In this article, we investigated the integrability of the nonlinear dynamical Kairat-X model through Painlevé analysis, demonstrating that the equation satisfies the Painlevé property and is therefore integrable. We applied the bilinear Hirota method to derive several exact solutions, including breather wave, novel periodic wave, periodic cross-kink wave, kink-rogue wave interaction, and one-soliton and two-soliton solutions. A machine learning multi-layer-perceptron regressor algorithm was applied to represent the behavior of the actual, and to predict, the above solutions. Furthermore, we employed an asymptotic analysis on the gain solutions to expect the demonstration of the asymptotic behavior of these analytical solutions. The soliton solutions obtained were novel and exhibited improved reliability compared to previously reported results. These findings were further validated using symbolic computation software. A comparison with the existing literature revealed that the proposed solutions were more applicable and accurate. Several of the results were visualized using two-dimensional, three-dimensional, and contour surface plots.
Citation: Waseem Razzaq, Asim Zafar, Naif Almusallam, Fawaz Khaled Alarfaj. Asymptotic behavior of soliton solutions of the Kairat-X model via the Hirota bilinear method: Painlevé integrability and machine learning analysis[J]. AIMS Mathematics, 2025, 10(12): 30029-30052. doi: 10.3934/math.20251320
In this article, we investigated the integrability of the nonlinear dynamical Kairat-X model through Painlevé analysis, demonstrating that the equation satisfies the Painlevé property and is therefore integrable. We applied the bilinear Hirota method to derive several exact solutions, including breather wave, novel periodic wave, periodic cross-kink wave, kink-rogue wave interaction, and one-soliton and two-soliton solutions. A machine learning multi-layer-perceptron regressor algorithm was applied to represent the behavior of the actual, and to predict, the above solutions. Furthermore, we employed an asymptotic analysis on the gain solutions to expect the demonstration of the asymptotic behavior of these analytical solutions. The soliton solutions obtained were novel and exhibited improved reliability compared to previously reported results. These findings were further validated using symbolic computation software. A comparison with the existing literature revealed that the proposed solutions were more applicable and accurate. Several of the results were visualized using two-dimensional, three-dimensional, and contour surface plots.
| [1] | Z. Myrzakulova, S. Manukure, R. Myrzakulov, G. Nugmanova, Integrability, geometry and wave solutions of some Kairat equations, 2025, arXiv: 2307.00027. https://doi.org/10.48550/arXiv.2307.00027 |
| [2] |
Y. L. Xiao, S. Barak, M. Hleili, K. Shah, Exploring the dynamical behaviour of optical solitons in integrable kairat-Ⅱ and kairat-X equations, Phys. Scr., 99 (2024), 095261. https://doi.org/10.1088/1402-4896/ad6e34 doi: 10.1088/1402-4896/ad6e34
|
| [3] |
A. M. Wazwaz, Extended (3+1)-dimensional Kairat-Ⅱ and Kairat-X equations: Painlevé integrability, multiple soliton solutions, lump solutions, and breather wave solutions, Int. J. Numer. Method. H., 34 (2024), 2177–2194. https://doi.org/10.1108/HFF-01-2024-0053 doi: 10.1108/HFF-01-2024-0053
|
| [4] |
W. A. Faridi, G. H. Tipu, M. B. Riaz, A. M. Mostafa, S. A. AlQahtani, R. Myrzakulov, et al., Analyzing optical soliton solutions in Kairat-X equation via new auxiliary equation method, Opt. Quant. Electron., 56 (2024), 1317. https://doi.org/10.1007/s11082-024-07197-7 doi: 10.1007/s11082-024-07197-7
|
| [5] |
M. Iqbal, D. C. Lu, A. R. Seadawy, F. A. H. Alomari, Z. Umurzakhova, R. Myrzakulov, Constructing the soliton wave structure to the nonlinear fractional Kairat-X dynamical equation under computational approach, Mod. Phys. Lett. B, 39 (2025), 2450396. https://doi.org/10.1142/S0217984924503962 doi: 10.1142/S0217984924503962
