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1. Introduction 

Option pricing theory has remained a central topic in financial engineering since the development 

of the Black–Scholes model, continuously advancing stochastic finance. The classical assumption of 

Brownian motion has been considered inadequate for capturing complex market fluctuations, 

particularly long-memory and non-Markovian characteristics. To address these limitations, alternative 

stochastic processes have been introduced. Fractional Brownian motion was proposed as a 

generalization of Brownian motion, while sub-fractional Brownian motion later gained importance for 

its ability to characterize dependence between standard and fractional Brownian motions. In 2014, Zili [1] 

introduced the mixed sub-fractional Brownian motion, which was shown to effectively represent short-
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term volatility together with long-term dependence. This process has since demonstrated significant 

advantages in financial modeling and has been applied extensively in financial engineering. 

The methodological framework of option pricing has evolved with increasing market complexity 

and advances in mathematical techniques, forming three major approaches: The first is the classical 

analytical model, in which closed-form solutions are derived through strict mathematical deduction. 

These models are characterized by high efficiency and theoretical rigor, making them suitable for 

options with simple structures under assumptions, such as complete markets and constant volatility. 

The second is numerical pricing, applied when analytical solutions are intractable, particularly for 

American options, path-dependent options (e.g., Asian options), and multi-asset options. In such cases, 

approximate values are obtained through methods, including Monte Carlo simulation, finite difference 

schemes, and extensions of binomial or trinomial trees. The third is the actuarial approach, which 

departs from traditional no-arbitrage assumptions. Based on the principle of fair premium, options are 

regarded as special insurance contracts, and pricing is conducted using the value of expected losses 

under the real-world probability measure. This method offers greater adaptability in settings 

characterized by incomplete markets, stochastic interest rates, or non-normal return distributions. 

The development of actuarial pricing methods has been driven by the integration of financial 

mathematics and actuarial science. In 1977, Merton [2] applied option pricing techniques to deposit 

insurance, beginning the use of actuarial principles in finance. During the 1980s, Gerber et al. [3] 

introduced risk measurement concepts from insurance actuarial science into option pricing. By 1996, 

the research team [4] employed martingale measures and transformation techniques to establish a 

bridge between actuarial pricing and the valuation of options. In 1998, Bladt et al. [5] formally presented 

the actuarial approach to option pricing in a systematic framework. In 2010, L. N. Girard [6] demonstrated 

the fundamental equivalence between option pricing and actuarial valuation methods through their research 

aimed at eliminating their differences. In 2013, Jian et al. [7] applied actuarial methods to the pricing of 

European options and convertible bonds. In 2015, Shokrollahi et al. [8] examined the pricing of currency 

options using the actuarial fair premium approach under a mixed fractional Brownian motion with 

jumps. In 2025, Wu et al. [9] adopted a mixed fractional jump-diffusion model to capture the long-

term memory of assets and the impact of sudden events, using actuarial pricing to study the pricing of 

reload options and demonstrate how parameters affect the relationship between options and underlying 

asset prices. 

The stochastic nature of interest rates represents a central issue in derivative pricing theory. In 

2010, Deakin et al. [10] obtained an analytical solution to the partial differential equation for 

convertible bond valuation under the assumptions that interest rates follow the Vasicek model and 

stock prices evolve according to geometric Brownian motion. In the same year, Li et al. [11] developed 

a financial market model within the framework of fractional Brownian motion, assuming that stock 

prices and interest rates satisfy stochastic differential equations driven by this process. Through risk 

hedging techniques, fractional stochastic analysis, and partial differential equation methods, a general 

pricing formula for European options with fractional stochastic interest rates was derived. In 2016, 

Wang [12] proposed a financial market model in which stock prices follow a stochastic differential 

equation driven by double fractional Brownian motion, while interest rates adhered to the Vasicek 

model. Using stochastic analysis and actuarial methods, a pricing formula for backward options under 

the double fractional Vasicek interest rate framework was derived. In 2019, Kim et al. [13] established 

analytical pricing formulas for European currency options and exchange options, assuming that the 

spot exchange rate evolves according to a generalized mixed fractional Brownian motion with jumps. 
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Numerical experiments demonstrated that the generalized mixed fractional Brownian motion with 

jumps model exhibits significant differences compared to other models. In 2023, Tao et al. [14] 

addressed the pricing of geometric Asian options, where the underlying asset follows sub-fractional 

Brownian motion and the interest rate is modeled by the sub-fractional Vasicek process. They derived 

a Black–Scholes-type partial differential equation, reformulated it as a Cauchy problem, and obtained 

an explicit pricing formula. In the same year, Yao, et al. [15] extended the Vasicek model to multi-asset 

scenarios, conducting pricing research on Asian rainbow options. In 2025, Djeutcha et al. [16] 

introduced a mixed modified fractional Vasicek interest rate model in their study, employing Kalman 

filtering for parameter estimation and state reconstruction to empirically validate its effectiveness in 

capturing interest rate dynamics in non-tradable economies. That same year, Fullerton et al. [17] 

addressed the vulnerability of traditional multi-Vasicek models to outliers in parameter estimation, 

proposing maximum likelihood estimation to enhance model robustness. 

