A new-type matrix inverse based on the Hartwig-Spindelböck decomposition was investigated, which is related to the DMP inverse, is the abbreviation of the Drazin Moore-Penrose inverse, here we call this generalized inverse as the strong DMP inverse. We established the relationships between this new-type inverse and other matrix generalized inverses. We proved that the strong DMP inverse of a square complex matrix is a special type of outer inverse, where the restricted column space is $ \mathcal{R}(A^{k}) $ and restricted null space is $ \mathcal{N}(AA^{D}\alpha_{A}) $, where $ \alpha_{A} = AA^{\dagger}+(A^{\dagger})^{\ast}(E_{n}-AA^{\dagger}) $. The one-sided strong DMP inverses were introduced from the perspectives of the column space, null space, and index of a matrix. The general expressions of the left (right) strong DMP inverse of $ A $ were given. We answered the question of when the left strong DMP inverse is consistent with the right strong DMP inverse. Based on the relationship between the left strong DMP inverse and the right DMP inverse, the necessary and sufficient conditions for the existence of the strong DMP inverse were given.
Citation: Sanzhang Xu, Zhengyang Shan, Wenqi Li, Xiaofei Cao, Ber-Lin Yu. Strong DMP inverse[J]. AIMS Mathematics, 2025, 10(12): 30017-30028. doi: 10.3934/math.20251319
A new-type matrix inverse based on the Hartwig-Spindelböck decomposition was investigated, which is related to the DMP inverse, is the abbreviation of the Drazin Moore-Penrose inverse, here we call this generalized inverse as the strong DMP inverse. We established the relationships between this new-type inverse and other matrix generalized inverses. We proved that the strong DMP inverse of a square complex matrix is a special type of outer inverse, where the restricted column space is $ \mathcal{R}(A^{k}) $ and restricted null space is $ \mathcal{N}(AA^{D}\alpha_{A}) $, where $ \alpha_{A} = AA^{\dagger}+(A^{\dagger})^{\ast}(E_{n}-AA^{\dagger}) $. The one-sided strong DMP inverses were introduced from the perspectives of the column space, null space, and index of a matrix. The general expressions of the left (right) strong DMP inverse of $ A $ were given. We answered the question of when the left strong DMP inverse is consistent with the right strong DMP inverse. Based on the relationship between the left strong DMP inverse and the right DMP inverse, the necessary and sufficient conditions for the existence of the strong DMP inverse were given.
| [1] |
M. P. Drazin, Pseudo-inverses in associative rings and semigroup, Am. Math. Mon., 65 (1958), 506–514. http://doi.org/10.1080/00029890.1958.11991949 doi: 10.1080/00029890.1958.11991949
|
| [2] |
D. C. Zhang, Y. Zhao, D. Mosić, The generalized Drazin inverse of the sum of two elements in a Banach algebra, J. Comput. Appl. Math., 470 (2025), 116701. https://doi.org/10.1016/j.cam.2025.116701 doi: 10.1016/j.cam.2025.116701
|
| [3] | E. H. Moore, On the reciprocal of the general algebraic matrix, B. Am. Math. Soc., 26 (1920), 394–395. |
| [4] |
R. Penrose, A generalized inverse for matrices, Math. Proc. Cambridge, 51 (1955), 406–413. http://doi.org/10.1017/S0305004100030401 doi: 10.1017/S0305004100030401
|
| [5] | A. B. Israel, T. N. Greville, Generalized inverses: Theory and applications, Chichester: Wiley, 1977. |
| [6] |
R. E. Hartwig, K. Spindelböck, Matrices for which $A^{\ast}$ and $A^{\dagger}$ commmute, Linear Multilinear A., 14 (1983), 241–256. https://doi.org/10.1080/03081088308817561 doi: 10.1080/03081088308817561
|
| [7] |
O. M. Baksalary, G. P. H. Styan, G. Trenkler, On a matrix decomposition of Hartwig and Spindelböck, Linear Algebra Appl., 430 (2009), 2798–2812. https://doi.org/10.1016/j.laa.2009.01.015 doi: 10.1016/j.laa.2009.01.015
|
| [8] |
S. B. Malik, N. Thome, On a new generalized inverse for matrices of an arbitrary index, Appl. Math. Comput., 226 (2014), 575–580. http://dx.doi.org/10.1016/j.amc.2013.10.060 doi: 10.1016/j.amc.2013.10.060
|
| [9] |
H. F. Ma, X. S. Gao, P. S. Stanimirović, Characterizations, iterative method, sign pattern and perturbation analysis for the DMP inverse with its applications, Appl. Math. Comput., 378 (2020), 125196. https://doi.org/10.1016/j.amc.2020.125196 doi: 10.1016/j.amc.2020.125196
|
| [10] |
J. Benítez, E. Boasso, H. W. Jin, On one-sided $(B, C)$-inverses of arbitrary matrices, Electron. J. Linear Al., 32 (2017), 391–422. https://doi.org/10.13001/1081-3810.3487 doi: 10.13001/1081-3810.3487
|
| [11] |
D. S. Rakić, A note on Rao and Mitra's constrained inverse and Drazin's (b, c) inverse, Linear Algebra Appl., 523 (2017), 102–108. https://doi.org/10.1016/j.laa.2017.02.025 doi: 10.1016/j.laa.2017.02.025
|
| [12] |
M. P. Drazin, A class of outer generalized inverses, Linear Algebra Appl., 436 (2012), 1909–1923. https://doi.org/10.1016/j.laa.2011.09.004 doi: 10.1016/j.laa.2011.09.004
|
| [13] |
K. M. Prasad, K. S. Mohana, Core-EP inverse, Linear Multilinear A., 62 (2014), 792–804. https://doi.org/10.1080/03081087.2013.791690 doi: 10.1080/03081087.2013.791690
|
| [14] |
X. J. Liu, M. Y. Miu, H. W. Jin, Propertires and applications of the MP weak core inverse, Acta Math. Sci. A, 42A (2022), 1619–1632. https://doi.org/10.3969/j.issn.1003-3998.2022.06.003 doi: 10.3969/j.issn.1003-3998.2022.06.003
|
| [15] |
M. Mehdipour, A. Salemi, On a new generalized inverse of matrices, Linear Multilinear A., 66 (2018), 1046–1053. https://doi.org/10.1080/03081087.2017.1336200 doi: 10.1080/03081087.2017.1336200
|
| [16] |
J. L. Chen, D. Mosić, S. Z. Xu, On a new generalized inverse for Hilbert space operators, Quaest. Math., 43 (2020), 1331–1348. http://dx.doi.org/10.2989/16073606.2019.1619104 doi: 10.2989/16073606.2019.1619104
|
| [17] | S. Z. Xu, Q. Y. Xu, N. Zhou, The MPBT inverse of a complex matrix based on the Hartwig-Spindelböck decomposition, Ital. J. Pure Appl. Mat., 52 (2024), 205–218. |
| [18] |
K. S. Stojanović, D. Mosić, Generalization of the Moore-Penrose inverse, RACSAM Rev. R. Acad. A, 196 (2020), 114. https://doi.org/10.1007/s13398-020-00928-x doi: 10.1007/s13398-020-00928-x
|
| [19] |
H. X. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289–300. https://doi.org/10.1016/j.laa.2016.08.008 doi: 10.1016/j.laa.2016.08.008
|