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Abstract: In this article, we investigated the integrability of the nonlinear dynamical Kairat-X
model through Painlevé analysis, demonstrating that the equation satisfies the Painlevé property and is
therefore integrable. We applied the bilinear Hirota method to derive several exact solutions, including
breather wave, novel periodic wave, periodic cross-kink wave, kink-rogue wave interaction, and one-
soliton and two-soliton solutions. A machine learning multi-layer-perceptron regressor algorithm was
applied to represent the behavior of the actual, and to predict, the above solutions. Furthermore, we
employed an asymptotic analysis on the gain solutions to expect the demonstration of the asymptotic
behavior of these analytical solutions. The soliton solutions obtained were novel and exhibited
improved reliability compared to previously reported results. These findings were further validated
using symbolic computation software. A comparison with the existing literature revealed that the
proposed solutions were more applicable and accurate. Several of the results were visualized using
two-dimensional, three-dimensional, and contour surface plots.
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1. Introduction

Nonlinear evolution equations (NLEEs) play an essential role in describing a vast arrangement of
physical phenomena that make an appearance in fluid dynamics, plasma physics, nonlinear optics,
and quantum field theory. Because of its numerous uses in nonlinear research, soliton theory has
become one of the most active areas in mathematical physics. Solitons, self-reinforcing solitary
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waves, emerge in a multiple array of physical systems, from fluid dynamics and optical fibers to
plasma physics and Bose-Einstein condensates. Soliton theory has been generally studied in several
fields, including physics, mathematics, and engineering, and high-speed data transmission is made
possible by optical solitons, which are light pulses that travel across optical fibers without dispersion.
These wave structures, which conserve their shape and speed even after interactions, are foundational
to understanding several nonlinear phenomena. Research on soliton theory is ongoing, with new
findings and advancements occurring frequently. Quantum solitons, soliton-based computing, solitons
in nonlinear lattices, topological solitons, and experimental realizations are some of the most modern
and sophisticated areas of soliton theory. Researchers have made remarkable progress in understanding
the behavior of solitons and their application in different systems. Creating new mathematical
models that accurately depict how solitons behave in various systems and coming up with innovative
methods for creating and modifying solitons are some of the major issues facing soliton theory.
The underlying mathematical models that assist solitonic solutions are nonlinear partial differential
equations (PDEs) that express integrability under particular conditions. The capacity of the Kairat-
X equation, a generalized nonlinear partial differential equation, contributes as a rich mathematical
model for studying such wave dynamics. This equation represents the cooperation between dispersion
and nonlinearity and is known to exhibit a vast variety of nonlinear wave structures depending on
the parameter scheme. The study of novel integrable and non-integrable NLEEs has received a lot of
attention in an effort to examine their integrability characteristics and soliton solutions. The Kairat-X
equation, introduced by Myrzakulov et al. [1],

Uy — 3(Ugldy)y + Uxxxe = 0. (1.1)

Many researchers such as, Xiao, Barak, and Hleili used the Riccati modified extended simple
equation method in [2] on Kairat-II and Kairat-X equations, Wazwaz, A. M used Painlevé analysis to
find the multiple soliton solutions [3], Myrzakulov and Umurzakhova used the novel auxilary equation
method on the Kairat-II and Kairat-X equations to find traveling wave solutions [4], Seadawy and
Alomari, F. A used the extended simplest equation method on fractional Kairat-X equation [5], Asim
Zafar and M. Raheel used the expa function, modified simplest equation method, and generalized
Kudryashov method on truncated M-fractional Kairat-X and Kairat-II equations [6], Mathanaranjan,
T. used the Lie symmetries method on the Kairat-II-X equation [7], Al-Sawalha and Mukhtar used
the Riccati-Bernoulli sub-ODE technique and the Bécklund transformation on confirmable Kairat
equations [8], Rafiq and Alsaud used the Hirota bilinear method and linear superposition principle
(LSP) on Kairat-X equation [9], Qahiti and Alsafri used the generalized (r + %) expension method and
simple (%) method on Kairat-X equation [10] to obtain exact solutions of the Kairat-X equation.