In 2024, Oldouz et al. [18] developed an improved interest rate model based on the Levy process 

for bond option pricing. That same year, Wang et al. [19] pioneered the integration of mixed sub-

fractional Brownian motion with the Vasicek interest rate model, deriving the explicit formula for 

geometric average Asian options. In 2025, Zhi et al. [20,21] pioneered the application of mixed 

subfractional Brownian motion to an actuarial pricing framework for geometric Asian option valuation. 

They subsequently extended this theoretical framework to the more complex foreign exchange market, 

conducting pricing research on forex options and providing closed-form solutions and numerical 

analyses. Moreover, Li et al. [22] applied the same model to gap option pricing, utilizing the delta-

hedging principle to derive the partial differential equation governing option prices. Through variable 

substitution, they established a pricing formula for gap options, demonstrating the model's 

effectiveness in complex derivative pricing. 

Despite significant progress in related studies, particularly the exploration of mixed sub-

Brownian motion with stochastic interest rates, the integration of three key elements: The long-term 

memory of mixed sub-fractal Brownian motion, the mean-reversion property of the Vasicek model, 

and the flexibility of actuarial pricing methods, for systematic pricing research targeting European 

options remains an underexplored field. Building on this foundation, we derive the pricing formula for 

European options using actuarial principles, conduct empirical analysis and numerical simulations 

with real market data, and investigate the factors influencing option price fluctuations. 

2. Preliminary knowledge 

2.1. Mixed sub-fractional Brownian motion 

Definition 1 [23]. A mixed sub-fractional Brownian motion is defined as a stochastic process 

represented by a linear combination of a standard Brownian motion and a sub-fractional Brownian 

motion, where the first component denotes the standard Brownian motion and the second denotes the 

sub-fractional Brownian motion. 

Properties [24]: 

𝐸(𝑀𝑡
𝐻𝑀𝑠

𝐻) = 𝛽2 {𝑠2𝐻 + 𝑡2𝐻 −
1

2
[(𝑠+𝑡)2𝐻 + |𝑠 − 𝑡|2𝐻]} + 𝛼2min(𝑠, 𝑡).   (2.1) 

When 1,0 ==   , H
tM  it is a sub-fractional Brownian motion. When ,1=

  
0=

  
and 
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2

1
,1,0 === H , H

tM is a standard Brownian motion. 

,)22()()()( 2122222 HHH
tt

H
t ttDBDMD −−+=+=       (2.2) 

H
tM ~ ).)22(,0( 21222 HH ttN −−+           (2.3) 

2.2. Actuarial option pricing method 

Definition 2 [25]. The expected rate of return of a risky asset price over a time period is defined as: 

exp {∫ 𝛽𝑢d𝑢
𝑡

0
} =

𝐸(𝑆𝑡)

𝑆0
.         (2.4)

 

Alternatively, the expected rate of return of the asset at t is the ratio of the expected value of the 

risky asset price at maturity to its initial price. 

Definition 3 [26]. The actuarial value of a European option is defined as the expectation, under the 

actual probability distribution of the stock price, of the difference between the discounted stock price 

at maturity and the discounted strike price when exercised. The risk-free asset is discounted at the risk-

free interest rate, while the risky asset is discounted at its expected rate of return. The exercise of a 

European option at maturity depends on the following conditions: 

exp {−∫ 𝛽(𝑢)
𝑡

0

d𝑢} 𝑆𝑡 > exp {−∫ 𝑟(𝑢)d𝑢
𝑡

0

}𝐾. 

Condition for exercising a European put option: 

exp {−∫ 𝛽(𝑢)𝑑𝑢
𝑡

0

} 𝑆𝑡 < exp {−∫ 𝑟(𝑢)𝑑𝑢
𝑡

0

}𝐾. 

The actuarial prices of European call and put options are represented by ),( tKC
 
and ),( tKP , 

respectively, with the underlying asset price tS , strike price K , and maturity date t . 

