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Abstract: A new-type matrix inverse based on the Hartwig-Spindelböck decomposition was
investigated, which is related to the DMP inverse, is the abbreviation of the Drazin Moore-Penrose
inverse, here we call this generalized inverse as the strong DMP inverse. We established the
relationships between this new-type inverse and other matrix generalized inverses. We proved that the
strong DMP inverse of a square complex matrix is a special type of outer inverse, where the restricted
column space is R(Ak) and restricted null space isN(AADαA), where αA = AA† + (A†)∗(En −AA†). The
one-sided strong DMP inverses were introduced from the perspectives of the column space, null space,
and index of a matrix. The general expressions of the left (right) strong DMP inverse of A were given.
We answered the question of when the left strong DMP inverse is consistent with the right strong DMP
inverse. Based on the relationship between the left strong DMP inverse and the right DMP inverse, the
necessary and sufficient conditions for the existence of the strong DMP inverse were given.
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1. Introduction

Let C be the complex field. The set Cm×n denotes the set of all m × n complex matrices over C. The
symbol A∗ denotes the conjugate transpose of A ∈ Cm×n. The symbol En denotes the identity matrix of
size n. Notations R(A) = {y ∈ Cm : y = Ax, x ∈ Cn} and N(A) = {x ∈ Cn : Ax = 0} will be used in the
sequel. The smallest positive integer k such that rank (Ak) = rank(Ak+1) is called the index of A ∈ Cn×n

and denoted by ind(A). The index can be used in definiton of the Drazin inverse [1, 2]. Let A ∈ Cm×n.
If a matrix X ∈ Cn×m satisfies AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA, then X is called
the Moore-Penrose inverse of A [3, 4] and denoted by X = A†. If AXA = A holds, we say that X is
a {1}-inverse of A (see [5]).
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Every matrix A ∈ Cn×n of rank r can be represented in the form

A = U
[

ΣK ΣL
0 0

]
U∗, (1.1)

where U ∈ Cn×n is unitary, Σ = σ1Er1⊕σ2Er2⊕· · ·⊕σtErt is the diagonal matrix of the nonzero singular
values of A, where σ1 > σ2 > · · · > σt > 0, r1 + · · · + rt = r, and K ∈ Cr×r and L ∈ Cr×(n−r) satisfy

KK∗ + LL∗ = Er.

The decomposition in (1.1) is known as the Hartwig-Spindelböck decomposition (or called the Σ-K-L
decomposition) [6].

Lemma 1.1. [7, p. 2799 (1.4)] Let A ∈ Cn×n. If A has the Hartwig-Spindelböck decomposition as
given in (1.1), then the expression of the Moore-Penrose inverse is

A† = U
[

K∗Σ−1 0
L∗Σ−1 0

]
U∗. (1.2)

For A ∈ Cn×n, the DMP inverse of A is introduced by using the Drazin and the Moore-Penrose
inverses of A in [8], and the formula of the DMP inverse of A is AD,† = ADAA† [8, Theorem 2.2]. The
iterative method of the DMP inverse can be seen in [9].

Definition 1.2. [8, Theorem 2.1] Let A ∈ Cn×n. If X ∈ Cn×n satisfies

XAX = X, XA = ADA, AkX = AkA†, (1.3)

we call X the DMP inverse of A. The DMP inverse is unique and denoted by AD,†.

Lemma 1.3. [8, Theorem 2.5] Let A ∈ Cn×n. If A has the Hartwig-Spindelböck decomposition as
given in (1.1), then

AD,† = U
[

(ΣK)D 0
0 0

]
U∗.

The expression of the DMP inverse of A is AD,† = U
[

(ΣK)D 0
0 0

]
U∗ by Lemma 1.3. Though the

classical Hartwig-Spindelböck decomposition, the corresponding exact expression of the strong DMP

inverse is given in Theorem 2.5 (see Section 2), which is AD,†
s = U

[
(ΣK)D (ΣK)DΣ−1L

0 0

]
U∗. In this

paper, we mainly propose the name of the strong DMP inverse from the perspective of the expression

AD,† = U
[

(ΣK)D 0
0 0

]
U∗ and the expression AD,†

s = U
[

(ΣK)D (ΣK)DΣ−1L
0 0

]
U∗. Of course, we

have also proven that the expression for the strong DMP inverse is AD,†
s = AD,†αA. Note that we can

use the DMP inverse to find the expression of the strong DMP inverse.
Let A, B,C ∈ Cn×n. A matrix Y ∈ Cn×n is said to be the (B,C)-inverse [10, 11] of A if

YAB = B, CAY = C, N(C) ⊆ N(Y), and R(Y) ⊆ R(B).
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If such Y exists, then it is unique. Note that the (B,C)-inverse is introduced by Drazin in the setting of
semigroups [12]. The symbol of the (B,C)-inverse of A is Y = A‖(B,C).

