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1. Introduction

Option pricing theory has remained a central topic in financial engineering since the development
of the Black—Scholes model, continuously advancing stochastic finance. The classical assumption of
Brownian motion has been considered inadequate for capturing complex market fluctuations,
particularly long-memory and non-Markovian characteristics. To address these limitations, alternative
stochastic processes have been introduced. Fractional Brownian motion was proposed as a
generalization of Brownian motion, while sub-fractional Brownian motion later gained importance for
its ability to characterize dependence between standard and fractional Brownian motions. In 2014, Zili [1]
introduced the mixed sub-fractional Brownian motion, which was shown to effectively represent short-
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term volatility together with long-term dependence. This process has since demonstrated significant
advantages in financial modeling and has been applied extensively in financial engineering.

The methodological framework of option pricing has evolved with increasing market complexity
and advances in mathematical techniques, forming three major approaches: The first is the classical
analytical model, in which closed-form solutions are derived through strict mathematical deduction.
These models are characterized by high efficiency and theoretical rigor, making them suitable for
options with simple structures under assumptions, such as complete markets and constant volatility.
The second is numerical pricing, applied when analytical solutions are intractable, particularly for
American options, path-dependent options (e.g., Asian options), and multi-asset options. In such cases,
approximate values are obtained through methods, including Monte Carlo simulation, finite difference
schemes, and extensions of binomial or trinomial trees. The third is the actuarial approach, which
departs from traditional no-arbitrage assumptions. Based on the principle of fair premium, options are
regarded as special insurance contracts, and pricing is conducted using the value of expected losses
under the real-world probability measure. This method offers greater adaptability in settings
characterized by incomplete markets, stochastic interest rates, or non-normal return distributions.

The development of actuarial pricing methods has been driven by the integration of financial
mathematics and actuarial science. In 1977, Merton [2] applied option pricing techniques to deposit
insurance, beginning the use of actuarial principles in finance. During the 1980s, Gerber et al. [3]
introduced risk measurement concepts from insurance actuarial science into option pricing. By 1996,
the research team [4] employed martingale measures and transformation techniques to establish a
bridge between actuarial pricing and the valuation of options. In 1998, Bladt et al. [5] formally presented
the actuarial approach to option pricing in a systematic framework. In 2010, L. N. Girard [6] demonstrated
the fundamental equivalence between option pricing and actuarial valuation methods through their research
aimed at eliminating their differences. In 2013, Jian et al. [7] applied actuarial methods to the pricing of
European options and convertible bonds. In 2015, Shokrollahi et al. [8] examined the pricing of currency
options using the actuarial fair premium approach under a mixed fractional Brownian motion with
jumps. In 2025, Wu et al. [9] adopted a mixed fractional jump-diffusion model to capture the long-
term memory of assets and the impact of sudden events, using actuarial pricing to study the pricing of
reload options and demonstrate how parameters affect the relationship between options and underlying
asset prices.

The stochastic nature of interest rates represents a central issue in derivative pricing theory. In
2010, Deakin et al. [10] obtained an analytical solution to the partial differential equation for
convertible bond valuation under the assumptions that interest rates follow the Vasicek model and
stock prices evolve according to geometric Brownian motion. In the same year, Li et al. [11] developed
a financial market model within the framework of fractional Brownian motion, assuming that stock
prices and interest rates satisfy stochastic differential equations driven by this process. Through risk
hedging techniques, fractional stochastic analysis, and partial differential equation methods, a general
pricing formula for European options with fractional stochastic interest rates was derived. In 2016,
Wang [12] proposed a financial market model in which stock prices follow a stochastic differential
equation driven by double fractional Brownian motion, while interest rates adhered to the Vasicek
model. Using stochastic analysis and actuarial methods, a pricing formula for backward options under
the double fractional Vasicek interest rate framework was derived. In 2019, Kim et al. [13] established
analytical pricing formulas for European currency options and exchange options, assuming that the
spot exchange rate evolves according to a generalized mixed fractional Brownian motion with jumps.
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Numerical experiments demonstrated that the generalized mixed fractional Brownian motion with
jumps model exhibits significant differences compared to other models. In 2023, Tao et al. [14]
addressed the pricing of geometric Asian options, where the underlying asset follows sub-fractional
Brownian motion and the interest rate is modeled by the sub-fractional Vasicek process. They derived
a Black—Scholes-type partial differential equation, reformulated it as a Cauchy problem, and obtained
an explicit pricing formula. In the same year, Yao, et al. [15] extended the Vasicek model to multi-asset
scenarios, conducting pricing research on Asian rainbow options. In 2025, Djeutcha et al. [16]
introduced a mixed modified fractional Vasicek interest rate model in their study, employing Kalman
filtering for parameter estimation and state reconstruction to empirically validate its effectiveness in
capturing interest rate dynamics in non-tradable economies. That same year, Fullerton et al. [17]
addressed the vulnerability of traditional multi-Vasicek models to outliers in parameter estimation,
proposing maximum likelihood estimation to enhance model robustness.

In 2024, Oldouz et al. [ 18] developed an improved interest rate model based on the Levy process
for bond option pricing. That same year, Wang et al. [19] pioneered the integration of mixed sub-
fractional Brownian motion with the Vasicek interest rate model, deriving the explicit formula for
geometric average Asian options. In 2025, Zhi et al. [20,21] pioneered the application of mixed
subfractional Brownian motion to an actuarial pricing framework for geometric Asian option valuation.
They subsequently extended this theoretical framework to the more complex foreign exchange market,
conducting pricing research on forex options and providing closed-form solutions and numerical
analyses. Moreover, Li et al. [22] applied the same model to gap option pricing, utilizing the delta-
hedging principle to derive the partial differential equation governing option prices. Through variable
substitution, they established a pricing formula for gap options, demonstrating the model's
effectiveness in complex derivative pricing.