Based on the above definitions, the following expressions are obtained: 

    ,d)(expd)(exp),(
00

d)(expd)(exp00 



















 −−−=
















−


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

−


KuurSuu
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
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−
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t
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SuuKuur
t

tt

ISuuKuurEtKP


  

Where r  represents the risk-free interest rate,   represents the expected return, and
1AI

 

represents the indicator function of event 1A . 

Lemma 1 [27]. Two random variables satisfy 1Y ~ )1,0(N  and 2Y ~ )1,0(N  with =),( 21 YYCov . For 

any real number kdcba 、、、、 , the following equation holds: 

   ),
2

)(
(ee

22

)2(
2

1
22

21

21

abba

kbcadbdac
NIE

cddc

kbYaY
dYcY





++

−+++
=

++

+
+    (2.5) 
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where xN denotes the standard normal distribution function. 

2.3. The Vasicek interest rate model 

Definition 4. The spot interest rate r  satisfies the following stochastic differential equation under the 

risk-neutral measure Q : 

,dd)(d ttt Btrar  +−=         (2.6) 

where 、、a are positive constants, }0;{ tBt represents a standard Brownian motion, a  denotes the 

speed of interest rate adjustment,   signifies the long-term interest rate, and  refers to the coefficient 

of the interest rate. This stochastic differential equation is referred to as the Vasicek model [28]. 

If }0;{ tBt  in Eq (2.6) is replaced by a sub-fractional Brownian motion }0;{ tH
t , i.e., 

,dd)(d H
ttt trar  +−=         (2.7) 

then this stochastic differential equation is referred to as the sub-fractional Vasicek model. 

Definition 5. If }0;{ tBt  in Eq (2.6) is replaced by a mixed sub-fractional Brownian motion

}0;{ tM H
t , i.e., 

,dd)(d H
ttt Mtrar  +−= ,H

tt
H
t BM  +=       (2.8) 

where   and   represent the volatilities of the underlying asset price under the standard Brownian 

motion and the sub-fractional Brownian motion, respectively, with   and 
 
being constants. This 

stochastic differential equation is termed the mixed sub-fractional Vasicek model. 

3. Option pricing model under a mixed sub-fractional Brownian motion with Vasicek interest 

rate 

Model assumptions: 

(1) The financial market is frictionless, with no transaction or tax costs. 

(2) All securities are perfectly divisible and can be freely short-sold. 

(3) The price S of risky assets follows a mixed sub-fractional Brownian motion, satisfying the 

differential equation below [29]: 

,0),d1d(dd 2 TtBStSS H
ttttt −++=       (3.1) 

where tS
  
represents the price of the risky asset at time t  ,   denotes the expected return rate,

indicates the volatility of the asset price, and  signifies the coefficient of the linear combination of 

the Brownian motion tB and sub-fractional Brownian motion ,H
t and .1 H

t and tB are Gaussian 

processes and more general than tB . In addition to the primary properties of tB , parameter H  in 

H
t  captures fractal features of financial asset prices, such as long-memory and self-similarity. 

(4) When ,1 2 H
tt

H
t BM  −+=  the stochastic interest rate tr  is assumed to satisfy the 

following stochastic differential equation: 
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,
~

d)d(d 1
H
ttt Mctbrar +−=          (3.2) 

where a ,b , and c  are constants. The first one is the adjustment parameter, the second is the average 

rate of adjustment, and the third is the volatility of interest rate. 

Furthermore, 

d𝑆𝑡 = 𝜇𝑆𝑡d𝑡 + 𝜎𝑆𝑡d𝑀̃2𝑡
𝐻 .         (3.3) 

It is assumed that  H
tM1   

and  H
tM 2   are mixed sub-fractional Brownian motions on the 

complete probability space ),,( PF
 
with correlation coefficient ,  for  

,1 ,
~

11
H
t

H
t MM = ,1

~
2

2
12

H
t

H
t

H
t MMM  −+=  

where 

,1 1
2
1111

H
tt

H
t BM  −+= ,1 2

2
2222

H
tt

H
t BM  −+=  

and 1  
denote the coefficient of the linear combination of the standard Brownian motion tB1  and 

the sub-fractional Brownian motion ,1
H
t  2 represents the coefficient of the linear combination of the 

standard Brownian motion tB2 and the sub-fractional Brownian motion H
t2 , with 11  , .12   

Therefore, 

,d)d(d 1
H
ttt Mctbrar +−=                            (3.4) 

).d1dd(d 2
2

1
H
t

H
ttt MMtSS  −++=                     (3.5) 

Theorem 1. Under the mixed sub-fractional Vasicek stochastic interest rate model, the solution to the 

stochastic differential Eq (3.5) for the price of the risky asset is given by: 