In this paper, two analytical techniques are used for the Kairat-X equation, namely Painlevé
analysis, to confirm the integrability, and Hirota bilinear exact soliton solutions, respectively. Exact
solutions are obtained only when an equation is integrable and only integrable equations yield full
analytic solutions. That is why, in this article, we use the analytical technique Painlevé analysis to find
the integrability of a nonlinear differential equation. Over the past decade, many researchers executed
Painlevé tests on the following equations: the nonlinear generalized variable coefficient KdV-type
equation [11], the third order nonlinear Schrodinger equation [12], the extended Korteweg-de Vries
equation [13], the variable-coeflicient generalized Calogero—Bogoyavlenskii—Schiff equation [14], the
generalized KP equation [15], the coupled Higgs equation [16], the Sasa—Satsuma equation [17], the
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Sawada-Kotera, Lax and Caudrey-Dodd-Gibbon equations [18], the (3+1)-dimensional Boussinesq-
type equation [19], the pseudo-parabolic type equations [20], and the (3+1)-dimensional Painlevé
integrable equation [21]. We apply Painlevé analysis on the Kairat-X model to find the model is
integrable. Then, we proceed to apply the Hirota bilinear method to derive exact soliton solutions. The
Hirota Bilinear Method is one of the most graceful and powerful techniques in soliton theory; it is a
direct method to construct soliton solutions by transforming a nonlinear PDE into bilinear form. This
method is also used in distinct equations such as the fifth-order KdV-type equation [22], the nonlocal
reverse space-time mKdV equation [23], the generalized coupled higher-order nonlinear Schrodinger
equations [24], the Korteweg—de Vries equation [25], the (2+1)-dimensional Hirota—Satsuma—Ito
equation [26], the (4+1)-dimensional BLMP equation [27], the generalized (2+1)-dimensional Hirota
bilinear equation [28], the Fractional Sawada-Kotera Equation [29], the generalized perturbed KdV
equation [30], and nonlinear partial differential equations [31].

Our primary objective of this work is to apply Painlevé analysis to examine the integrability of the
Kairat-X equation and to derive novel analytical solutions, including breather waves, new periodic
waves, periodic cross-kink waves, kink-rogue wave interactions, and one-soliton and two-soliton
solutions, by employing the Hirota bilinear method. The machine learning multi-layer-perceptron
regressor algorithm is applied to represent the behavior of the actual, and to predict the above
solutions. Furthermore, we use asymptotic analysis to expect the physical demonstration of the graphs
corresponding to the obtained soliton solutions.

This paper includes the following sections: Section 2: Sketch of Painlevé analysis and its outcomes;
Section 3: Model’s bilinearization; Section 4: Application of bilinear Hirota method; Section 5:
Graphical representation; Section 6: Machine learning analysis; Section 7: Asymptotic analysis; and
Section 8: Conclusions.

2. Sketch of Painlevé analysis

The Painlevé analysis is a test for the integrability of nonlinear partial differential equations
(NLPDEs). It checks whether the only movable singularities of the solutions are poles. Consider a
NLPDE:

(D(E’ EG] ) 592’ 59192’ 39191 ) EGsza ) = 0 (21)

The analysis is based on the assumption that the solution = possesses a singularity manifold defined
by
0(6,,6,, ...,6,) = 0. (2.2)

The solution E is then expanded as a generalized Laurent series about this singular manifold:

B0, 02, .0, O0) = O (01, 02,..,6) ) Eil01,0,..., 0,)0 (61, 02, .., 6, (2.3)
i=0
where Z;(0) (fori = 0,1,2,...) and ©(0) are arbitrary analytic functions, and € is a negative integer
(the leading-order exponent).
The Painlevé analysis proceeds in the following steps:
Step 1: The dominant terms in the NLPDE are identified by substituting the leading-order behavior of
the series,

(1]

= 0%, (2.4)
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into the NLPDE (2.1). By balancing the terms of the lowest power in ®, an algebraic equation for the
exponent € is obtained, and € must be a negative integer.

Step 2: Once € is found, substituting the leading-order term (2.4) into the NLPDE and setting the
coeflicient of the lowest power of ® to zero yields an equation for the non-zero leading coefficient Zy.
This equation often contains derivatives of ©.

Step 3: The series expansion (2.3) is now substituted into the full NLPDE (2.1). This results in a
sequence of equations for the coeflicients Z;. For coefficient =;, the equation typically takes the form:

L(Eo, ©)E; = F(Ep, ..., Ei-1,0), (2.5)

—

where L is a linear differential operator acting on =;. The values of the index i for which the
determinant of operator L vanishes (i.e., when L is singular) are called the resonance values denoted
by i = ri,r,.... These values indicate the locations in the series where arbitrary functions can be
introduced. The equation for the resonance values is found by considering the coefficient of Z; in the
equation for @€,

Step 4: The NLPDE is said to pass the Painlevé test if the number of arbitrary functions introduced (the
=, coefficients and ®) matches the order of the NLPDE. Specifically, at each positive integer resonance
value i = r, the right-hand side of the equation for E,, F(&,...,Z,_1,®), must vanish identically.
These are the compatibility conditions or solvability conditions.

Step S: If all conditions are met, namely, the leading-order exponent € is a negative integer, and the
compatibility conditions are satisfied at all positive integer resonance values, then the NLPDE (2.1) is
considered to possess the Painlevé property and is a Painlevé integrable system.