The structure of this paper is: In Section 1, we present the basic definitions and the Hartwig-
Spindelböck decomposition. This is the motivation for studying the strong DMP inverse. In Section 2,
we introduce the strong DMP inverse of a square complex matrix. The criteria and expressions of the
strong DMP inverse are obtained. In Section 3, the one-sided strong DMP inverse is introduced.
We answer the question of when the left strong DMP inverse is consistent with the right strong
DMP inverse.

2. Strong DMP inverse

In this section, we introduce the strong DMP inverse of a square complex matrix and prove this
inverse is unique. The criteria for the strong DMP invertibility of a matrix and the exact expressions
of the strong DMP inverse are obtained. The distinction between the strong DMP inverse and various
types of generalized inverses is established though a specific example. We prove that the strong DMP
inverse of a square complex matrix is a special type of outer inverse, where the restricted column space
is R(Ak) and restricted null space is N(AADαA).

Using Lemma 1.1, it is not difficult to obtain the following lemma.

Lemma 2.1. Let A ∈ Cn×n and αA = AA† + (A†)∗(En − AA†). If A has the Hartwig-Spindelböck
decomposition as given in (1.1), then

αA = U
[

Er Σ−1L
0 0

]
U∗. (2.1)

Definition 2.2. Let A, X ∈ Cn×n and αA = AA† + (A†)∗(En − AA†). If

XAX = X, XA = AD,†A, AX = AAD,†αA, (2.2)

then X is called the strong DMP inverse of A and denoted by X = AD,†
s .

Theorem 2.3. Let A ∈ Cn×n. Then the strong DMP inverse of A is unique. Moreover, the formula of
the strong DMP inverse is AD,†

s = AD,†αA.

Proof.
X = XAX = AD,†AX = AD,†AAD,†αA = AD,†αA

by Definition 1.2. �

Example 2.4. The strong DMP inverse is different from the Drazin inverse AD [1], the Moore-Penrose
inverse A† [3, 4], the core-EP inverse A †O [13], the MPWC inverse A◦ [14], the CMP inverse Ac,† [15],
the MPCEP inverse A†, †O [16], the MPBT inverse A†,� [17], and the gMP inverse A� [18]. Let

A =


−1 1 −i −1
−1 + i 0 i −i
1 − i i −i −1 + i
−1 − i 0 −1 1

 ∈ C4×4.
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Then it is easy to check that

A† =


−1

4 −1
8 −

1
8 i 0 −1

8 + 1
8 i

3
20 + 1

5 i − 1
40 −

13
40 i −1

5 −
3
5 i −13

40 + 1
40 i

− 1
20 + 2

5 i − 7
40 −

11
40 i −2

5 −
1
5 i −11

40 + 7
40 i

−1
5 + 3

20 i − 7
40 −

1
40 i −2

5 −
1
5 i − 1

40 + 7
40 i

 ,

AA† =


1 0 0 0
0 1

2 0 −1
2 i

0 0 1 0
0 1

2 i 0 1
2

 ,

A3(A3)† =


1
7

1
7 + 1

7 i −1
7 −

1
7 i 1

7 −
1
7 i

1
7 −

1
7 i 2

7 −2
7 −2

7 i
−1

7 + 1
7 i −2

7
2
7

2
7 i

1
7 + 1

7 i 2
7 i −2

7 i 2
7

 ,

and

αA =


1 0 0 0
0 1

2 + 1
4 i 0 −1

4 −
1
2 i

0 1
2 i 1 −1

2
0 −1

4 + 1
2 i 0 1

2 −
1
4 i

 .
Thus

AD,†
s =


1 1

2 + 5
4 i 2 −5

4 −
1
2 i

1 − i 7
4 + 3

4 i 2 − 2i −7
4 + 3

4 i
−1 + i −7

4 −
3
4 i −2 + 2i 7

4 −
3
4 i

1 + i −3
4 + 7

4 i 2 + 2i −3
4 −

7
4 i

 ,
however

AD =


1 −2 + i 2 −1 − 3i

1 − i −1 + 3i 2 − 2i −4 − 2i
−1 + i 1 − 3i −2 + 2i 4 + 2i
1 + i −3 − i 2 + 2i 2 − 4i