( ) 




−+−= ttSSt
2
2

22
1

22
0 1

2

1
exp 

 

}.1)22()]1)(1()1([
2

1
2

2
1

2122
2

22
1

22 H
t

H
t

HH MMt  −++−−−+−− −  

Proof. Based on the definition ,1 1
2
1111

H
tt

H
t BM  −+= ,1 2

2
2222

H
tt

H
t BM  −+=  we can get 

( )   ,d2)22)(1(d 12122
1

2
1

2

1 tHtM HHH
t

−−−−+=  ( )   ,d2)22)(1(d 12122
2

2
2

2

2 tHtM HHH
t

−−−−+=    (3.6) 

( ) ( ) ( ) ( )( ) ]d1dd[d
2

2
22

2

1
22

2
22

2
H
t

H
ttt MMtSS  −++=

                 

])1({[ 2
2

22
1

222  −+= tS .d}2)22)](1)(1()1([ 12122
2

22
1

2 tHt HH −−−−−+−+        (3.7) 

Let 

,)1( 2
2

22
1

2  −+=A .2)22)](1)(1()1( 12122
2

22
1

2 −−−−−+−= HH HtB    (3.8) 

Then, ,d)()d( 222 tBASS tt +=   and let ,ln)( xxf =
 

then 𝑓(𝑆𝑡) = ln𝑆𝑡. 
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According to sôIt  lemma 

d(ln𝑆𝑡) =
𝜕𝑓

𝜕𝑡
d𝑡 +

𝜕𝑓

𝜕𝑆𝑡
d𝑆𝑡 +

1

2

𝜕2𝑓

𝜕𝑆𝑡
2 (d𝑆𝑡)

2 + 𝜊(d𝑡),                   (3.9) 

substituting Eqs (3.5) and (3.7) into Eq (3.9) yields 

d(ln𝑆𝑡) = {𝜇 −
1

2
𝜎2𝐴 −

1

2
𝜎2 ⋅ 𝐵 ⋅ 2𝐻(2 − 22𝐻−1)𝑡2𝐻−1} d𝑡 + 𝜎 (𝛿d𝑀1𝑡

𝐻 +√1 − 𝛿2d𝑀2𝑡
𝐻 ) . 𝑐. 

Integrate both sides of the equation 

,d1dd})22(2
2

1

2

1
{)(lnd

0
2

2

0
1

0

121222

0





 −++−−−=  −−

t
H
u

t
H
u

t
HH

t

u MMuuHBAS   

then 

}.1)22(
2

1

2

1
exp{ 2

2
1

21222
0

H
t

H
t

HH
t MMtBtAtSS  −++−−−= −   (3.10) 

Substituting (3.8) into (3.10) gives 

ttSSt ])1([
2

1
exp{ 2

2
22

1
22

0  −+−=
 

}.1)22()]1)(1()1([
2

1
2

2
1

2122
2

22
1

22 H
t

H
t

HH MMt  −++−−−+−− −   (3.11) 

Remark 1. 

(1) When 01 =
 
and 02 = , the formula reduces to the asset price under the sub-fractional Vasicek 

stochastic interest rate. 

(2) When 11 =  and 12 = , it corresponds to the asset price under the Vasicek stochastic interest 

rate in the classical Black–Scholes model. 

(3) When 01 =  , 02 =
  

and ,
2

1
=H  it represents the asset price under the Vasicek stochastic 

interest rate from the fractional Brownian motion perspective. 

Theorem 2. For the risk asset price process }0,{ tSt , its expected return is given by the following 

formula: ].,0[ tuu = ，  

Proof. According to the definition of H
t

H
t MM 21 , , it is known that it satisfies the normal distribution, 

then ,0)( 1 =H
tME Therefore, 

,)22)(1()()1()()( 2122
1

2
11

22
11

2
11

HHH
tt

H
t ttDBDMD −−−+=−+= 

 

H
tM1 ~ ( ).)22)(1(0 2122

1
2
1

HH ttN −−−+ ，  

Similarly, for H
tM2 ~ ( ).)22)(1(0 2122

2
2
2

HH ttN −−−+ ，
 

According to Theorem 1 and the properties of expectation, it follows that 
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  ttESSE t ])1([
2

1
[exp{ 2

2
22

1
22

0  −+−=

 

             

}],1)22()]1)(1()1([
2

1
2
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1

2122
2

22
1

22 H
t

H
t

HH MMt  −++−−−+−− −

 
)1([

2

1
])1([

2

1
exp{ 2

1
222

2
22

1
22

0  −−−+−= ttS  (3.12)

])22()1([
2

1
)22()]1)(1( 2122

1
2
1

222122
2

2 HHHH tTt −− −−++−−−+ 

]})22()1()[1(
2

1
2122

2
2
2

22 HH tt −−−+−+ 
 

= 𝑆0exp{𝜇𝑡}. 

