined as: RL,Error =

lunumerical—Uexactll2

ltexactll2

These metrics provide a clear measure of the method’s performance across the computational
domain, and they are used in the tables to compare the accuracy of the schemes.

Furthermore, for p = 0.01, the mean and variance of solutions for 2D and 3D SPEs across
different values of y are presented in Figures 5 and 6. These results validate the effectiveness of the
proposed technique in multi-dimensional stochastic domains.
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Figure 1. Spatial profile of the mean field and variance field for the solution of the
stochastic heat equation (Problem 1), with stochastic forcing intensity p = 0.01: (a) mean
field and its contour plot, and the variance field given by (b) SVFPs and (¢) FDFT.
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Figure 2. Spatial profile of the mean field and variance field for the solution of the
stochastic heat equation (Problem 2), with stochastic forcing intensity p = 0.01: (a) mean
field and its contour plot, and the variance field given by (b) SVFPs and (¢) FDFT.
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Figure 3. Spatial profile of the mean field and variance field for the solution of the
stochastic heat equation (Problem 3), with stochastic forcing intensity p = 0.01: (a) exact

solution (p = 0), (b) mean field and its contour plot, and the variance field given by (c)
SVFPs and (d) FDFT.
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Figure 4. Spatial profile of the mean field and variance field for the solution of the
stochastic heat equation (Problem 4), with stochastic forcing intensity p = 0.01: (a) exact

solution (p = 0), (b) mean field and its contour plot, and the variance field given by (c)
SVFPs and (d) FDFT.
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Figure 5. The numerical simulation of the 2D deterministic Poisson equation (Problem 5):
(a) approximated solution and its contour plot and (b) absolute error of the solutions, and
the spatial profile of the mean field and variance field of its stochastic version with a
stochastic forcing intensity p = 0.01: (¢) mean field and its contour plot and (d) variance
field given by SVFPs.
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Figure 6. Spatial profile of the mean field and variance field for the solution of the three-
dimensional stochastic Poisson equation (Problem 5) at different values of the spatial
coordinate y, with stochastic forcing intensity p = 0.01. The mean field represents the
expected solution, while the variance quantifies the uncertainty around this mean due to
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5. Discussion and conclusions
5.1. Discussion

The numerical experiments conducted in this study reveal several important insights about the
behavior and performance of SVFPs in solving stochastic equations. Three key findings emerge from
the analysis that warrant careful consideration.

First, the spectral convergence properties of SVFPs demonstrate clear advantages over traditional
finite difference methods. As shown in Tables 2-5, the SVFP approach achieves significantly smaller
absolute errors compared to FDFT, TNPCS, Tau, Galerkin, and QIMD methods across all test cases.
This superior accuracy can be attributed to the inherent properties of orthogonal polynomial
expansions, which provide exponential convergence rates for smooth solutions. The normalization
procedure developed in Section 3.2 proves particularly effective in maintaining this high accuracy
while preventing the ill-conditioning issues that often plague high-order polynomial methods.

Second, the variance analysis presented in Figures 1-6 reveals the method's robustness in
handling stochastic perturbations. The SVFP solutions exhibit consistently lower variance compared
to FDFT results, suggesting greater stability in the presence of noise. This improved performance stems
from the method's ability to represent the stochastic terms through orthogonal expansions rather than
finite difference approximations, thereby reducing spurious oscillations and numerical artifacts.

However, several practical considerations must be noted regarding computational implementation.
While the SVFP method requires more extensive pre-processing for matrix assembly compared to
finite difference schemes, this initial investment pays dividends in long-time simulations. The method's
memory requirements grow quadratically with the number of basis functions, which may limit its
immediate some application to very high-order muti-dimensional problems. In future work,
researchers could explore sparse implementations or adaptive basis selection to mitigate these scaling
challenges.