 ,

A †O =


1
7 i −1

7 + 1
7 i 1

7 −
1
7 i 1

7 + 1
7 i

1
7 + 1

7 i 2
7 i −2

7 i 2
7

−1
7 −

1
7 i −2

7 i 2
7 i −2

7
−1

7 + 1
7 i −2

7
2
7

2
7 i

 ,

A◦ =


3
4 i 3

28 −
3

14 i 3
14 + 9

28 i − 3
14 −

3
28 i

−1
4 i − 1

28 + 1
14 i − 1

14 −
3
28 i 1

14 + 1
28 i

1
4 i 1

28 −
1

14 i 1
14 + 3

28 i − 1
14 −

1
28 i

1
4 − 1

14 −
1

28 i 3
28 −

1
14 i − 1

28 + 1
14 i

 ,

Ac,† =


−3

4 i −3
8 i −3

2 i −3
8

1
4 i 1

8 i 1
2 i 1

8
−1

4 i −1
8 i −1

2 i −1
8

−1
4 −1

8 −1
2 −1

8 i

 ,
AIMS Mathematics Volume 10, Issue 12, 30017–30028.
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A†, †O =


− 3

28 − 3
28 −

3
28 i 3

28 + 3
28 i − 3

28 + 3
28 i

1
28

1
28 + 1

28 i − 1
28 −

1
28 i 1

28 −
1

28 i
− 1

28 − 1
28 −

1
28 i 1

28 + 1
28 i − 1

28 + 1
28 i

1
28 i − 1

28 + 1
28 i 1

28 −
1
28 i 1

28 + 1
28 i

 ,

A†,� =


−1

4 − 1
12 −

1
12 i 1

12 + 1
12 i − 1

12 + 1
12 i

3
20 + 1

5 i 1
20 −

1
60 i − 1

20 + 1
60 i − 1

60 −
1
20 i

1
20 + 2

5 i 1
60 −

7
60 i − 1

60 + 7
60 i − 7

60 −
1
60 i

−1
5 + 3

20 i 1
60 + 1

20 i − 1
60 −

1
20 i 1

20 −
1
60 i

 ,

and A� =


− 7

80 − 7
80 −

7
80 i 7

80 + 7
80 i − 7

80 + 7
80 i

1
40 + 1

80 i 1
80 + 3

80 i − 1
80 −

3
80 i 3

80 −
1
80 i

− 3
80 −

1
40 i − 1

80 −
1

16 i 1
80 + 1

16 i − 1
16 + 1

80 i
3
80 + 1

40 i 1
80 + 1

16 i − 1
80 −

1
16 i 1

16 −
1
80 i

 .
Though the classical Hartwig-Spindelböck decomposition, the corresponding exact expression of

the strong DMP inverse is given in the following theorem.

Theorem 2.5. Let A ∈ Cn×n. If A has the Hartwig-Spindelböck decomposition as given in (1.1), then
the expression of the strong DMP inverse of A is

AD,†
s = U

[
(ΣK)D (ΣK)DΣ−1L

0 0

]
U∗. (2.3)

Proof. Direct calculation based on AD,†
s = AD,†αA yields the results. �

In the following theorem, we will discuss when the DMP inverse and the strong DMP inverse are
consistent from the perspective of the Hartwig-Spindelböck decomposition.

Theorem 2.6. Let A ∈ Cn×n with ind(A) = k. If A has the Hartwig-Spindelböck decomposition as
given in (1.1), then the DMP inverse coincides with the strong DMP inverse of A if and only if the
condition (ΣK)k−1Σ−1L = 0 holds.

Proof. By Lemma 1.3 the DMP inverse of A coincides with the strong DMP inverse of A if and only if

(ΣK)DΣ−1L = 0,

by equality (2.3). In the following, we will prove that (ΣK)DΣ−1L = 0 holds if and only
if (ΣK)k−1Σ−1L = 0 holds. Note that the condition ind(A) = k gives ind(ΣK) = k − 1. If (ΣK)DΣ−1L = 0
holds, then

(ΣK)k−1Σ−1L = (ΣK)k(ΣK)DΣ−1L = 0.