|
| [6] | M. Awadalla, A. Zafar, A. Taishiyeva, M. Raheel, Exact soliton solutions of M-fractional Kairat-Ⅱ and Kairat-X equations via three analytical methods, in press. https://doi.org/10.13140/RG.2.2.18605.26080 |
| [7] |
T. Mathanaranjan, Lie symmetries, soliton solutions, conservation laws and stability analysis of the combined Kairat-Ⅱ-X equation, Math. Method. Appl. Sci., 48 (2025), 16722–16729. https://doi.org/10.1002/mma.70121 doi: 10.1002/mma.70121
|
| [8] |
M. M. Al-Sawalha, S. Mukhtar, A. S. Alshehry, M. Alqudah, M. S. Aldhabani, Kink soliton phenomena of fractional conformable Kairat equations, AIMS Mathematics, 10 (2025), 2808–2828. https://doi.org/10.3934/math.2025131 doi: 10.3934/math.2025131
|
| [9] |
M. N. Rafiq, M. H. Rafiq, H. Alsaud, Diversity of soliton dynamics, positive multi-complexiton solutions and modulation instability for (3+1)-dimensional extended Kairat-X equation, Mod. Phys. Lett. B, 39 (2025), 2550112. https://doi.org/10.1142/S021798492550112X doi: 10.1142/S021798492550112X
|
| [10] |
R. Qahiti, N. M. A. Alsafri, H. Zogan, A. A. Faqihi, Kink soliton solution of integrable Kairat-X equation via two integration algorithms, AIMS Mathematics, 9 (2024), 30153–30173. https://doi.org/10.3934/math.20241456 doi: 10.3934/math.20241456
|
| [11] |
G. X. Li, Z. Y. Wang, K. Wang, N. Q. Jiang, G. M. Wei, Analytic investigation of a generalized variable-coefficient KdV equation with external-force term, Mathemaics, 13 (2025), 1642. https://doi.org/10.3390/math13101642 doi: 10.3390/math13101642
|
| [12] |
N. A. Kudryashov, S. F. Lavrova, Painlevé analysis of the traveling wave reduction of the third-order derivative nonlinear Schrödinger equation, Mathematics, 12 (2024), 1632. https://doi.org/10.3390/math12111632 doi: 10.3390/math12111632
|
| [13] |
H. D. Liu, B. Tian, C. D. Cheng, T. Y. Zhou, X. T. Gao, Painlevé analysis, bilinear forms, Bäcklund transformations and solitons for a variable-coefficient extended Korteweg-de vries equation with an external-force term in fluid mechanics and plasma dynamics, Qual. Theory Dyn. Syst., 23 (2024), 242. https://doi.org/10.1007/s12346-024-01081-1 doi: 10.1007/s12346-024-01081-1
|
| [14] |
S. Miao, Z. Y. Yin, Z. R. Li, C. Y. Pan, G. M. Wei, An analysis of the Lie symmetry and conservation law of a variable-coefficient generalized Calogero–Bogoyavlenskii–Schiff equation, Mathematics, 12 (2024), 3619. https://doi.org/10.3390/math12223619 doi: 10.3390/math12223619
|
| [15] |
B. Mohan, S. Kumar, Painlevé analysis, restricted bright-dark N-solitons and rogue waves for a (4+1)-dimensional generalized KP equation, Nonlinear Dyn., 113 (2024), 11893–11906. https://doi.org/10.1007/s11071-024-10645-4 doi: 10.1007/s11071-024-10645-4
|
| [16] |
S. Shagolshem, B. Bira, K. V. Nagaraja, Analysis of soliton wave structure for coupled Higgs equation via Lie symmetry and unified method, Nonlinear Dyn., 113 (2025), 11999–12020. https://doi.org/10.1007/s11071-024-10697-6 doi: 10.1007/s11071-024-10697-6
|
| [17] |
N. A. Kudryashov, Painlevé analysis of the Sasa–Satsuma equation, Phys. Lett. A, 525 (2024), 129900. https://doi.org/10.1016/j.physleta.2024.129900 doi: 10.1016/j.physleta.2024.129900
|
| [18] |
S. Kumar, B. Mohan, A. Kumar, Generalized fifth-order nonlinear evolution equation for the Sawada-Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painlevé analysis and multi-soliton solutions, Phys. Scr., 97 (2022), 035201. https://doi.org/10.1088/1402-4896/ac4f9d doi: 10.1088/1402-4896/ac4f9d
|
| [19] |
A. M. Wazwaz, W. Alhejaili, S. A. El-Tantawy, On the Painlevé integrability and nonlinear structures to a (3+1)-dimensional Boussinesq-type equation in fluid mediums: Lumps and multiple soliton/shock solutions, Phys. Fluids, 36 (2024), 033116. https://doi.org/ 10.1063/5.0194071 doi: 10.1063/5.0194071
|
