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Abstract: In this article, we investigated the integrability of the nonlinear dynamical Kairat-X
model through Painlevé analysis, demonstrating that the equation satisfies the Painlevé property and is
therefore integrable. We applied the bilinear Hirota method to derive several exact solutions, including
breather wave, novel periodic wave, periodic cross-kink wave, kink-rogue wave interaction, and one-
soliton and two-soliton solutions. A machine learning multi-layer-perceptron regressor algorithm was
applied to represent the behavior of the actual, and to predict, the above solutions. Furthermore, we
employed an asymptotic analysis on the gain solutions to expect the demonstration of the asymptotic
behavior of these analytical solutions. The soliton solutions obtained were novel and exhibited
improved reliability compared to previously reported results. These findings were further validated
using symbolic computation software. A comparison with the existing literature revealed that the
proposed solutions were more applicable and accurate. Several of the results were visualized using
two-dimensional, three-dimensional, and contour surface plots.
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1. Introduction

Nonlinear evolution equations (NLEEs) play an essential role in describing a vast arrangement of
physical phenomena that make an appearance in fluid dynamics, plasma physics, nonlinear optics,
and quantum field theory. Because of its numerous uses in nonlinear research, soliton theory has
become one of the most active areas in mathematical physics. Solitons, self-reinforcing solitary
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waves, emerge in a multiple array of physical systems, from fluid dynamics and optical fibers to
plasma physics and Bose-Einstein condensates. Soliton theory has been generally studied in several
fields, including physics, mathematics, and engineering, and high-speed data transmission is made
possible by optical solitons, which are light pulses that travel across optical fibers without dispersion.
These wave structures, which conserve their shape and speed even after interactions, are foundational
to understanding several nonlinear phenomena. Research on soliton theory is ongoing, with new
findings and advancements occurring frequently. Quantum solitons, soliton-based computing, solitons
in nonlinear lattices, topological solitons, and experimental realizations are some of the most modern
and sophisticated areas of soliton theory. Researchers have made remarkable progress in understanding
the behavior of solitons and their application in different systems. Creating new mathematical
models that accurately depict how solitons behave in various systems and coming up with innovative
methods for creating and modifying solitons are some of the major issues facing soliton theory.
The underlying mathematical models that assist solitonic solutions are nonlinear partial differential
equations (PDEs) that express integrability under particular conditions. The capacity of the Kairat-
X equation, a generalized nonlinear partial differential equation, contributes as a rich mathematical
model for studying such wave dynamics. This equation represents the cooperation between dispersion
and nonlinearity and is known to exhibit a vast variety of nonlinear wave structures depending on
the parameter scheme. The study of novel integrable and non-integrable NLEEs has received a lot of
attention in an effort to examine their integrability characteristics and soliton solutions. The Kairat-X
equation, introduced by Myrzakulov et al. [1],

utt − 3(utux)x + uxxxt = 0. (1.1)

Many researchers such as, Xiao, Barak, and Hleili used the Riccati modified extended simple
equation method in [2] on Kairat-II and Kairat-X equations, Wazwaz, A. M used Painlevé analysis to
find the multiple soliton solutions [3], Myrzakulov and Umurzakhova used the novel auxilary equation
method on the Kairat-II and Kairat-X equations to find traveling wave solutions [4], Seadawy and
Alomari, F. A used the extended simplest equation method on fractional Kairat-X equation [5], Asim
Zafar and M. Raheel used the expa function, modified simplest equation method, and generalized
Kudryashov method on truncated M-fractional Kairat-X and Kairat-II equations [6], Mathanaranjan,
T. used the Lie symmetries method on the Kairat-II-X equation [7], Al-Sawalha and Mukhtar used
the Riccati-Bernoulli sub-ODE technique and the Bäcklund transformation on confirmable Kairat
equations [8], Rafiq and Alsaud used the Hirota bilinear method and linear superposition principle
(LSP) on Kairat-X equation [9], Qahiti and Alsafri used the generalized (r+ G′

G ) expension method and
simple (G′

G ) method on Kairat-X equation [10] to obtain exact solutions of the Kairat-X equation.
In this paper, two analytical techniques are used for the Kairat-X equation, namely Painlevé