2.1. Painlevé analysis on the Kairat-X equation

In this section, we detail the application of the Painlevé analysis to the nonlinear differential Kairat-
X equation (denoted as Eq (1.1) in the original context, though the equation is not explicitly given
here). The analysis assumes a solution with a singular manifold ®(x, ¢) = 0,

O(x, 1) =0. (2.6)

To determine the leading-order exponent € and the coefficient Z, we substitute the dominant term
2 =~ (0 (compare with Eq (2.4)) into the Kairat-X equation. By balancing the terms of the lowest
power in @, the following values are obtained:

e=-1, &y=-20,. 2.7)

Substituting the full Laurent series expansion (2.3) into the Kairat-X equation and collecting terms
of the same power in ® yields a set of equations for the coefficients Z;. The indices i for which
the coeflicient =; becomes arbitrary (due to the vanishing of the linear operator coefficient) are the
resonance values. These values are

i=-3,-1,2,4.

The resonance at i = —1 1s always associated with the arbitrary nature of the singular manifold O(x, 1),
and the negative values i = —3, —1 are not physical in this context. The positive integer resonances are
i=2andi=4.
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The maximum positive resonance is rm,x = 4. Based on this, the Laurent series is truncated up to
the 2,4 term::
E=E@ ' +E + 50"+ E;0% + £,0°. (2.8)

Putting Eq (2.8) into the Kairat-X equation yields the subsequent coeflicients:

_ _2®t®xt - ®t®xxxx - ®tt® -40 ®xxxt + 2®xt@xxx
B 120,03

(2.9)

[0

-0°0,0° - 20'0,0,... — 60’0 ®XX®XXXXX
1440707

The positive integer resonance values i = 2 and i = 4 indicate that the coefficients =, and =, must
appear as arbitrary functions. The final step requires checking the compatibility conditions at i = 2 and
i = 4. If the equations for =, and =, are satisfied identically when =, and Z, are treated as arbitrary
functions, the compatibility conditions hold. Since the provided outcomes state that =, and =, appear
as arbitrary functions, and the compatibility conditions are thus satisfied, we conclude that the Kairat-X
equation (1.1) possesses the Painlevé property and is deemed Painlevé integrable.

[1]

3= (2.10)

3. The model’s bilinearization

The Hirota formula

n D lill (t%

Equation ( 1.1) converts into bilinear form through the transformation u = —2(In%),,

) 2(/J],. ,:uj)é:(:ul" ’#] . (31)

=R ool =1

— 2880 — 287+ 208, — 68,8, + 69,8, + 288, = 0. (3.2)
In the form of D-operators, it can be expressed as:
(D% -3D,D* + D,D?) 2.2 = 0. (3.3)
4. Application of the bilinear Hirota method
4.1. Breather wave solution
Let the following ansatz for a breather wave solution [24] be
S1 =at+x,
S2 = axt + X, “4.1)

L = e P + kicos(psy) + kpel'st.
Putting Eq (4.1) and their respective derivatives into Eq (3.2), we get the following algebraic system:

8az/<fp4 - 2a2/<1p + 32a1/<2p‘1‘ + 8a%1<2p% =0,
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2a1/<1p1p3 + 6a2K1p]p3 - 6a1/<]p‘;’p - 2a2/<1p?p —4dajakp1p =0,
2arkpt - 2a§K1p2 — 6al/<1p%p2 - 6a2/<1p%p2 + 2all<1p‘1l + Za%/qp% =0,
—2a1kiK2p1p° = 64K K2 P1P° + 6a1K KPP + 2a0K1Ka Py P + dayaskikapip = 0,
2ark1 Kk p* — 2a§K1K2p2 - 6a1K1K2p%p2 — 6a2/<11<2pfp2 + 2all<1/<2p‘1L + 2a%/<1/<2p% =0,
after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:

Set 1:
©p* (p* - 3p%)

lai =3p* = pl.az = p* = 3plur = : 4.2)
4p} (p} - 3p°)
2 (ko prer (Cr=r)es) — i psin (p ((p* = 3p3) t + x)) + py (-e7 (Cri=rDe)))
ven == - — (43)
K2€P1((3p _pl)H—x) + K| COS (p ((p2 — 3p%) t+ x)) + e—p1((3p —pl)t+x)
Set 2: , .
4p 4ip p 1 , ,
{a :_5a2:—_,p :——,K2:— _1+3l\/§K}, (4.4)
: 3 343 ! \3 8 ( ) !
2 (szle"‘(“””) — ki psin (p (ast + x)) + p (—em(‘(“lm))))
== 45
l/l(x ) K2€P1(a1t+x) + K1 COS (p (azt + x)) + epl(—(alt+x)) ( )
Set 3: ) i
4lp 2 iKl
fa1 =———=.ay = —4p*, p1 = - V3p, ko = ——1}, (4.6)
V3 6V3 - 2i
2 (szle”‘(“"”> —kipsin(p (axt + x)) + pi (—e"'(‘(“l’”))))
== 4.7
l/l(x ) K2€P1(u1t+x) + Kl CcOS (p (azt + x)) + epl(_((l]t"'x)) ( )
Set 4:
a1 = 55 (1 +40V3) P02 = 555 (10=90V3) ' pr = =3 =i (V=) o = 01 @49)
49 343 7
(x.1) 213 1) 2 (e exp (3 4V ) 2 (x4 502 (1440 V3) 4.9)
u(x,t) =— ' .
7 (Kz + eXP(% \/—i(4 V3 - i)p2 (x + 5> (t +4i \/§t))))
4.2. New periodic solution
Assume the following ansatz for a Lump-kink solution [25]:
S1 =at+a1x+as,
= byt + by x + b3,
n e (4.10)