Despite significant progress in related studies, particularly the exploration of mixed sub-
Brownian motion with stochastic interest rates, the integration of three key elements: The long-term
memory of mixed sub-fractal Brownian motion, the mean-reversion property of the Vasicek model,
and the flexibility of actuarial pricing methods, for systematic pricing research targeting European
options remains an underexplored field. Building on this foundation, we derive the pricing formula for
European options using actuarial principles, conduct empirical analysis and numerical simulations
with real market data, and investigate the factors influencing option price fluctuations.

2. Preliminary knowledge
2.1. Mixed sub-fractional Brownian motion

Definition 1 [23]. A mixed sub-fractional Brownian motion is defined as a stochastic process
represented by a linear combination of a standard Brownian motion and a sub-fractional Brownian
motion, where the first component denotes the standard Brownian motion and the second denotes the
sub-fractional Brownian motion.

Properties [24]:

EMEME) = g2 {s?M + ¢2H = 2 [(s+6)* +|s — tI"]} + a®min(s, ©). @.1)

When a =0, =1, M/ it is a sub-fractional Brownian motion. When a =1, =0 and
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a=0,=1,H= % , M is a standard Brownian motion.

D(MM)=a?D(B,)+ f2D(EN) = ot + B2(2=22H-1)2H (2.2)

M ~N(0,a?t+ B2(2—220-1)21), (2.3)
2.2. Actuarial option pricing method

Definition 2 [25]. The expected rate of return of a risky asset price over a time period is defined as:

exp { fot Budu} = %‘Zt) (2.4)
Alternatively, the expected rate of return of the asset at t is the ratio of the expected value of the
risky asset price at maturity to its initial price.
Definition 3 [26]. The actuarial value of a European option is defined as the expectation, under the
actual probability distribution of the stock price, of the difference between the discounted stock price
at maturity and the discounted strike price when exercised. The risk-free asset is discounted at the risk-
free interest rate, while the risky asset is discounted at its expected rate of return. The exercise of a
European option at maturity depends on the following conditions:

t t
exp {—f B(w) du} S > exp {—f r(u)du} K.
0 0

Condition for exercising a European put option:

exp {— ftﬁ(u)du} S < exp {— ftr(u)du} K.
0 0

The actuarial prices of European call and put options are represented by C(K,t) and P(K,t),
respectively, with the underlying asset price S,, strike price K, and maturity date t.

Based on the above definitions, the following expressions are obtained.:

C(K,t)=E [exp{* JZ L(u)du }9, - expp jot r(u)du }K)I {exp {_Eﬂ(u)du}& . {_ jgr(u)du}[(} ;

PK.n=E (exp% IO[ r(u)du}[( - exp{ JZ plu)du kt )I{exp{ﬂr(u)du}](>exp{ [ ﬂ(u)du}S,} '

Where r represents the risk-free interest rate, [3 represents the expected return, and I,

represents the indicator function of event A4, .
Lemma 1 [27]. Two random variables satisfy Y,~N(0,1) and Y,~N(0,1) with Cov(Y,,Y,)=p.For
any real number a- b~ c- d- k,the following equation holds:

%(c2+d2+2pcd)N(aC +bd + p(ad +bc)—k

Elect+an], . |=e , 2.5
SRR e (2.5)
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where N _denotes the standard normal distribution function.

2.3. The Vasicek interest rate model

Definition 4. The spot interest rate r satisfies the following stochastic differential equation under the
risk-neutral measure Q:

dr. =a(@—r)dt +odB, (2.6)

where a~ O o are positive constants, {B,;t > 0} represents a standard Brownian motion, a denotes the
speed of interest rate adjustment, 6 signifies the long-term interest rate, and o refers to the coefficient
of the interest rate. This stochastic differential equation is referred to as the Vasicek model [28].

If {B,;t>0} in Eq (2.6) is replaced by a sub-fractional Brownian motion{&H ;t >0}, i.e.,

dr, = a(0—r)di + ol 2.7)

then this stochastic differential equation is referred to as the sub-fractional Vasicek model.
Definition 5. If {B,;t>0}in Eq (2.6) is replaced by a mixed sub-fractional Brownian motion

{M};t>0},ie,
dr, = a(0—r)dt + odM}, M} = aB, + PEN, 2.8)

where a and [ represent the volatilities of the underlying asset price under the standard Brownian
motion and the sub-fractional Brownian motion, respectively, with « and [ being constants. This

stochastic differential equation is termed the mixed sub-fractional Vasicek model.

3. Option pricing model under a mixed sub-fractional Brownian motion with Vasicek interest
rate

Model assumptions:

(1) The financial market is frictionless, with no transaction or tax costs.

(2) All securities are perfectly divisible and can be freely short-sold.

(3) The price S of risky assets follows a mixed sub-fractional Brownian motion, satisfying the
differential equation below [29]:

dS, = uS.dt + oS, (pdB, ++/1- p2dEH),0<t <T, (3.1)

where S, represents the price of the risky asset at time ¢, udenotes the expected return rate, o
indicates the volatility of the asset price, and p signifies the coefficient of the linear combination of
the Brownian motion B, and sub-fractional Brownian motion &£/, and | p| <1.&¥and B, are Gaussian
processes and more general than B, . In addition to the primary properties of B,, parameter H in
&H  captures fractal features of financial asset prices, such as long-memory and self-similarity.