If (ΣK)k−1Σ−1L = 0 holds, then

(ΣK)DΣ−1L = (ΣK)D(ΣK)(ΣK)DΣ−1L

= (ΣK)D(ΣK)k−1
[
(ΣK)D

]k−1
Σ−1L

= (ΣK)D
[
(ΣK)D

]k−1
(ΣK)k−1Σ−1L

= 0.

�
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Theorem 2.7. Let A, X ∈ Cn×n and αA = AA† + (A†)∗(En − AA†). Then X is the strong DMP inverse if
and only if

XAX = X, XA = ADA, AX = AADαA. (2.4)

Moreover, the formula of the strong DMP inverse is AD,†
s = ADαA.

Proof. It is clear by AD,†A = ADA and AAD,†αA = ADAαA. �

Theorem 2.8. Let A ∈ Cn×n with ind(A) = k and αA = AA† + (A†)∗(En − AA†). Then the strong DMP
inverse is the (Ak, AADαA)-inverse of A.

Proof. Let Y be the strong DMP inverse of A. By Theorem 2.7, the formula of the strong DMP inverse
is AD,†

s = ADαA, that is, Y = ADαA.

αAA = U
[

Er Σ−1L
0 0

] [
ΣK ΣL
0 0

]
U∗ = U

[
ErΣK ErΣL

0 0

]
U∗

= U
[

ΣK ΣL
0 0

]
U∗ = A

gives αAA = A. Then

YAAk = ADαAAAk = ADαAAk+1 = Ak,

AADαAAY = AADαAAADαA = AADAADαA = AADαA.
(2.5)

For arbitrary x ∈ N(AADαA), we have AADαAx = 0. Then

Y x = ADαAx = ADAADαAx = AD(AADαAx) = 0,

which gives N(AADαA) ⊆ N(Y). The condition

Y = ADαA = ADAADαA = Ak(AD)k+1αA

means that R(Y) ⊆ R(Ak). Thus, the strong DMP inverse is the (Ak, AADαA)-inverse of A by [10,
Theorem 7.1]. �

3. One-sided strong DMP inverse

Motivated by the ideal of the one-sided (B,C)-inverse [10], the one-sided strong DMP inverse is
introduced. The one-sided strong DMP inverse is introduced from the perspectives of the column
space, null space, and index of a matrix. We answer the question of when the left strong DMP inverse
is consistent with the right strong DMP inverse. Based on the relationship between the left strong
DMP inverse and the right DMP inverse, the necessary and sufficient conditions for the existence of
the strong DMP inverse are given. The following definition can be found by [10, Definition 2.7],
however, for the sake of our readers, we provide specific definitions.

Definition 3.1. Let A ∈ Cn×n with ind (A) = k. We say that X ∈ Cn×n is a left strong DMP inverse of A
if we have

N(AADαA) ⊆ N(X) and XAk+1 = Ak.

We say that Y ∈ Cn×n is a right strong DMP inverse of A if we have

R(Y) ⊆ R(Ak) and ADAY = ADαA.

AIMS Mathematics Volume 10, Issue 12, 30017–30028.
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In the following theorem, an expression of the left strong DMP inverse of A is given.

Theorem 3.2. Let A ∈ Cn×n with ind (A) = k. Then

ADαA + V
[
En − Ak+1(Ak+1)−

]
AADαA

is the expression of the left strong DMP inverse of A, for any V ∈ Cn×n and any (Ak+1)− ∈ (Ak+1){1}.

Proof. Let X = ADαA + V
[
En − Ak+1(Ak+1)−

]
AADαA. For arbitrary t ∈ N(AADαA), we have

AADαAt = 0, and then

Xt =
{
ADαA + V

[
En − Ak+1(Ak+1)−

]
AADαA

}
t

=
{
ADAADαA + V

[
En − Ak+1(Ak+1)−

]
AADαA

}
t

=
{
AD + V

[
En − Ak+1(Ak+1)−

]}
AADαAt

= 0.