Thus, 

𝐸[𝑆𝑡]

𝑆0
= exp{𝜇𝑡}, exp {∫ 𝛽𝑢d𝑢

𝑡

0
} = exp{𝛽𝑢𝑡}.      (3.13) 

From Definition 2, 

exp{𝛽𝑢𝑡} = exp{𝜇𝑡}. 

It follows that, 

].,0[ tuu = ，         (3.14)
 

Theorem 3. If the interest rate tr  satisfies the stochastic differential equation: 

d𝑟𝑡 = (𝑎 − 𝑏𝑟𝑡)d𝑡 + 𝑐d𝑀1𝑡
𝐻 = (𝑎 − 𝑏𝑟𝑡)d𝑡 + 𝑐𝜌1d𝐵1𝑡 + 𝑐√1 − 𝜌1

2d𝜉1𝑡
𝐻 ,   (3.15) 

then the solution to the equation is 

.de1ce)e1(e
0

1
)(2

1
0

1
)(

10  −−−− −++−+=
t

H
u

tub
t

u
tubbtbt

t cBc
b

a
rr      (3.16) 

Where, uB1   
and H

u1   are standard Brownian motion and sub-fractional Brownian motion, 

respectively. 

Proof. Given that 

,d1dddd 1
2
111

H
tttt cBctbrtar  −++−=

 

.d1dddd 1
2
111

H
tttt cBctatbrr  −++=+                       (3.17) 

Multiplying both sides of Eq (3.17) by ,ebt

 
then 

ebtd𝑟𝑡 + 𝑏ebt𝑟𝑡d𝑡 = 𝑎ebtd𝑡 + 𝑐𝜌1ebtd𝐵1𝑡 + 𝑐√1 − 𝜌1
2ebtd𝜉1𝑡

𝐻 .   (3.18) 

Therefore, 

.de1dede)ed( 1
bt2

11
bt

1
btbt H

ttt cBctar  −++=  

Incorporating both sides gives, 
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4. Actuarial pricing formulas for European options under the mixed sub-fractional Brownian 

motion with Vasicek interest rate 

Theorem 4. Under the mixed sub-fractional Brownian motion with the Vasicek interest rate, the 

actuarial pricing formulas for European call and put options with maturity time T are given, 

respectively, by 

),
2

(e)1)(e(exp              

)
2

(),(

12111211

121112
2

1

2

0

12111211

121111

0

12

DDDD

kDDD
NT

b

a

b

a

b

r
K

DDDD

kDDD
NSTKC

D
bT









++

−+
−









−−−−

++

−+
=

−

   (4.1) 

).
2

(           

)
2

(e)1)(e(exp),(

12111211

121111

0

12111211

121112
2

1

2

0 12

DDDD

kDDD
NS

DDDD

kDDD
NT

b

a

b

a

b

r
KTKP

D
bT









++

−+
−

++

−+
−









−−−= −

   (4.2) 

Among them 

   ,)22)(1()1()22)(1( 2122
2

2
2

222122
1

2
1

22
11

HHHH TTTTD −− −−+−+−−+=   

},dde1dde{
0 0

1
)(2

1
0 0

1
)(

112    −− −+=
T t

H
u

tub
T t

u
tub tctBcVarD   

)()12(
)1(

)
2

12

2

3
()( 21

2

22
221 VVHH

b

c
e

b
e

bb
T

b

c
bTbT −−

−
+−+−= −−


, 

where 

,
2

12

2

12
1 B

b
A

H
V

H −
−

−
=

 
),(

12

1
)(

12

2
2 ED

H
AC

H
V −

−
−−

−
=

 

)],;12;2(1[
2

11

2

bTHHFe
H

T
A bT

H

+−= −

 

)],,2;2,12,2(),;2,12,2([
)12(2

2
2

2

212

bTbTHHHebTbTHHHe
HH

Tb
B bTbT

HH

−−−−−
−

= −−
−



)],;12;2(
2

)2;12;2(
2

)2(
[

2

)2(
11

2

11

2
2

22

bTHHF
H

T
bTHHF

H

T
e

H

TT
C

HH
bT

HH

+−+−
−

= −  



30171 

AIMS Mathematics  Volume 10, Issue 12, 30162–30185. 