(4) When M} = pB, +./1-p2&H, the stochastic interest rate 7, is assumed to satisfy the

following stochastic differential equation:
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dr, = (a—br)dt +cdM [, (3.2)

where a,b,and ¢ are constants. The first one is the adjustment parameter, the second is the average
rate of adjustment, and the third is the volatility of interest rate.
Furthermore,

dS, = uS,dt + oS, dM%.. (3.3)

It is assumed that {M#} and {M¥} are mixed sub-fractional Brownian motions on the

complete probability space (€, F,P) with correlation coefficient o, for
o<1, My = byt Mg = oM +1-52 M4,

1t >

where

Ml =pB, +\1=pE&ll, M§l = p,B,, +1-p3 &,

and p, denote the coefficient of the linear combination of the standard Brownian motion B, and

the sub-fractional Brownian motion &ff, p,represents the coefficient of the linear combination of the

standard Brownian motion B,, and the sub-fractional Brownian motion &/7, with|p,|<1, |p,|<1.
Therefore,
dr, =(a—br)dt+cdM [, (3.4)
dS, = S, (udt + o&M Y +o1—52dM ). (3.5)

Theorem 1. Under the mixed sub-fractional Vasicek stochastic interest rate model, the solution to the
stochastic differential Eq (3.5) for the price of the risky asset is given by:

S, =S5, exp{w—%az[&pf +(1-062)p3 )

—%az [62(1= p2)+ (1= 82)(1= p2)]- (2= 221-0)p2H + GSM [T + o1— 52 M 11},

t

Proof. Based on the definition M = p,B,, +\/1-p2&ft, M3 = p,B,, +,/1-p3&H, we can get
(dMy =[pp + (1= pp)2 =222 HH- e, (AM Y ) =[p3 + (1= p2)(2 - 2242 Hr> [dr, (3.6)
(dS, ) = SpLp2(de) +0262(AM ) +02(1- 62 NdM 4 ) ]

= 8202 {[82p7 +(1-82) p3] +[82(1— p2) + (1= 52)(1— p3)|(2 — 22~ )2 Hr2H-1ydr. (3.7)
Let
A=52p2 +(1-82)p3, B=52(1-p2)+(1-82)(1- p3)|(2 - 22H-)2 Heh -, (3.8)

Then, (dS,)? =S20%(A+B)dt, andlet f(x)=Inx, then f(S,) = InS,.

AIMS Mathematics Volume 10, Issue 12, 30162-30185.



30168

According to Ito's lemma

d d 92
d(ins,) = 2Lt + a—idst + %é (dSp)? + o(dt), (3.9)

substituting Eqs (3.5) and (3.7) into Eq (3.9) yields

1 1
d(InS,) = {u - EUZA - 502 -B-2H(2 - 22H—1)t2H_1} dt+o (Sdet ++41— 52dM§t) .C.

Integrate both sides of the equation
Itd(mSu):It{y—lJZA—laz -B-2H(2—22Hl)uZHl}du+o-(5rdM{;’ +1-52 IdMZHJ
0 0 2 2 0 0
then
S, =85, exp{,ut—%a2 -A-t—%o'2 -B-(2-220-1)2H 4+ oM [T + o\ 1-02 M 11}, (3.10)

Substituting (3.8) into (3.10) gives

S, =S, explut — 02027 + (-5 p3
—%O'z-[52(1—p12)+(1—52)(1—p22)]-(2—22H‘1)t2H oMY +o1-5 M. (3.11)

Remark 1.
(1) When p, =0 and p, =0, the formula reduces to the asset price under the sub-fractional Vasicek

stochastic interest rate.
(2) When p, =1 and p, =1, it corresponds to the asset price under the Vasicek stochastic interest

rate in the classical Black—Scholes model.

(3) When p, =0, p,=0 and H :%, it represents the asset price under the Vasicek stochastic

interest rate from the fractional Brownian motion perspective.

Theorem 2. For the risk asset price process {S,, >0}, its expected return is given by the following
formula: B, =u uel0,].
Proof. According to the definition of M|/, M}, it is known that it satisfies the normal distribution,
then E(M/|") =0, Therefore,
DM{T) = ptD(B,)+ (1= p7 ) D) = prt+ (1= pp )2 =2211)eH,
M ~N(0, ppt+(1—pp)(2—22H-1)2H ),

Similarly, for M# ~N(0, p2t+(1—p2)(2—22H-1)2H )

According to Theorem 1 and the properties of expectation, it follows that

AIMS Mathematics Volume 10, Issue 12, 30162-30185.
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E[S 1= S, Elexp iy = 02[8%pi +(1- 82)pi
—%az [82(1= p2)+ (1= 82) (1= p2)]- (2= 221Nt + GSM Y + o162 M1,

=S, explut —— 0?82 7 +(1-8)pi k=2 02 [52(1 - pp) (3.12)
+(=87)(1= D)= 2 )20 4 GG R T+ (1= )+ (2220 )
+o 0P (1= pit+ (1= p3)- (2= 2

= Syexp{ut}.
Thus,

“od = explut), exp {f; Budu} = exp{Bt}. (3.13)

From Definition 2,
exp{p,t} = exp{ut}.
It follows that,
B, = uel0,z]. (3.14)

Theorem 3. If the interest rate 7, satisfies the stochastic differential equation:

dr; = (a — bry)dt + cdMfi = (a — bry)dt + cp1dBy; + ¢/ 1 — p2déf, (3.15)
then the solution to the equation is
r=r, e—br+%(1—e—bz) +epy [ ere B, +e\fl-pp [ erundgl. (3.16)

Where, B,, and &/ are standard Brownian motion and sub-fractional Brownian motion,

respectively.
Proof. Given that

dr, =adt —brdt +cp,dB,, + cﬁdfﬁ’ ,
dr, +brdt = adt + cpdB,, +cf1— prdEL. (3.17)
Multiplying both sides of Eq (3.17) by e?*, then
ebldr, + beP'r dt = ae®dt + cp;e?dB;, + cy/1 — pZePtdél. (3.18)
Therefore,
d(ret) = aetdr +cpe™dB,, +c/1— perdSH.