§3 = Ct + Cc1x + c3,

L = ke + e + Ky cos(psr) + k3 cosh(gz) + ky.

Putting Eq (4.10) and their respective derivatives into Eq (3.2), we get the following algebraic
system:

8a§l<1 + 32a?a2/<1 + 8bfby<§p4 - 2b§/<§p2 - 2c§/<§ - 80?02/% =0,
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—6b%sz1K2K3P3 - 217?02K2K3P3 + 2bZC?K2K3P + 6b1C%CZK2K3p +4bycakoksp = 0,
—6b1byciKyK3 p* — 6bTC Cokak3 p* + Zb?b2K2K3P4 — 2b3KaK3 P> + 205Kk + ZCTCZKZ’Q =0,
16c,¢3K5 + 4c3k5 = 0,

2wbikap® + 6a1bibskap® — 6atiabikop — 2aibskap — darbrkap = 0,

~6araxbiiap® — 6aibibaksp® + 23k + 2ayaxks + 2bibaksp* = 2b3kap® = 0,

2ajc2k3 + 6axd;C1K3 + 6a1C1C2K3 + 2a507K; + darcaks = 0,

6aicicaks + 6a2a1CTKs + 2a2a1K5 + 2a5K3 + 26363 + 2¢i a3 = 0,

2a,a3 Ky + 2a5k4 = 0,

—2a;bikikop” — 6a1b1bok Ko P’ + 6ajarbikikap + 2aibakikop + dasbrkikap = 0,
—6aiabiKikp” — 6aibibyk ko p” + 2a5K1K; + 2a0a:K1K2 + 2b1boki ko p* — 2b5k1Kp” = 0,
—261?C2K1K3 — 6612a%01K1K3 - 6611C%C2K1K3 - ZaZC?K1K3 — 4arcrrinz = 0,

6aicCakiKs + 6ara  CiKIKs + 207K K3 + 2a3K1K3 + 205K1K3 + 2¢1C2Kk1K5 = 0,

2a2a?K1K4 + 20§K1K4 =4,

2b?b2K2K4p4 - 2b%’<2k4p2 =Y

ZCZC?K3K4 + 26§K3K4 =0,

after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:

Set 1:
{ar = —ib\p,ay = =4ib}p*, by = 4b}p*, ¢\ = —ibip, ¢y = —4ibip*, k4 = 0}, (4.11)
ey - 2 (iby pee40ir"t+px — by psin (453 p*t + by px + ics) — bikap sin (p (463 p*t + bix + b3 ) Wi
’ e~ @HABIPIHIDIPY | 4 cog (4b§p3t +bipx+ iC3) + Ky COS (p (4b§p2t +bix+ b3)) '
Set 2:
{a) = ibip,ay = 4iblp*, by = 4b}p*, ¢ = ibp, ¢, = 4ibip’, k4 = O}, (4.13)
x.) 2b, ik e Hb1PEOIP 1+ _ jomas=ibip@bip’iex) _ Sin(4b?p3t + b1 px —ic3) — k2 sin(p(4b§p2t + bix + b3)))
u(x,r) = — .

K1 e HDIPEBIPIRD) o pmas=ib PB4 s cos(4B3 p3t + by px — ic3) + Ky cos(p(4h7 p2t + byx + b3))

4.3. New periodic cross-kink wave solution

Let the following ansatz for a rogue wave solution [25] be

G| = axt + ajx + as,
S = byt + bix + bs,
¢3 = Gt + C1x + 3,
L = ke + e + Ky sin(pgy) + k3 sinh(g3) + ky.