,;12,2;2,12(
2

))2(;12,2;2,12(
2

)2(

,;2,12,2(
2

))2(),2(;2,12,2(
2

)2(

22

2

22

2
2

2

2

2

2









+−−+−−









−−−−−=

− bTHHHHF
H

T
TbHHHHF

H

T
e

bTbTHHH
H

T
TbTbHHH

H

T
D

HH
bT

HH



 

).;12,2;2,12(
2

),;2,12,2(
2

22

2
2

2

2

bTHHHHF
H

T
ebTbTHHH

H

T
eE

H
bT

H
bT +−−−−= −−   

Here, 2  is the bivariate confluent hypergeometric function,
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Proof. According to the pricing principle of European option insurance, the following conditions must 

be satisfied: 
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and is deformed into 
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it is assumed that 

   −− −++−+=
T t

H
u

tub
T t

u
tubH

T
H
T tctBcMMX

0 0
1

)(2
1

0 0
1

)(
12

2
1 dde1dde1       (4.6)

 

,212111 XDXD +=  

where 

   ,)22)(1()1()22)(1( 2122
2

2
2

222122
1

2
1

22
11

HHHH TTTTD −− −−+−+−−+= 
 

},dde1dde{
0 0

1
)(2

1
0 0

1
)(

112    −− −+=
T t

H
u

tub
T t

u
tub tctBcVarD 

   

,)1)(e(        

)22()1)(1()1(
2

1
)1(

2

1
ln

2

0

2122
2

22
1

222
2

22
1

22

0

T
b

a

b

a

b

r

TT
S

K
k

bT

HH

−−−+

−−−+−+−++=

−

−

 

1X
~

),1,0(N  2X
~

),1,0(N  ).,( 21 XXCov=  

The following is the solving process of 12D : 
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and 𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) + 2𝐶𝑜𝑣(𝑋, 𝑌). 
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Recalculation Y : 
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where 2  is the bivariate confluent hypergeometric function. 
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Here, 2  is the bivariate confluent hypergeometric function，
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 Therefore, Eq (4.5) can be rewritten as: 
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Substituting Eqs (4.8) and (4.9) into Eq (4.7) yields the price of the European call option at 

maturity T as: 
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(4.10)  

Similarly, the pricing formula for the European put option at maturity T is given by: 
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(4.11) 

Remark 2. 

(1) When 01 =
  

and 02 =  , Theorem 4 reduces to the option pricing formula under the sub-

fractional Vasicek stochastic interest rate. 

(2) When 11 =  and 12 = ,  Theorem 4 reduces to the option pricing formula under the Vasicek 

stochastic interest rate within the traditional Black–Scholes framework. 

(3) When 01 = , 02 =  and 
2

1
=H ,  Theorem 4 corresponds to the option pricing formula under 

the Vasicek stochastic interest rate from the fractional Brownian motion perspective. 

5. Empirical analysis and numerical simulation 

5.1. Empirical Analysis 

5.1.1. Selection and processing of data 

(1) Price of the underlying asset S  

The real market data in this article comes from the CSI 300 stock index options. The CSI 300 is 

a core broad-based index in China's A-share market, with strong representativeness and a solid 

foundation in its constituent stocks. The CSI 300 index is composed of the top 300 stocks ranked by 

comprehensive performance in the Shanghai and Shenzhen stock exchanges. Its constituent stocks are 

large in scale, highly liquid, and cover a wide range of industries. The trading volume and market 

capitalization also account for a significant proportion in the A-share market, effectively reflecting the 
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overall market changes. The option contract under study in this article has its first trading day on 

August 18, 2025, with the exercise period from November 21, 2025. The underlying asset of the option 

contract has a total of 64 trading days during its duration. Here, we select the closing price data of the 

CSI 300ETF stock index options on each trading day during the duration as the underlying price for 

that day. 

(2) The risk-free interest rate r  

The Shanghai Interbank Offered Rate (Shibor) serves as the basis for determining the risk-free 

interest rate. In this paper, the three-month real Shanghai Interbank Offered Rate (Shibor) data during 

the option contract's duration (from August 18,2025 to November 21,2025) is selected, and its 

arithmetic average is taken as the risk-free interest rate r in the pricing formula. Data source: China 

Financial Exchange and the official website of the Shanghai Interbank Offered Rate. 

(3) Option contract validity period T : 

The term T of an option contract refers to the annualized number of remaining trading days before 

its expiration. The stock market typically has approximately 252 valid trading days in a year. 

(4) Option market price: 

For the CSI 300ETF (code IO2511), the closing price of the option contract on each trading day 

during its term is used as the daily market price (hereafter referred to as the true price of the option 

contract). 