Incorporating both sides gives,

AIMS Mathematics Volume 10, Issue 12, 30162-30185.
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J: (r,eb)du = aIOt edu +cp, Iot edB,, +c,/1-p? J.Ot ebd&H.
Accordingly,

v=rye 4+ % (1-e?)+cp, J‘Ot et dB,, +c 1-p? I; eb-0 d&H . (3.19)

4. Actuarial pricing formulas for European options under the mixed sub-fractional Brownian
motion with Vasicek interest rate

Theorem 4. Under the mixed sub-fractional Brownian motion with the Vasicek interest rate, the
actuarial pricing formulas for European call and put options with maturity time T are given,
respectively, by

Dy, +p'\|D,\D,, —k

C(K,T)=S,N( :
\/Dll +D,, +2p'\/D, D, )
! D, +p'\D,\D, —k '
—KGXP{(———)(G‘” l)—gT} P N(- 2 TP N ),
b b b D, +D, +20 DD,
! D+ 0. D.D,. —k
P(K T) Kexp{(——_)( —bT _ 1)_%]"} Dlz N( \/ 12 ,0 11 \1/2
D, +D, +2p'\|D,D,,
(4.2)

D, +,0, Dy, D, —k
\/Dn +D), +2p' Dy, D,

— S,N( ).

Among them

Dy, = 6282 prT +(1- p?)(2 = 22#D)T2H |+ 62 (1- 52)[p3T + (1— p2)(2 = 226-1)T'2# |

Dy, =Varicp, [} [ e B, di+ey1=p7 || [ eren dgpdry,

_ (P, 3+2 r_ A +MH2H -V, -7,
( )( % be Zbe ) B2 ( )( )

where

-2 42 B y-—2 (C-dy———(D-E),
2H-1" b2 2H -1 2H-1

28
A= T2H

L ll—e " FQH2H +16T)),

b2H—1T2H
" 2HQ2H -1)
(2T)2H —T2H
2H

[e7¢,(2H,2H —12H;bT,~bT)—e2#7¢,(2H 2H —1,2H;2bT,~bT)],

- @ry

— e—2bT[

F(2H;2H +1;2bT) ——HlFl(ZH;2H +1;bT)],
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(2T)2H T2H
D =| 2 = ¢ (2H 2 H —1.2H;-b(2T),b(2T)) = ¢,(2H 2H =1, 2H;=bT ,bT

(272 T2
—e | S FQH —L2H2H 2H +1:bQT) ~ oy Fy(H —1.2H:2H 2H +155T |

2H T2H

$o(2H 2H —\2H3=bT bT) =1, Fy (2H =12 H:2H 2H +1bT).

E=e?T d
2H

Here, ¢, is the bivariate confluent hypergeometric function,

&, (b,b',c;w,z) = ZZMW’”Z”, F and ,F, are defined as generalized hypergeometric

(©)i,min!

m=0 n=0

functions.

p'=Cov(X,,X,),

K 1 1
k=n——+-02(52pp +(1=6)p3 [T+ 02(52 (1= pp) + (1-87)(1 = ph) (2 = 22T
0
h_4
b b2
Proof. According to the pricing principle of European option insurance, the following conditions must
be satisfied:

+( )(e—bf—l)—%T.

Azexpi— jOT Bu)du}S, > expi— jOTr(z)dz}K. 4.3)
From Theorems 1-3, it follows that
e S, exp{ul —%02[52/03 +(1-62)p3]T —502[62(1 - pp)+(1=62)(1- pp)) 2221\
+ooM [l + oN1-62M 1
> K exp{(%o —Z;iz)(e—w— 1) —%T —cp[| [[ e dB, di—ci=p? [! [ ebon dgpdry.

Taking the logarithm of both sides gives

in 20— 022 pp + (1801 = 2[5 pp) + (=231 pi) 2 - 22y

+ooM i +o1-02 M, 4.4
]/'0 a B a T pt . B _ T et .
> (= e =)= T —cp L joew ndB, dt —cyf1- p? jo joew ndénd,

and is deformed into
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oM ft +oT=82 MY +ep, [ [[ereo dB,di+efT=p [ [ ern dginde

>in 4o o280 + (-0 PRl 4 0252 ) + (=231 p3) (4.5)
0
7 a a
S(2=22HNT2H (L (e tT-1)—=T,
@2y + (- yer—p) -

it is assumed that
X =ooMl +o1=5Mp +cp,[ [ erwn dB, dr+efi=pi [ [ e dgidr (4.6)

:\/DnXl +yDp X,
where

D, = 0282[ppT + (1 p2)(2 = 22002 |+ 52 (1= 82)[p3T + (1— p2)(2 = 226-1)T'2# |

Dy, =Var{cp, J;T J‘Ot eb-ndB, dt +c\/1- p? IOT JZ et dgfrde},

k=n 420l + (-8R +2 02021 pi)+ (1571 - piy 2= 22T

0

I a T a

o Dy -2,

5\ )=

XINN(Oal)a XZNN(Oal)a p,:COV(XIaXz)'

The following is the solving process of D,, :

Dy, =Variep[| [ e dB,dt+ei=pi [| [ eve-o détrary.