This study leaves open several promising directions for future research. Extending the method to
nonlinear stochastic PDEs would require developing appropriate linearization techniques while
preserving the favorable convergence properties. Additionally, investigating time-adaptive versions of
the algorithm could further improve computational efficiency for problems with multiple temporal
scales. The potential combination of SVFPs with reduced-order modeling techniques presents another
interesting avenue for handling multi-dimensional stochastic systems.

The numerical outcomes provide a direct physical interpretation of stochastic diffusion processes.
The obtained mean solution represents the expected field, such as the average temperature distribution
in a stochastic heat transfer problem, while the computed variance quantifies the spatial map of
uncertainty around this mean arising from random forcing or material fluctuations. The observed decay
and smooth distribution of variance with increased resolution reflect a fundamental property of
diffusive systems: The natural damping of high-frequency stochastic noise, leading to more predictable
macroscopic behavior. This characterization of uncertainty is vital for risk-aware engineering as
regions of concentrated variance highlight system sensitivities critical for robust design and reliability
analysis.

While the numerical results demonstrate the high accuracy and stability of the SVFPs method for
SPDEs, we evaluate the combined error from the spectral discretization and Monte Carlo sampling. A
formal convergence analysis separating these error components, along with a detailed study of
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convergence rates in polynomial degree and number of stochastic trajectories, represents a valuable
direction for future research. Such a study would provide further theoretical underpinning and is
planned as a separate, detailed investigation.

These results collectively suggest that SVFPs offer a viable alternative to numerical methods for
stochastic PDEs, particularly in scenarios where high accuracy and noise robustness are prioritized.
The method's strong theoretical foundation and promising numerical performance establishes it as a
valuable addition to the computational mathematician's toolkit for stochastic problems. Further
development of the technique may open new possibilities for solving challenging problems in
stochastic modeling and uncertainty quantification.

5.2. Conclusions

This investigation represents the inaugural implementation of SVFPs for stochastic PDEs,
marking a significant departure from conventional numerical approaches. The developed methodology
demonstrates three principal advancements: First, it establishes SVFPs as viable basis functions for
stochastic systems; second, it introduces a stabilization protocol that preserves spectral accuracy while
mitigating noise amplification; and third, it provides a framework for orthogonal polynomial
expansions in stochastic settings that maintains superior accuracy.

The demonstrated success of this approach suggests several meaningful extensions that would
broaden its applicability while maintaining mathematical rigor. A logical progression involves
generalization to spatially extended systems, where the inherent tensor-product structure of polynomial
bases could be judiciously employed to balance accuracy with dimensionality constraints. Such
extension would necessitate careful consideration of basis selection strategies to maintain numerical
stability in higher dimensions.

Furthermore, the incorporation of fractional calculus operators presents an opportunity to model
non-local diffusion processes while preserving the method's convergence properties. This extension
would be particularly relevant for systems exhibiting anomalous transport characteristics, where
traditional approaches often struggle with accuracy preservation. The polynomial structure of SVFPs
appears naturally compatible with such generalizations, given their established performance in
fractional-order problems.

The method's novel application to stochastic systems also motivates investigation of more
sophisticated noise models. In future work, researchers should examine correlated noise structures and
state-dependent stochasticity, which would require development of weighted polynomial expansions
or hybrid numerical-analytical approaches. These extensions would substantially broaden the method's
applicability to real-world systems where noise characteristics deviate from idealized white noise
assumptions.

From an implementation perspective, adaptive refinement strategies could enhance the method's
efficiency for problems with localized features or multiple scales. The development of such adaptive
schemes would build upon the method's inherent accuracy while addressing potential computational
bottlenecks in complex applications.

In this work, we establish SVFPs as a new computational tool for stochastic systems, with
demonstrated advantages in accuracy and stability. Its successful application to stochastic heat and
stochastic Poisson equations suggests broader potential in areas requiring precise stochastic modeling,
while the outlined extensions point toward meaningful future developments in numerical analysis for
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stochastic systems. The methodology's novelty lies not only in its implementation but also in its
potential to inspire new approaches to stochastic computation through orthogonal polynomial
expansions.
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