(4.14)

(4.15)

Putting Eq (4.15) and their respective derivatives into Eq (3.2), we get the following algebraic

system:

8a§l<1 + 32a?a2/<1 + 8bfby<§p4 - 2b§/<§p2 - 2c§/<§ - 80?02/% =0,
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6b%bzc1/<2/<3p3 + 2b?C2K2K3p3 — 2bzc?/<2/<3p — 6b1cf62/<2k3p —4bycrkk3p = 0,
—6b1b2c%/<2/<3p2 - 6b%clczkzk3p2 + 2b?b2/<2/<3p4 - 2b§/<2/<3p2 + 20%/(2/(3 + 26?02K2K3 =0,
16c,¢3K5 + 4c3k5 = 0,
—2a2b?K2p3 - 6a1b%b2/<2p3 + 6a%a2b1/<2p + Za?bzkgp +4a,brxop = 0,
—6a1a2b%/<2p2 - 6a%b1b2/<2p2 + 2a§/<2 + 2afa2/<2 + 2b%b2/<2p4 - 2b§K2p2 =0,
2a?c2k3 + 6a2a%c1K3 + 6a1c%c2/<3 + 2achl<3 + 4a,cox3 = 0,
6a%clczl<3 + 6a2alc%/<3 + 2a2afl<3 + 2a§/<3 + 20§K3 + 2c?czl<3 =0,
2a2a?/<4 + 2a%1<4 =0,

2a2b?/<1/<2p3 + 6a1b%b2/<1/<2p3 - 6a%a2b1/<1/<2p - 2a§b2/<1/<2p —4a,byk1kp =0,
—6a1a2b%/<1/<2p2 - 6a%b1b2/<11<2p2 + 2a§/<1/<2 + 2a?a2/<1/<2 + 2b?b21<1/<2p4 - 2b§l<1/<2p2 =0,
—261?C2K1K3 - 661261%6‘1K1K3 - 6a1c%cz/<1/<3 - 2a2c?K1K3 —4aycok1k3 = 0,
6a%C16‘2K1K3 + 6a2alcf/<1/<3 + 2a2a?K1K3 + 2a§K1K3 + 2C%K1K3 + 2cfczklk3 =0,
2a2a?/<1/<4 + 2a§/<1/<4 =0,
2b?b2/<2/<4 p4 - 2b§/<2/<4p2 =0,

ZCZC?K3K4 + 26§K3K4 =0,

after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:
Set 1:

{a) = ibip,a, = 4ibp®, by = 4b}p?*, ¢ = ibp, ¢, = 4ibi p°, k4 = 0}, (4.16)
2 ((—i)b1pe‘“3‘4"b?l’3’—"b1”x + ibik3p cos (4b3p3t +bipx— iC3) + bikap cos (p (4b3p2t +bix+ b3)))
ux,n) = — __— : 1 4.17)
e~ BHb P =ibipx | s gin (4b?p3t + b px — iC3) + Ky sin (p <4b?p2t +bix+ b3)>
Set 2:
la) = —ibip,ay = —4ibip>, by = 4b} p*, c1 = ibip, ¢, = 4ibi p’, k4 = O}, (4.18)
WOeD) = 2(—ib1Klpe“3‘4ib?1’3"ib1”" + iblpe'“3+4ib?”3’+ib"" +ib1k3 p cos(4b3 Pt + by px — ic3) + bikap cos(p(4b3 pt + by x + b3)))

——— ——— — - -
Ky @D px | pmas kb IpX g e, sin(4b>p3t + by px — ic3) + ko sin(p(4b° p*t + b x + b3))
4.19)

4.4. The interaction between kink solitary wave and rogue wave solutions

Assume the following ansatz for an interaction between Kink solitary wave and rogue wave

solutions [27]:
S1 =bit+ax,
2 2
= a)x~ + bt
s @b T (4.20)
S3 = b3t + azx,
L=(s1)%+(¢0) + ke + 1.

Putting Eq (4.20) and their respective derivatives into Eq (3.2), we get the following algebraic
system:

24a3b, + 24ara,by + 4bt + 4b, = 0,
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—daibik — dasbyk — 12a,a5b,byk — 8b1hsk — 8bybsk = 0,
2a3bsk + 12a,a3b1k + 12atasbsk + 12aya3bsk + 4bik + 2b3k + 4byk = 0,
—4a2b? + 4ath, + 4ab? + dayby = 0,
2aiazbik + 2a,a3b3k + 24 b3k + 2aybik = 0,
—4b} - 8byb} — 4b5 = 0,
2a3b1bsk + 2a3brbsk + 2bTh3k + 2bybik = 0,
—4a1a§b1/< - 12a%a§b3k - 12a2a§b3/< —8a1b1b3x =0,
—8a,b} — 8a,b,b; =0,
dayaib by + 4arb bk = 0,
after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:

Set 1:
{ar = —al,by = 0,b, = 0,b; = —d3). (4.21)

Set 2:
{a; =0,a;, = 0,by = —b}, b3 = —aj). (4.22)

Both sets 1 and 2 give the same solution as the following:

3
2azke %!

u(x,t) = — > . (4.23)
ket 4+ ]
4.5. 1-Soliton solution
Assume the following ansatz for a 1-Soliton wave solution [28]:
S1 =bit+ax,
{ Q= 4, (4.24)

Putting Eq (4.24) and their respective derivatives into Eq (3.2), we get the following algebraic form:
2aib it + 2b1i* = 0,

after symbolic computational calculation, we gain a solution set, which is listed as follows:
Set 1:
{ar = a1, by = a} () .k = «l, (4.25)