Let X =cp,[ [ erundB,drY =c1=pz [ [erendgpdr,
and Var(X+Y) =Var(X) + Var(Y) + 2Cov(X,Y).
Since B,, and &/ are independent, then Cov(X,Y)=0,thus D;, = Var(X) + Var(Y).
Calculate first X :
T ot T[ T |
X =cp, Io _[0 e’ 0dB,,dt = cp, L |:L eht )dt:|dBlu =Py .[0 E(l_eb(u M)dB,,,

this is an /t0 integral with the variance

3 2 _ 1 _
3 4 2p7_ 1, ZbT).
2b b 2b

Var(X) = (Cbﬂ)z fT(l—eb(u—T))z du = (%)2 (T —
0

Recalculation Y:

AIMS Mathematics Volume 10, Issue 12, 30162-30185.
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v=efi=pt [ [[erwndgdr=cI=pF [ UT ebw—f)dt}df{;
1 — N2
= C—prl Jj [1 — e-b(T-u) ]deifl-

= p2
Let K:%

,g(u)=1—eT- then

T T pt T ot
Y=K|[ gw)dgil, D,=Varicp| [ e dB,di+cfi-pp[ [ e dgpd.

1 . . .
For H > 5 the stochastic integral variance is

02 R(u V)

Var(Y) = K2 j j 2(w)g(v) —2" dudv

=K2H(2H - I)J.O J.O g(u)g(v)[|u - v|2H*2 —(u+v)-2]dudv

2(1— N2
=¥H(2H—l)-%

which V = J:)T _LT g(u) g(v)[|u — v|2H_2 — (u+v)2H2]dudv.

Reorder V =V, -V,,

among V| = IOT IOT g(u) g(v)|u —v|2H*2 dudv, V, = .[)T IOT gw)g(v)(u+v)2i-2dudv.

(1) Calculate V,
symmetry by use
% =2, g@lf] g)u—v)r-2dviu =2 gl (1-er=)(u—v)r-2dvKin
Let
J)= [ u=v)r2dv—[ et (u—v)2H-2d.

The first item:
u 2H-1

2H -1

J: (u—v)H2dv=

The second item: Let w=u—v.

e—b(T-u)

f:e*b(T’V)(u—V)ZH*Zdv:e*”(T*")Lue*”WWZHfzdw— oy —y(2H =1,bu),
where y(a,z) is the incomplete gamma function.
Therefore,
J() y2H- e-b(T-u) (2H Lb )
u)= - —1,bu).
2H-1 bt

AIMS Mathematics Volume 10, Issue 12, 30162-30185.
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Hence,
T y2H-1 e—b(T—u) 2 2
Vv, = 2J-0 g(u)[ZH_1 = 7(2H—1,bu):|du = T A- o B,
where
! b(T—u) Yy 2H-1 T2H bT
A= [ (e Ty idu =" (1= T, FQH2H +1:5T)),
B={ (I-enr-n)etr-0y(2H ~1,bu)du.
Let
t
t =bu,du=d(-).
( b)
bei bT ! bugy2H-1 26T ! 2buy, 2H-1
= le ], et FQH ~L2H —bu)du — e [t F (2 H =12 Hi=bu)du]
bZHflTZH
=———[e?"¢,(2H,2H - 1,2H;bT ,—bT)—e27¢,(2H,2H —1,2H;2bT ,—bT)],
2H(2H -1)

where ¢, is the bivariate confluent hypergeometric function.

¢2 (b, b”c; W,Z) = ii%wmzn.

om0 (€),,.,mn!

(2) calculate V,
Vo= [} gt [ g vyidy i,
L(u)= IOT g (u+v)H-2dv= J;T (u+v)2i-2dv— J:)T e T (u +v)*-2dy.

Let w=u+v, then

2H-1 _9,2H-1
L(u) = (I/l + T;H 1 u _ e—b(T+u) J‘quT WZH—ZCdeW
— u
C(uAT)HA —g2H b

T — o L TR R QH L2 b+ T) i, FQH =12 H; bu)],

L(u) = Ly (u) + L, (u),

(u+T)2H-1 —y2H-1

L u)= 5
(1) 1
—b(T+u)
L(u)= ZH — [ T FQH ~X2H b+ )~ F(2H =12 H: bu).
Therefore,
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[ g+ Tyrdu- [ gumedu]

2=

2H -1

—ﬁ gw)e T [(u+T) FF2H -L.2H;b(u+T))—u?"'\ F;(2H - 1;2H ;bu)]du

where J; g(uu2f-'du = A has been calculated.

Step 1: Caleulate C = [ g(u)(u-+ 7)1 du

C= J‘OTg(u)(u +T)2H-1dy = J‘OT (1—ebT-0)(u+T)2H-du

=(w+T)*-"du— e—bTJ.OT et (u+T)*"-"du

(2T -T2 (2T )2
2H

— 672}7T[

F.(2H;2H +1;2bT

1.
Step2: Caleulate D= [ g(u)e T (u+ -1, Fy(2H ~12H:b(u+T))du

D= g(u)e T (u+ T F(2H ~L2H:b(u+T))du

w=u+T L”[l bW Je-tew2H F(2H —1;2H;bwidw
= [ etwait FQH ~12H: bwydw e [ w2t F(2H ~L2H: bw)dw.
Step 3: Calculate £ = IOT g(u)e-bTruy2t-1 F(2H —1;2H ;bu)du
E= jOT gQu)ebTy2i- F(2H — 12 H; bu)du
=eor [ et F(QH ~12H bu)du—e27 [ w21, F(2H - 12H; bu)du.