(5) Hurst index H : 

We use the R/S analysis method, i.e., the re-scaled range analysis method, to estimate the Hurst 

index by processing and calculating the parameters through MATLAB language. 

(6) Estimation of the volatility   of the underlying assets 

The historical volatility is calculated by collecting the data, calculating the daily log return, the 

daily log return standard deviation, and then annualizing the daily standard deviation, to estimate the 

volatility of the underlying asset. 

(7) Parameter estimation of the Vasicek's Interest rate model 

The continuous-time formulation H
ttt cdMdtbradr 1)( +−=

  
based on the Vasicek interest rate 

model employs maximum likelihood estimation for parameter estimation. The continuous-time model 

is first discretized into a self-regressive form, with initial parameter estimates obtained through 

regression analysis. The maximum likelihood function is then optimized to derive the final parameters. 

The parameter transformation process involves mapping regression coefficients to structural 

parameters: The mean reversion rate, b , is derived from the logarithmic form of the self-regressive 

coefficients; the long-term mean reversion parameter, a , is calculated from the relationship between 

the intercept term and regression coefficients; and the interest rate volatility parameter, c , is estimated 

from the residual variance. 

The parameters estimated from the real data used in this paper are as follows (Table 1): 
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Table 1. Parameter Estimation Table. 

Parameter Name Estimated Value Parameter Name Estimated Value 

H  0.7512   0.1523 

0r  0.0150 a  0.0346 

T  0.2500 b  0.0238 

  0.5000 c  0.0082 

1  0.6000   0.8000 

2  0.4000   

5.1.2. Model comparison 

The price of the option is simulated using the above parameters and the mixed sub-fractional 

Brownian motion Vasicek rate model (model 1) obtained from theorem 4 and the B-S option pricing 

model (model 2).  

As evidenced by Table 2, Model 1's superiority stems from its integration of mixed sub-fractional 

Brownian motion with the Vasicek interest rate, which enhances its capacity to characterize long 

memory and volatility clustering in markets. The model employs the Hurst parameter to describe the 

persistent dependence of underlying asset returns, while the mixed subfractional Vasicek model 

endogenizes interest rate risk as a stochastic process, thereby more accurately capturing the complex 

dynamics of real markets. In contrast, the traditional B-S model, based on constant volatility and 

independent increment assumptions, neglects these crucial market microstructural features, resulting 

in systematic deviations in its price fitting. 

Table 2. Comparison of the difference between the price of the call option and the real price under 

the Mixed Fractional Vasicek Interest Rate Model and the B-S Model. 

5.2. Parameter sensitivity analysis 

Using the derived actuarial pricing formulas for European options with maturity T under the 

mixed sub-fractional Brownian motion with Vasicek interest rate, numerical simulations are conducted 

to examine the effects of various parameters on call option prices. 

The model parameters are set as follows: ,1000 =S ,1=T ,2.0= ,5.0= ,5.0= ,1.0=a
 

,3.0=b ,4.01 = ,6.02 = .05.00 =r  

 

Strike 

Price 
Real Market Call 

Option Price 
The Model 1 Fitted 

Call Option Price 
Absolute 

Error 

The Model 2 Fitted 

Call Option Price 

Absolute 

Error 

3750 462 469 7 471.6 9.6 

3800 420 420.3 0.3 425.6 5.6 

3850 379.8 378.2 1.6 380.9 1.1 

3900 341.6 339.4 2.1 338.1 3.6 

3950 305.2 308.9 3.7 297.2 8 
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5.2.1. Impact of the Hurst exponent H on the option price S
 

Figure 1 (a) and (b) demonstrate the nonlinear impact of the Hurst index ( H ) on the time value 

of options by altering the volatility term structure. At any given time ( 0T  ), higher Hurst values 

correspond to lower option prices. The results indicate that higher Hurst values ( 0.5H  ) represent 

long-term memory, which under specific conditions can exert nonlinear or even inhibitory effects on 

the time value of options by either enhancing mean-reversion dynamics or modifying the cumulative 

efficiency of volatility ( 2HT ). This suggests that long-term memory does not always enhance option 

value, as its ultimate effect depends on the option's virtual or real state, highlighting the model's ability 

to capture complex market dynamics. 

 
(a) Call option prices.

 
(b) Put option prices.

 

Figure 1. The option prices versusT for different Hurst exponents. 

Figure 2 presents a typical Vasicek interest rate simulation path driven by a mixed sub-fractional 

Brownian motion in 0.75H = . The path shows interest rate tr  fluctuating near the long-term mean 

ba , exhibiting the persistent trajectory characteristic of fractional Brownian motion. This stochastic 

nature forms one of the sources of randomness in the discount factor 12D of our option pricing formula. 