2a1KeK(a1x—a?K2t)+6
eK(mx—a?Kzt)HS +1 ’

u(x,t) = — (4.26)

4.6. 2-Soliton solution

Assume the following ansatz for a 2-Soliton wave solution [28]:

S1 =bit+ax,

S = byt + asx, 4.27)
Q = 1D | pale)+02 4 A kiSO HR(S2)+02 1
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Putting Eq (4.27) and their respective derivatives into Eq (3.2), we get the following algebraic
system:

2a3by15 + 2b5K5 = 0,

2a3AbyK5 + 2433 = 0,

2aib k) +2b%3 = 0,

2a}Ab it + 24033 = 0,
2a3Ab1K1 + 6a° (,lZAbIKzKl +2a° AszzKl + 6a1a2Ab1K2K1 +6a° azAhzkzkl + Za;Ablekl + 6a1a2Ab2K2K1 + 2a§Ab2K§ + 2(,131’)1K?
—6a1a2b1/<21<, - 2a]b2K2K1 + 6a,a? bleK1 + 6a1a2b2K2K1 2a2b1K2K1 6a1a2b2K2K1 + 2a2b21<2 + 2AblK1 + 4Ab bk Ky

24D + 233 — 4b bakok, + 2b3KE = 0,

after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:
Set 1:

2
a*k? = 3ajarkaky + 32k
159 2%
{by =0,b, = a2K2,A == (4.28)
ajky + 3ajaxkok; + 3a2/<2
2 (A (aiky + azky) exp (K2 (agx - a;K%t) +a1kix + 01 + 62) + ag/<2e"z("z)““g‘%’)”2 + alkle”"““‘sl)
u(x,f) = — (4.29)
Aexp (Kz (azx - aix%r) +aikix+98; + 62) + glaraig o o pakixtd 4 |
Set 2:
2(.2,2 2,2
5 5 2y (arky — ajky) (alK1 + ajarkrk; + a2K2)
by = -2, by =~ A = ) (4.30)

(a1k1 + arkr)? (a KE — a1a0kaK) + azki)

2(A(aiky + azka) exp(ki(ax — a?K%t) + Kko(arx — a3 2t) +01+602) + ay ke @x-aiknton azkzeKZ(“z)““i’(%’)Jr‘Sz)

u(x,t) = —
Aexp(k(ax — a?K%t) + Kka2(arx — (12K2I) + 01 + 0) + ekil@x=aikin+or 4 pa(arx-ayGn+or 4 |
4.31)
Set 3:
3a’k* — 3a axk:Kk) + a3k?
1K1 2%
{by = —a Kl,bz =0,A = 322 7 30 o (4.32)
1K 12K2K1 + a2K2
3.2
2 (A (a1k + axky) exp (/q (alx - a3/<2t) + arkox + 01 + 62) + ajk e (arx-ajii)+or 4 azkge““”*‘b)
u(x,r) = —

Aexp (K] (a1x afklt) + dakp X + 01 + (52) + e (@xaq o 4 paard; 4 |
(4.33)

5. Graphical representation

Graphical representation by putting suitable values for the parameters in our analytical solutions
illustrates various types of wave structures, including breather waves, new periodic waves, new periodic
cross-kink waves, interactions between kink solitons and rogue waves, and 1-soliton and 2-soliton
wave solutions. These are depicted in the following figures: In Figure 1, breather wave solution u(x,t)
Eq (4.3) in (a) Abs(u) and (b) Re(u) are shown in 3-dim, contour, and 2-dim with p; = 0.5,k =
2.1,q = 1.3. In Figure 2, new periodic wave solution u(x,t) Eq (4.12) in (a) Abs(u) and (b) Re(u) are
shown in 3-dim, contour, and 2-dim with az = 0,b; = 1.2,b5 = 0,c3 = 0,k = 2.5,k3 = 1.5,p =
1.1, and g = 1.3. In Figure 3, new periodic cross-kink wave solution u(x,t) Eq (4.17) in (a) Abs(u)
and (b) Re(u) are shown in 3-dim, contou,r and 2-dim with a3 = 1,b; = 1.2,b3 = —1,¢c3 = 1,k =
1.5,k3 = 0.5, p = 0.4, and g = 0.5. In Figure 4, the interaction between kink solitary wave and rogue
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wave solution u(x,t) Eq (4.23) in (a) Abs(u) and (b) Re(u) are shown in 3-dim, contour, and 2-dim
with a; = 1.5 and k = —1.9. In Figure 5, 1-Soliton wave solution u(x,t) Eq (4.26) in (a) Abs(u) and
(b) Re(u) are shown in 3-dim, contour, and 2-dim with a; = —1.2,x = 2.2 and 6 = 0.2. In Figure 6,
2-Soliton wave solution u(x,t) Eq (4.29) in (a) Abs(u) and (b) Re(u) are shown in 3-dim, contour, and
2-dim with ay = —1.5,K1 = 1.5,61 = 02, ay = 19, Ky = 2.3 and 52 =0.5.