Therefore, Y = c—“llzplz _[) ! [1 — e-b(T-u) ]dﬁfﬂ ,

2(1 = Nn2
Var(Y) = %H(?J—I -1)-(V,=1,).
To sum up,

D, =Var(X)+Var(Y)

- cplzT 3 2e—bT_Lefsz +MH2H_1.V_V
= (PRI by et e S LI HQH 1) -,
where V| = 2 A- 2 B, VZZL( - )—L(D E),
2H -1 b2 2H -1 2H -1

A=
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2H-1T2H
= %[elﬁ@ (QH2H —12H;bT,~bT)—e "¢, (2H 2H —1,2H;2bT,-bT)],
2H _T2H
C-= @T)TT_em[@T) \F(2H2H +1; 2bT)——H \F,(2H2H +1;5T)],

(2T)2H T2H
= ¢, (2H 2H —12H;-b(2T),b(2T))— —— ¢, (2H 2H —1,2H;~bT ,bT
2H 2H
2H
—e—zb{( 2; F,(2H —12H:2H 2H +1:b(2T))— 32 F2QH —L2H2H 2H +1 bT}

E=etl il

2H
b, (QH 2H ~12H—bT ,bT) =7 L [ (QH ~12H2H ,2H +1;bT).
2H

Here, ¢, is the bivariate confluent hypergeometric function,

&, (b0, c;w,z) = ZZ%WW", F, and ,F, are defined as generalized hypergeometric
o (©),,,,min!

functions.
Therefore, Eq (4.5) can be rewritten as:

JDy X, +/D, X, > k.

According to the principles of actuarial science, the price of a European call option at maturity T
is expressed as:

C(K,T)= E|:exp - jOT Blu)iu}S, I, } - E[exp - jOT F(O)dnKI, } —V, -V, (4.7)

where
Vi = Elexpt-[ 1 8,du}s, 1, |
— E1S, exp{ 0[50 + (1-6)p3 T = o2[62(1- pi)

+(1-62)(1- p2)2—22)T2" + oMl +o1- 6> M} ETL, ] “4.8)

=5, el-2 0[50 + (-3 -2 (8200 p7)

+(1=82)(1= p3) 2 =22 E[elPi ] o o]

D11 +,0' D11D12 —k

=S,N( ;
\/Du +D, +2p'\ D, D,

)7

v, = E[exp [ rndnk 1, }

- o _ Oyt =2 _ep [ [ epturt
—Kexp{(b b2)(e bT—1) bT cpljo J-Oem ) dB, dt

T pt
—C\ll_plz J.O _[0 ebu=n dé:lluidt'l{\/[)inxlﬂ/Di]zXﬁk}}
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_KeXp{(;_b_z)(e b7 _ 1)——T}E[ Jﬁuxz].l{ﬁXl+sz>k}} (4.9)
D, +p'\[D.D. +k
= Kexp{(2-)(err- 1)——T} 22 N 2ot PV D HE )
b b D, +D, +2p'{D, D,

Substituting Eqs (4.8) and (4.9) into Eq (4.7) yields the price of the European call option at
maturity T as:

Dy, +p'DyDy, —k
\/Dn +Dy +2p'\/D”D12

3 D, +p'D,D, +k
_Kexp{(r_o_%)(e‘bT—l)—gT}ezD‘zN(_ 2 TP 1 ‘
Y ’ Dy + D, +2pD, D, (4.10)

C(S;,T)=S,N(

Similarly, the pricing formula for the European put option at maturity T is given by:

lDlz N( D|2 +p \/DllDlz +k

\/Dll +D, +2p' D11D12

P(K,T)= Kexp{(———)(e -bT — 1)——T}

D11 +,0' D11D|2 —k

_SON( ;
\/Dll +Dy, +2p'\ D, D,

). 4.11)

Remark 2.
(1) When p, =0 and p, =0, Theorem 4 reduces to the option pricing formula under the sub-

fractional Vasicek stochastic interest rate.
(2) Whenp, =1 and p, =1, Theorem 4 reduces to the option pricing formula under the Vasicek

stochastic interest rate within the traditional Black—Scholes framework.

(3) When p, =0, p,=0 and H = %, Theorem 4 corresponds to the option pricing formula under

the Vasicek stochastic interest rate from the fractional Brownian motion perspective.
5. Empirical analysis and numerical simulation

5.1. Empirical Analysis

5.1.1.  Selection and processing of data

(1) Price of the underlying asset S

The real market data in this article comes from the CSI 300 stock index options. The CSI 300 is
a core broad-based index in China's A-share market, with strong representativeness and a solid
foundation in its constituent stocks. The CSI 300 index is composed of the top 300 stocks ranked by
comprehensive performance in the Shanghai and Shenzhen stock exchanges. Its constituent stocks are
large in scale, highly liquid, and cover a wide range of industries. The trading volume and market
capitalization also account for a significant proportion in the A-share market, effectively reflecting the
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overall market changes. The option contract under study in this article has its first trading day on
August 18, 2025, with the exercise period from November 21, 2025. The underlying asset of the option
contract has a total of 64 trading days during its duration. Here, we select the closing price data of the
CSI 300ETF stock index options on each trading day during the duration as the underlying price for
that day.