Based on the arbitrariness of t, we have N(AADαA) ⊆ N(X). By the proof of Theorem 2.8, we have
αAA = A. Then

XAk+1 =
{
ADαA + V

[
En − Ak+1(Ak+1)−

]
AADαA

}
Ak+1

= ADαAAk+1 + V
[
En − Ak+1(Ak+1)−

]
AADαAAk+1

= ADαAAAk + V
[
En − Ak+1(Ak+1)−

]
AADαAAAk

= ADAAk + V
[
En − Ak+1(Ak+1)−

]
AADAAk

= ADAk+1 + V
[
En − Ak+1(Ak+1)−

]
Ak+1ADA

= Ak + V
[
Ak+1 − Ak+1(Ak+1)−Ak+1

]
ADA

= Ak,

which gives XAk+1 = Ak, and thus X = ADαA + V
[
En − Ak+1(Ak+1)−

]
AADαA is a general expression of

the left strong DMP inverse of A by N(AADαA) ⊆ N(X) and Definition 3.1. �

In the following theorem, an expression of the right strong DMP inverse of A is given.

Theorem 3.3. Let A ∈ Cn×n with ind (A) = k. Then

ADαA + Ak
[
En − (Ak+1)−Ak+1

]
U

is the expression of the right strong DMP inverse of A, for any U ∈ Cn×n and any (Ak+1)− ∈ (Ak+1){1}.

Proof. Let Y = ADαA + Ak
[
En − (Ak+1)−Ak+1

]
U. By AD = Ak(AD)k+1, we have

Y = ADαA + Ak
[
En − (Ak+1)−Ak+1

]
U

= Ak(AD)k+1αA + Ak
[
En − (Ak+1)−Ak+1

]
U

= Ak
(
(AD)k+1αA +

[
En − (Ak+1)−Ak+1

]
U

)
,

AIMS Mathematics Volume 10, Issue 12, 30017–30028.
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which gives R(Y) ⊆ R(Ak). By AD is an outer inverse of A, we have

ADAY = ADAADαA + ADAAk
[
En − (Ak+1)−Ak+1

]
U

= ADαA + ADAk+1
[
En − (Ak+1)−Ak+1

]
U

= ADαA + AD
[
Ak+1 − Ak+1(Ak+1)−Ak+1

]
U

= ADαA + AD
[
Ak+1 − Ak+1

]
U

= ADαA,

which gives ADAY = ADαA, and thus ADαA + Ak
[
En − (Ak+1)−Ak+1

]
U is a general expression of the

right strong DMP inverse of A by R(Y) ⊆ R(Ak) and Definition 3.1. �

In the following Theorems 3.4 and 3.5, the necessary and sufficient conditions are given for when
a matrix X ∈ Cn×n is the left strong DMP inverse and the right strong DMP inverse of a given
matrix A ∈ Cn×n, respectively.

Theorem 3.4. Let A ∈ Cn×n with ind (A) = k. X ∈ Cn×n is a left strong DMP inverse of A and only if
both N(AkαA) ⊆ N(X) and XAk+1 = Ak.

Proof. By Definition 3.1, it suffices to prove the following equality:

N(AkαA) = N(AADαA).

For arbitrary s ∈ N(AkαA), we have AkαAs = 0, and then

AADαAs = (AD)kAkαAs = 0,

which gives s ∈ N(AADαA), so N(AkαA) ⊆ N(AADαA) by the arbitrariness of s.
For arbitrary t ∈ N(AADαA), we have AADαAt = 0, and then

AkαAt = ADAk+1αAt = AkAADαAt = 0,

which gives t ∈ N(AkαA), so N(AADαA) ⊆ N(AkαA) by the arbitrariness of t. Thus N(AkαA) =

N(AADαA) holds by N(AkαA) ⊆ N(AADαA) and N(AADαA) ⊆ N(AkαA). �

Theorem 3.5. Let A ∈ Cn×n with ind (A) = k. Then Y is a right strong DMP inverse of A if and only if
both Y = Ak(Ak)†Y and Ak+1Y = AkαA hold.

Proof. “⇒” Let Y be a right strong DMP inverse of A. Then by Definition 3.1, we have

R(Y) ⊆ R(Ak) and ADAY = ADαA.

The condition R(Y) ⊆ R(Ak) gives Y = AkU for some U ∈ Cn×n, then

Y = AkU = Ak(Ak)†AkU = Ak(Ak)†Y.

Pre-multiplying Ak+1 on the condition ADAY = ADαA gives

Ak+1ADAY = Ak+1ADαA,
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which gives Ak+1Y = AkαA by Ak+1AD = Ak.
“⇐” The condition Y = Ak(Ak)†Y means R(Y) ⊆ R(Ak) is trivial. Pre-multiplying (AD)k+1 on the

condition Ak+1Y = AkαA gives (AD)k+1Ak+1Y = (AD)k+1AkαA, which is ADAY = ADαA, and thus, Y is a
right strong DMP inverse of A by Definition 3.1. �

Note that Theorem 3.5 also can be found by [10, Definition 2.7]. For the convenience of the readers,
we have retained the proof of Theorem 3.5.