| [20] |
S. Arshed, N. Raza, M. Kaplan, Painlevé analysis, dark and singular structures for pseudo-parabolic equations, Mod. Phys. Lett. B, 36 (2022), 2250104. https://doi.org/10.1142/S0217984922501044 doi: 10.1142/S0217984922501044
|
| [21] |
J. G. Liu, Soliton structures for the (3+1)-dimensional Painlevé integrable equation in fluid mediums, Sci. Rep., 14 (2024), 11581. https://doi.org/10.1038/s41598-024-62314-6 doi: 10.1038/s41598-024-62314-6
|
| [22] |
S. Kumar, B. Mohan, A generalized nonlinear fifth-order KdV-type equation with multiple soliton solutions: Painlevé analysis and Hirota Bilinear technique, Phys. Scr., 97 (2022), 125214. https://doi.org/10.1088/1402-4896/aca2fa doi: 10.1088/1402-4896/aca2fa
|
| [23] |
S. Ahmad, S. Saifullah, A. Khan, M. Inc, New local and nonlocal soliton solutions of a nonlocal reverse space-time mKdV equation using improved Hirota bilinear method, Phys. Lett. A, 450 (2022), 128393. https://doi.org/10.1016/j.physleta.2022.128393 doi: 10.1016/j.physleta.2022.128393
|
| [24] |
L. Yang, B. Gao, The nondegenerate solitons solutions for the generalized coupled higher-order nonlinear Schrödinger equations with variable coefficients via the Hirota bilinear method, Chaos Soliton. Fract., 184 (2024), 115009. https://doi.org/10.1016/j.chaos.2024.115009 doi: 10.1016/j.chaos.2024.115009
|
| [25] |
M. Raheel, A. Zafar, J. G. Liu, New periodic-wave, periodic-cross-kink wave, three wave and other analytical wave solitons of new (2+1)-dimensional KdV equation, Eur. Phys. J. Plus, 139 (2024), 50. https://doi.org/10.1140/epjp/s13360-023-04831-3 doi: 10.1140/epjp/s13360-023-04831-3
|
| [26] |
F. Yuan, B. Ghanbari, Interaction soliton solutions for the (2+1)-dimensional Hirota–Satsuma–Ito equation, Nonlinear Dyn., 112 (2024), 2883–2891. https://doi.org/10.1007/s11071-023-09209-9 doi: 10.1007/s11071-023-09209-9
|
| [27] |
M. Raheel, A. Zafar, A. Bekir, K. U. Tariq, Interaction between kink solitary wave and rogue wave, new periodic cross-kink wave solutions and other exact solutions to the (4 + 1)-dimensional BLMP model, J. Ocean Eng. Sci., (2022). https://doi.org/10.1016/j.joes.2022.05.020 doi: 10.1016/j.joes.2022.05.020
|
| [28] |
U. K. Mandal, S. Malik, S. Kumar, A. Das, A generalized (2+1)-dimensional Hirota bilinear equation: integrability, solitons and invariant solutions, Nonlinear Dyn., 111 (2023), 4593–4611. https://doi.org/10.1007/s11071-022-08036-8 doi: 10.1007/s11071-022-08036-8
|
| [29] | S. Dutta, P. Chatterjee, K. K. Mondal, S. Nasipuri, G. Mandal, Solitons and resonance in fractional Sawada–Kotera equation using Hirota bilinear method, In: Proceedings of the 2nd International Conference on Nonlinear Dynamics and Applications (ICNDA 2024), Cham: Springer, 405 (2024), 172–185. https://doi.org/10.1007/978-3-031-66874-6_14 |
| [30] |
S. Saifullah, S. Ahmad, M. A. Alyami, M. Inc, Analysis of interaction of lump solutions with kink-soliton solutions of the generalized perturbed KdV equation using Hirota-bilinear approach, Phys. Lett. A, 454 (2022), 128503. https://doi.org/10.1016/j.physleta.2022.128503 doi: 10.1016/j.physleta.2022.128503
|
| [31] |
X. Lü, S. J. Chen, Interaction solutions to nonlinear PDEs via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types, Nonlinear Dyn., 103 (2021), 947–977. https://doi.org/10.1007/s11071-020-06068-6 doi: 10.1007/s11071-020-06068-6
|
| [32] |
W. Razzaq, A. Zafar, Machine learning-enhanced soliton solutions for the Lonngren-wave equation: An integration of Painlevé analysis and Hirota bilinear method, Rend. Fis. Acc. Lincei, 36 (2025), 917–932. https://doi.org/10.1007/s12210-025-01354-0 doi: 10.1007/s12210-025-01354-0
|
| [33] |
W. Razzaq, A. Zafar, Bilinearization of generalized Bogoyavlensky–Konopelchenko equation with neural networks: Painleve analysis, Nonlinear Dyn., 113 (2025), 25083–25096. https://doi.org/10.1007/s11071-025-11384-w doi: 10.1007/s11071-025-11384-w
|