(2) The risk-free interest rate »

The Shanghai Interbank Offered Rate (Shibor) serves as the basis for determining the risk-free
interest rate. In this paper, the three-month real Shanghai Interbank Offered Rate (Shibor) data during
the option contract's duration (from August 18,2025 to November 21,2025) is selected, and its
arithmetic average is taken as the risk-free interest rate r in the pricing formula. Data source: China
Financial Exchange and the official website of the Shanghai Interbank Oftfered Rate.

(3) Option contract validity period T :

The term T of an option contract refers to the annualized number of remaining trading days before
its expiration. The stock market typically has approximately 252 valid trading days in a year.
(4) Option market price:

For the CSI 300ETF (code 102511), the closing price of the option contract on each trading day
during its term is used as the daily market price (hereafter referred to as the true price of the option
contract).

(5) Hurst index H :

We use the R/S analysis method, i.e., the re-scaled range analysis method, to estimate the Hurst
index by processing and calculating the parameters through MATLAB language.
(6) Estimation of the volatility o of the underlying assets

The historical volatility is calculated by collecting the data, calculating the daily log return, the
daily log return standard deviation, and then annualizing the daily standard deviation, to estimate the
volatility of the underlying asset.

(7) Parameter estimation of the Vasicek's Interest rate model

The continuous-time formulation dr, =(a—br,)dt+cdM|! based on the Vasicek interest rate

model employs maximum likelihood estimation for parameter estimation. The continuous-time model
is first discretized into a self-regressive form, with initial parameter estimates obtained through
regression analysis. The maximum likelihood function is then optimized to derive the final parameters.
The parameter transformation process involves mapping regression coefficients to structural
parameters: The mean reversion rate, b, is derived from the logarithmic form of the self-regressive
coefficients; the long-term mean reversion parameter, «, is calculated from the relationship between
the intercept term and regression coefficients; and the interest rate volatility parameter, c,is estimated
from the residual variance.
The parameters estimated from the real data used in this paper are as follows (Table 1):
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Table 1. Parameter Estimation Table.

Parameter Name Estimated Value Parameter Name Estimated Value
H 0.7512 o 0.1523
I 0.0150 a 0.0346
T 0.2500 b 0.0238
o 0.5000 c 0.0082
0 0.6000 ol 0.8000
0, 0.4000

5.1.2. Model comparison

The price of the option is simulated using the above parameters and the mixed sub-fractional
Brownian motion Vasicek rate model (model 1) obtained from theorem 4 and the B-S option pricing
model (model 2).

As evidenced by Table 2, Model 1's superiority stems from its integration of mixed sub-fractional
Brownian motion with the Vasicek interest rate, which enhances its capacity to characterize long
memory and volatility clustering in markets. The model employs the Hurst parameter to describe the
persistent dependence of underlying asset returns, while the mixed subfractional Vasicek model
endogenizes interest rate risk as a stochastic process, thereby more accurately capturing the complex
dynamics of real markets. In contrast, the traditional B-S model, based on constant volatility and
independent increment assumptions, neglects these crucial market microstructural features, resulting
in systematic deviations in its price fitting.

Table 2. Comparison of the difference between the price of the call option and the real price under
the Mixed Fractional Vasicek Interest Rate Model and the B-S Model.

Strike  Real Market Call The Model 1 Fitted Absolute = The Model 2 Fitted  Absolute

Price Option Price Call Option Price Error Call Option Price Error
3750 462 469 7 471.6 9.6
3800 420 420.3 0.3 425.6 5.6
3850 379.8 378.2 1.6 380.9 1.1
3900 341.6 3394 2.1 338.1 3.6
3950 305.2 308.9 3.7 297.2 8

5.2. Parameter sensitivity analysis

Using the derived actuarial pricing formulas for European options with maturity T under the
mixed sub-fractional Brownian motion with Vasicek interest rate, numerical simulations are conducted
to examine the effects of various parameters on call option prices.

The model parameters are set as follows: S, =100, 7 =1, 0 =0.2, 6 =0.5, p'=0.5, a=0.1,

b=03, p, =04, p, =0.6, r, =0.05.
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5.2.1. Impact of the Hurst exponent H on the option price S

Figure 1 (a) and (b) demonstrate the nonlinear impact of the Hurst index ( H ) on the time value
of options by altering the volatility term structure. At any given time (7 ), higher Hurst values
correspond to lower option prices. The results indicate that higher Hurst values ( H > (0.5) represent
long-term memory, which under specific conditions can exert nonlinear or even inhibitory effects on
the time value of options by either enhancing mean-reversion dynamics or modifying the cumulative
efficiency of volatility (7°2). This suggests that long-term memory does not always enhance option
value, as its ultimate effect depends on the option's virtual or real state, highlighting the model's ability
to capture complex market dynamics.

. Call Option Prices under Different Hurst Exponents a8 Put Option Prices under Different Hurst Exponents
5

H=0.75

- = =H=0.80

Call option price
Put option price

"o 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time to maturity (T) Time to maturity (T)
(a) Call option prices. (b) Put option prices.

Figure 1. The option prices versus T for different Hurst exponents.