(a) (b)

Figure 1. Breather wave behavior of the solution is illustrated in Eq (4.3).

(@ (b)

Figure 2. New periodic wave behavior of solution appearance in Eq (4.12).
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(@ (b)

(b)

(@)
Figure 4. The interaction between Kink solitary wave and rogue wave behavior of the

solution is presented in Eq (4.23).
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(@) (b)

Figure 5. 1-Soliton wave behavior of the solution is presented in Eq (4.26).

(@ (b)

Figure 6. 2-Soliton wave behavior of the solution is presented in Eq (4.29).

6. Machine learning

Here, we use the machine learning MLP regressor algorithm, which consists of one input and output
with different hidden layers [32,33]. Table 1 shows the configuration and training parameters of the
algorithm.
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Table 1. Neural network configuration and training parameters.

Parameter Description
Data Split 80% training and 20% testing
Normalization Range [0, 1]

Neural Network Structure
Propagation Method
Activation Function
Optimization Algorithm
Loss Function

Learning Rate

Training Iterations
Implementation Tool
Outputs

Input and output layers with multiple hidden layers
Forward and backward propagation

Sigmoid

Gradient Descent

Mean Squared Error (MSE)

0.1

10,000 and 100,000 epochs

Python 3.13.1

Actual vs. predicted plots and loss convergence

6.1. Results and discussion

In this section, we present and analyze three distinct types of solutions, the new periodic cross-
kink, the one-soliton, and the two-soliton solutions, obtained for the problem under study. We then
examine the agreement between their analytical (actual) results and the predicted results generated by
a multilayer perceptron (MLP) regressor machine learning algorithm.

e Periodic cross-kink solution (Eq (4.17)):

— Physical behavior: Illustrated in Figure 3.

— MLP performance: The MLP regressor closely approximates the analytical solution, as
visually confirmed by the comparison between actual and predicted data in Figure 7.

— Training details: The model is trained for 100,000 epochs.

— Metrics: Achieve a minimal mean squared error (MSE) loss, which is summarized in Table 2.

— Computational time: The total prediction time is 106.738 seconds.

e One-soliton solution (Eq (4.26)):

— Physical behavior: Presented in Figure 5.

— MLP performance: The predicted results demonstrate excellent agreement with the actual
analytical data, as shown in Figure 8.

— Training details: The algorithm is trained for 10,000 epochs.

— Metrics: The resulting MSE loss is reported in Table 3.

— Computational time: The prediction is completed in 53.191 seconds.

e Two-soliton solution (Eq (4.29)):

— Physical behavior: Depicted in Figure 6.
— MLP performance: The MLP regressor produces results in close correspondence with the

actual data, displayed in Figure 9.

— Training details: Training is performed for 10,000 epochs.
— Metrics: The obtained MSE loss is listed in Table 4.
— Computational time: The total computation time for this case is 61.249 seconds.
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In all three cases, the MLP regressor proves to be an effective tool for accurately predicting
the analytical solutions, demonstrating its potential for approximating complex non-linear wave
phenomena.

Training Loss Over Epochs Actual vs Predicted results with time variations

Mean Squared Error

0 20000 40000 60000 80000 100000

Training Loss Over Epochs

Abs[u]
o

N

0 20000 40000 60000 80000 100000
Epochs

© (d)

Figure 7. Actual and predicted behavior of the solution appearance in Eq (4.17).

Table 2. Epoch and loss during the prediction of solution Eq (4.17).

For Re[u] solution

Epoch 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Loss  3.1320 2.0616 1.6779 1.1656 0.6285 0.4405 0.3903 0.3742 0.3671 0.3632
For Abs[u] solution

Epoch 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Loss 52416 3.5760 2.7993 2.4498 2.3310 2.2892 22711 22610 2.2542 2.2491
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Training Loss Over Epochs Actual vs Predicted results with time variations

0 2000 4000 6000 8000 10000
Epochs

(@) (b)

Training Loss Over Epochs Actual vs Predicted results with time variations

Abs[u]
~ w

0 2000 4000 6000 8000 10000
5

Figure 8. Actual and predicted behavior of the solution appearance in Eq (4.26).

Table 3. Epoch and loss during the prediction of solution Eq (4.26).

For Re[u] solution

Epoch 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Loss  0.0486 0.0262 0.0164 0.0110 0.0077 0.0056 0.0042 0.0032 0.0025 0.0020
For Abs[u] solution

Epoch 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Loss  0.0236 0.0120 0.0069 0.0044 0.0032 0.0025 0.0021 0.0018 0.0015 0.0013

Table 4. Epoch and loss during the prediction of solution Eq (4.29).