Corollary 3.6. Let A ∈ Cn×n with ind (A) = k. Then Y is a right strong DMP inverse of A if and only if
both Y = AA †OY and Ak+1Y = AkαA hold.

Proof. By [19, Corollary 3.3], we have AA †O = Ak(Ak)†, and thus the proof is finished by Theorem 3.5.
�

A natural question is: If a complex matrix is both left strong DMP invertible and right strong DMP
invertible, is it strong DMP invertible? In Theorem 3.7, we answer this question.

Theorem 3.7. Let A ∈ Cn×n. If A is both left and right strong DMP invertible, then the left strong DMP
inverse of A and the right strong DMP inverse of A are unique. Moreover, the left strong DMP inverse
of A coincides with the right strong DMP inverse of A.

Proof. Let X be a left strong DMP inverse of A and Y be a right strong DMP inverse of A. Then by
Definition 3.1,

N(AADαA) ⊆ N(X) and XAk+1 = Ak (3.1)

and
R(Y) ⊆ R(Ak) and ADAY = ADαA (3.2)

hold. Thus X = UAADαA and Y = AkV for some U,V ∈ Cn×n by (3.1) and (3.2). Note that by the proof
of Theorem 2.8, we have αAA = A. Therefore,

X = UAADαA = UAADAY = UAADαAAY = XAY;
Y = AkV = XAk+1V = XAAkV = XAY

(3.3)

by (3.1) and (3.2). Hence X = Y by (3.3). If Z is a another right strong DMP inverse of A, one can
prove X = Z in a similar way. Then Y = Z by X = Y and X = Z, which says the right strong DMP
inverse of A is unique. One can prove the left strong DMP inverse of A is unique by a similar proof
of the uniqueness of the right strong DMP inverse of A. By the above proof, we can see that the left
strong DMP inverse of A coincides with the right strong DMP inverse of A. �

Theorem 3.8. Let A, X ∈ Cn×n. Then the following statements are equivalent:

(1) X is the strong DMP inverse of A;

(2) N(AADαA) ⊆ N(X), XAk+1 = Ak, R(X) ⊆ R(Ak), and ADAX = ADαA;

(3) N(AkαA) ⊆ N(X), XAk+1 = Ak, R(X) ⊆ R(Ak), and ADAX = ADαA;

(4) N(AADαA) ⊆ N(X), XAk+1 = Ak, X = Ak(Ak)†X, and Ak+1X = AkαA;

(5) N(AkαA) ⊆ N(X), XAk+1 = Ak, X = Ak(Ak)†X, and Ak+1X = AkαA;
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(6) N(AADαA) ⊆ N(X), XAk+1 = Ak, X = AA †OX, and Ak+1X = AkαA;

(7) N(AkαA) ⊆ N(X), XAk+1 = Ak, X = AA †OX, and Ak+1X = AkαA.

Proof. “(1)⇔ (2)” is trivial by Definition 3.1 and Theorem 3.7.
“(2)⇔ (3)” by Theorem 3.4.
“(2)⇔ (4)” and “(3)⇔ (5)” by Theorem 3.5.
“(2)⇔ (6)” and “(3)⇔ (7)” by Corollary 3.6. �

Note that, in Theorem 3.8, the first two equations or the last two equations among the items (2)–(7)
are sufficient to characterize X = AD,† equivalently by Theorem 3.4 and [10, Definition 2.7].

4. Conclusions

We introduce the strong DMP inverse of a square complex matrix and prove that the strong DMP
inverse of a square complex matrix is unique. The criteria for the strong DMP invertibility of a matrix
and the exact expressions of the strong DMP inverse are obtained. The one-sided strong DMP inverse
is introduced. We answer the question of when the left strong DMP inverse is consistent with the right
strong DMP inverse, and we describe perspectives for further research:
(1) Considering the matrix partial orders based on the generalized inverses related to the strong
DMP inverse.
(2) Extending the strong DMP inverse of a complex matrix to an element in rings.
(3) The column space and the null space of a complex matrix can be used to study the generalized
inverses for a complex matrix.
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