Figure 2 presents a typical Vasicek interest rate simulation path driven by a mixed sub-fractional
Brownian motion in /A =(0.75. The path shows interest rate » fluctuating near the long-term mean
a/b , exhibiting the persistent trajectory characteristic of fractional Brownian motion. This stochastic
nature forms one of the sources of randomness in the discount factor D,, of our option pricing formula.
In other words, the option prices at each time point in Figures 1 represent the expected values derived
from numerous stochastic interest rate paths similar to Figure 2. The mean-reversion property of the
Vasicek model prevents interest rates from diverging, ensuring stability in the discount factor
calculation and the final option pricing.

0.8 Simulated Interest Rate Path

t
(=}
]
—-—

Interest Rate r
(=}
B -
=
Ty

Figure 2. Stochastic interest rate trends over time .
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5.2.2. Impactof K and 7 on option prices

The option price curves in Figure 3 (a) and (b) vividly demonstrate the quantitative mechanism
of intrinsic and time values in this model. The call option price decreases as K increases, while the put
option price rises, directly reflecting the core impact of the strike price on the option's intrinsic value.
More crucially, the effect of expiration time 7 is significant: The value of call options increases with
T, as the longer duration amplifies the potential return under the H =0.75 setting (driven by the
T°" in the variance term), resulting in positive time value. Conversely, the value of put options
declines with T, indicating they are deeply in-the-money, where waiting time risks eroding intrinsic
value, leading to negative time value.

Price change surface of call options

Price change surface of put options

43 42

42 -

41

40

option price
option price

10 39 o 39
-20 4 38.5
L 38 -|
5 20 \ N
404
80 0 g -30 iy - = 375
100 110\"\'7\/0 time to maturity (T) 0 s s T 10 % 80
strike price (K) L time to maturity (T) &2 2120 "0 strike price (K)
(a) Call option prices. (b) Put option prices.

Figure 3. The option prices versus strike price K and time T.

5.2.3. Effectsof o and T on option prices

Figure 4 (a) and (b) demonstrate the synergistic effect of volatility (o ) and time (7") on option
valuation. Both option types exhibit monotonic growth with increasing o, stemming from Vega's
fundamental positive attribute: Volatility amplifies uncertainty in underlying asset prices. The inherent
asymmetry of option returns (unlimited upside potential versus limited downside risk) elevates
expected returns across both options as uncertainty increases. The nonlinear effect of time 7 proves
particularly significant: Call option values grow steadily with extended duration, as longer maturities
and higher volatility collectively amplify uncertainty through a superlinear mechanism (driven by the
7?1 term in the model), thereby enhancing positive time value. Conversely, put options demonstrate
declining value with increasing 7T at fixed o, confirming their deep in-the-money status. Extended
maturities imply greater probability of adverse price movements for underlying assets, resulting in
negative time value. The model accurately captures this complex dynamic, demonstrating its
sophisticated pricing capabilities.
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The Variation of European Call Option Prices with Volatility and Time
The Variation of European Put Option Prices with Volatility and Time

40

40 35

Call Option Price

30

25
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Put Option Price

-l 36

e N o5
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04

S & &=
Volatility (0) 04 T~ 15

2 15 S
05 Time to maturity (T) Time to maturity (T) 2 be 5* N~
0.1

= 02/ Vglgtllxty (o)
(a) Call option prices. (b) Put option prices.

Figure 4. The option price versus volatility o and time T .

5.2.4. Effectsof p,, p, on option prices

43

42

41

40

39

38

Figure 5 (a) and (b) demonstrate the structural impact of "quality" from different risk sources on
option pricing. The correlation coefficients p, and p, measure the mixing ratio between standard
Brownian motion (incremental independence) and fractional Brownian motion (long-term memory)
within each risk source. When p approaches 1, standard Brownian motion dominates, exhibiting
irregular paths and incremental independence. This generates broader price distributions over the
option's lifetime, indicating higher volatility accumulation efficiency and, consequently, greater option
value. Conversely, when p approaches 0, fractional Brownian motion becomes dominant. Although its
long-term memory effects manifest in the distant term, its relatively lower volatility accumulation
efficiency in the near-term leads to lower option prices. This surface essentially reflects the market's
pricing differential between the two risk sources: The model reveals that traditional, purely "stochastic
walk" risks are assigned higher risk premiums, profoundly demonstrating the model's inherent ability
to distinguish and quantify different risks.

Option price

AIMS Mathematics

Call Option Price Surface as a Function of the Correlation Coefficient Put Option Price Surface as a Function of the Correlation Coefficient
158
157
16 422
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“ICorrelation coefficient o2

(a) Call option prices. (b) Put option prices.

Figure 5. The option price versus correlation coefficient.
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6. Conclusions

In this study, we establish a dynamic model capable of accurately capturing long-memory
characteristics and complex volatility patterns in markets. Based on the insurance premium principle,
we derive a pricing formula for European options. The theoretical model's advantages are
systematically validated through empirical analysis: First, comparative analysis with the classical B-S
model demonstrates significantly lower pricing errors across strike prices, confirming its practical
accuracy. Second, numerical simulations reveal the classic dependence of option prices on key
parameters (e.g., underlying asset prices and strike prices), while quantifying the unique impacts of
novel risk factors such as long-memory (Hurst index, H ) and market risk source correlation
(correlation coefficient, p ). Empirical results show differentiated pricing between traditional
"stochastic walk" risks and long-memory risks, highlighting the model's robust capability in identifying
and separating distinct risk sources. This research not only provides solid theoretical support for the
intersection of stochastic interest rate and long-memory processes, but also offers a practical pricing
framework validated through empirical testing, serving as a direct and effective tool for financial
institutions to conduct derivatives pricing and risk management in complex market environments.
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