For Re[u] solution

Epoch 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Loss 1.8149 0.9199 0.686 0.5575 0.4563 0.3753 0.3293 0.3127 0.2990 0.2869
For Abs[u] solution

Epoch 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Loss 1.2110 0.9934 0.7461 0.5431 0.4050 0.3212 0.3049 0.2919 0.2801 0.2694
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Training Loss Over Epochs Actual vs Predicted results with time variations
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Figure 9. Actual and predicted behavior of the solution appearance in Eq (4.29).

7. Asymptotic analysis of the solutions
In this section, we describe the asymptotic analysis of the gained solutions. Figures 10—13 depict

the asymptotic behavior of various solutions, as discussed in the following subsections. We aim to
better understand the long-time dynamics of solution u(x, t) in Eq (4.3).
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u(x,0)

-1.8

T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 x
2 4 6 8 10

Figure 10. Asymptotic behavior of the solution presented in Eq (4.3).

u(0,t)

300 -

200

100

-10 -5 r 5 10

=100
=200

=300

Figure 11. Asymptotic behavior of the solution presented in Eq (4.3).
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u(x,0)

-1.0¢
-1.2]

-1.4F

-1.6

-1.8+

10 20 30 40 50
Figure 12. Asymptotic behavior of the solution presented in Eq (4.17).

u(0, t)

2.0
19
1.8;
1.7f—
1.6f—
1.5f—

1.4}

\ ‘ ‘ ‘ \ ‘ ‘ ‘ \ ‘ ‘ ‘ \ ‘ ‘ ‘ — ¢
2 4 6 8 10

Figure 13. Asymptotic behavior of the solution presented in Eq (4.17).

AIMS Mathematics Volume 10, Issue 12, 30029-30052.



30048

7.1. Asymptotic behavior as x — oo att =0
At time t = 0, the solution becomes:

Ae P — gy psin(px) — pre P*

,0)=-2
u(x, 0) AeP1* + ki cos(px) + e P1¥

7.2. Asymptotic behavior ast — +oo at x =0

T R ) )
4pi(pi —3p?)
K p2(p? = 3p}ler
4pi(pi = 3p%)
This represents a transition from a constant state to a periodic nonlinear wave as time increases.
Asymptotic analysis of solution u(x, t) in Eq (4.17).

—K1p sin[p(p2 - Bp%)t] _ ple—p1(3p2—p%)t
u(,t) = —

(7.1)

+ K cos[p(p2 — Spf)t] + e~ P1GP?=phr

7.3. Asymptotic behavior as x — oo att =0

2((~i)b1 pe™=™1P% 4 ibyk3p cos(by px — ics) + bikyp cos(p(bix + bs)))
u(x,0) = —

- — ; . (7.2)
e~ Bhrx 4 i3 sin(by px — ic3) + ko sin(p(byx + b3))

This represents a traveling front moving in the positive x-direction, connecting the asymptotic states.

7.4. Asymptotic behavior ast — too at x =0

2 ((—i)blpe‘%“‘”’?”% + ibyk3p cos(4b: p’t — ics) + bikap cos(p(4b; p*t + b3)))

u(0,1) = - (7.3)

e—a3—4ib?p3f + iK} Sln(4b?p’;t - iC3) + Ky Sln(p(4b?P2l + b3))

This confirms that the solution represents a decaying front in time at fixed spatial locations.
8. Conclusions

Through the combined application of Painlevé analysis and the bilinear Hirota method, we have
entrenched the integrability and exact solvability of the newly proposed Kairat-X equation. By
performing an attentive Painlevé test, we verified that the equation holds the Painlevé property. This
integrability check validates the mathematical consistency of the problem and supports the application
of strong analytical techniques to obtain exact solutions. Utilizing Hirota’s bilinear formalism,
we successfully transformed the nonlinear equation into a bilinear form and constructed breather
wave, new periodic wave, new periodic cross-kink wave, the interaction between kink solitary and
rogue wave, 1-Soliton wave and 2-Soliton wave solutions. These solutions display the distinctive
characteristics of solitons, including shape preservation and elastic iterations upon impact. We
executed asymptotic analysis on the gain solution to check the asymptotic behavior of the gained
solutions. The machine learning multi-layer-perceptron regressor algorithm was successfully executed
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to represent the behavior of the actual, and to predict, the above solutions. Furthermore, the analytical
framework developed in this work holds significant potential for applications in other fields such as
nonlinear fluid dynamics, optics, plasma physics, and other areas where solitonic phenomena show
a vital role in demonstrating and understanding complex wave interactions. These findings suggest
that the proposed model can be further explored in future research. The Painlevé analysis, being
a widely adopted technique for assessing the integrability of nonlinear models, remains a valuable
tool for such investigations. The obtained results were verified and validated using symbolic and
numerical computations through Mathematica software. Additionally, several of the derived solutions
are presented graphically using two-dimensional, three-dimensional, and contour plots to better convey
their physical characteristics and behaviors.
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