In other words, the option prices at each time point in Figures 1 represent the expected values derived 

from numerous stochastic interest rate paths similar to Figure 2. The mean-reversion property of the 

Vasicek model prevents interest rates from diverging, ensuring stability in the discount factor 

calculation and the final option pricing. 

 

Figure 2. Stochastic interest rate trends over time t . 
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5.2.2. Impact of K  and T on option prices 

The option price curves in Figure 3 (a) and (b) vividly demonstrate the quantitative mechanism 

of intrinsic and time values in this model. The call option price decreases as K increases, while the put 

option price rises, directly reflecting the core impact of the strike price on the option's intrinsic value. 

More crucially, the effect of expiration time T is significant: The value of call options increases with 

T , as the longer duration amplifies the potential return under the 0.75H =  setting (driven by the 
2HT   in the variance term), resulting in positive time value. Conversely, the value of put options 

declines with T , indicating they are deeply in-the-money, where waiting time risks eroding intrinsic 

value, leading to negative time value. 

 
(a) Call option prices.

 
(b) Put option prices.

 

Figure 3. The option prices versus strike price K and time T. 

5.2.3. Effects of   and T  on option prices 

Figure 4 (a) and (b) demonstrate the synergistic effect of volatility ( ) and time (T ) on option 

valuation. Both option types exhibit monotonic growth with increasing  , stemming from Vega's 

fundamental positive attribute: Volatility amplifies uncertainty in underlying asset prices. The inherent 

asymmetry of option returns (unlimited upside potential versus limited downside risk) elevates 

expected returns across both options as uncertainty increases. The nonlinear effect of timeT proves 

particularly significant: Call option values grow steadily with extended duration, as longer maturities 

and higher volatility collectively amplify uncertainty through a superlinear mechanism (driven by the 
2HT  term in the model), thereby enhancing positive time value. Conversely, put options demonstrate 

declining value with increasing T at fixed  , confirming their deep in-the-money status. Extended 

maturities imply greater probability of adverse price movements for underlying assets, resulting in 

negative time value. The model accurately captures this complex dynamic, demonstrating its 

sophisticated pricing capabilities. 
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(a) Call option prices. (b) Put option prices. 

Figure 4. The option price versus volatility   and time T . 

5.2.4. Effects of 21 ，  on option prices 

Figure 5 (a) and (b) demonstrate the structural impact of "quality" from different risk sources on 

option pricing. The correlation coefficients 1  and 2  measure the mixing ratio between standard 

Brownian motion (incremental independence) and fractional Brownian motion (long-term memory) 

within each risk source. When   approaches 1, standard Brownian motion dominates, exhibiting 

irregular paths and incremental independence. This generates broader price distributions over the 

option's lifetime, indicating higher volatility accumulation efficiency and, consequently, greater option 

value. Conversely, when  approaches 0, fractional Brownian motion becomes dominant. Although its 

long-term memory effects manifest in the distant term, its relatively lower volatility accumulation 

efficiency in the near-term leads to lower option prices. This surface essentially reflects the market's 

pricing differential between the two risk sources: The model reveals that traditional, purely "stochastic 

walk" risks are assigned higher risk premiums, profoundly demonstrating the model's inherent ability 

to distinguish and quantify different risks. 

 
(a) Call option prices. (b) Put option prices. 

Figure 5. The option price versus correlation coefficient. 
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6. Conclusions 

In this study, we establish a dynamic model capable of accurately capturing long-memory 

characteristics and complex volatility patterns in markets. Based on the insurance premium principle, 

we derive a pricing formula for European options. The theoretical model's advantages are 

systematically validated through empirical analysis: First, comparative analysis with the classical B-S 

model demonstrates significantly lower pricing errors across strike prices, confirming its practical 

accuracy. Second, numerical simulations reveal the classic dependence of option prices on key 

parameters (e.g., underlying asset prices and strike prices), while quantifying the unique impacts of 

novel risk factors such as long-memory (Hurst index, H  ) and market risk source correlation 

(correlation coefficient,   ). Empirical results show differentiated pricing between traditional 

"stochastic walk" risks and long-memory risks, highlighting the model's robust capability in identifying 

and separating distinct risk sources. This research not only provides solid theoretical support for the 

intersection of stochastic interest rate and long-memory processes, but also offers a practical pricing 

framework validated through empirical testing, serving as a direct and effective tool for financial 

institutions to conduct derivatives pricing and risk management in complex market environments. 
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