analysis, to confirm the integrability, and Hirota bilinear exact soliton solutions, respectively. Exact
solutions are obtained only when an equation is integrable and only integrable equations yield full
analytic solutions. That is why, in this article, we use the analytical technique Painlevé analysis to find
the integrability of a nonlinear differential equation. Over the past decade, many researchers executed
Painlevé tests on the following equations: the nonlinear generalized variable coefficient KdV-type
equation [11], the third order nonlinear Schrödinger equation [12], the extended Korteweg-de Vries
equation [13], the variable-coefficient generalized Calogero–Bogoyavlenskii–Schiff equation [14], the
generalized KP equation [15], the coupled Higgs equation [16], the Sasa–Satsuma equation [17], the
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Sawada-Kotera, Lax and Caudrey-Dodd-Gibbon equations [18], the (3+1)-dimensional Boussinesq-
type equation [19], the pseudo-parabolic type equations [20], and the (3+1)-dimensional Painlevé
integrable equation [21]. We apply Painlevé analysis on the Kairat-X model to find the model is
integrable. Then, we proceed to apply the Hirota bilinear method to derive exact soliton solutions. The
Hirota Bilinear Method is one of the most graceful and powerful techniques in soliton theory; it is a
direct method to construct soliton solutions by transforming a nonlinear PDE into bilinear form. This
method is also used in distinct equations such as the fifth-order KdV-type equation [22], the nonlocal
reverse space-time mKdV equation [23], the generalized coupled higher-order nonlinear Schrödinger
equations [24], the Korteweg–de Vries equation [25], the (2+1)-dimensional Hirota–Satsuma–Ito
equation [26], the (4+1)-dimensional BLMP equation [27], the generalized (2+1)-dimensional Hirota
bilinear equation [28], the Fractional Sawada-Kotera Equation [29], the generalized perturbed KdV
equation [30], and nonlinear partial differential equations [31].

Our primary objective of this work is to apply Painlevé analysis to examine the integrability of the
Kairat-X equation and to derive novel analytical solutions, including breather waves, new periodic
waves, periodic cross-kink waves, kink-rogue wave interactions, and one-soliton and two-soliton
solutions, by employing the Hirota bilinear method. The machine learning multi-layer-perceptron
regressor algorithm is applied to represent the behavior of the actual, and to predict the above
solutions. Furthermore, we use asymptotic analysis to expect the physical demonstration of the graphs
corresponding to the obtained soliton solutions.

This paper includes the following sections: Section 2: Sketch of Painlevé analysis and its outcomes;
Section 3: Model’s bilinearization; Section 4: Application of bilinear Hirota method; Section 5:
Graphical representation; Section 6: Machine learning analysis; Section 7: Asymptotic analysis; and
Section 8: Conclusions.

2. Sketch of Painlevé analysis

The Painlevé analysis is a test for the integrability of nonlinear partial differential equations
(NLPDEs). It checks whether the only movable singularities of the solutions are poles. Consider a
NLPDE:

Φ(Ξ,Ξθ1 ,Ξθ2 ,Ξθ1θ2 ,Ξθ1θ1 ,Ξθ2θ2 , ...) = 0. (2.1)

The analysis is based on the assumption that the solution Ξ possesses a singularity manifold defined
by

Θ(θ1, θ2, ..., θn) = 0. (2.2)

The solution Ξ is then expanded as a generalized Laurent series about this singular manifold:

Ξ(θ1, θ2, ..., θn) = Θϵ(θ1, θ2, ..., θn)
∞∑

i=0

Ξi(θ1, θ2, ..., θn)Θi(θ1, θ2, ..., θn), (2.3)

where Ξi(θ) (for i = 0, 1, 2, . . . ) and Θ(θ) are arbitrary analytic functions, and ϵ is a negative integer
(the leading-order exponent).

The Painlevé analysis proceeds in the following steps:
Step 1: The dominant terms in the NLPDE are identified by substituting the leading-order behavior of
the series,

Ξ = ΘϵΞ0 (2.4)
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into the NLPDE (2.1). By balancing the terms of the lowest power in Θ, an algebraic equation for the
exponent ϵ is obtained, and ϵ must be a negative integer.
Step 2: Once ϵ is found, substituting the leading-order term (2.4) into the NLPDE and setting the
coefficient of the lowest power of Θ to zero yields an equation for the non-zero leading coefficient Ξ0.
This equation often contains derivatives of Θ.
Step 3: The series expansion (2.3) is now substituted into the full NLPDE (2.1). This results in a
sequence of equations for the coefficients Ξi. For coefficient Ξi, the equation typically takes the form:

L(Ξ0,Θ)Ξi = F(Ξ0, . . . ,Ξi−1,Θ), (2.5)

where L is a linear differential operator acting on Ξi. The values of the index i for which the
determinant of operator L vanishes (i.e., when L is singular) are called the resonance values denoted
by i = r1, r2, . . . . These values indicate the locations in the series where arbitrary functions can be
introduced. The equation for the resonance values is found by considering the coefficient of Ξi in the
equation for Θi+ϵ .
Step 4: The NLPDE is said to pass the Painlevé test if the number of arbitrary functions introduced (the
Ξi coefficients and Θ) matches the order of the NLPDE. Specifically, at each positive integer resonance
value i = r, the right-hand side of the equation for Ξr, F(Ξ0, . . . ,Ξr−1,Θ), must vanish identically.
These are the compatibility conditions or solvability conditions.
Step 5: If all conditions are met, namely, the leading-order exponent ϵ is a negative integer, and the
compatibility conditions are satisfied at all positive integer resonance values, then the NLPDE (2.1) is
considered to possess the Painlevé property and is a Painlevé integrable system.

2.1. Painlevé analysis on the Kairat-X equation

In this section, we detail the application of the Painlevé analysis to the nonlinear differential Kairat-
X equation (denoted as Eq (1.1) in the original context, though the equation is not explicitly given
here). The analysis assumes a solution with a singular manifold Θ(x, t) = 0,

Θ(x, t) = 0. (2.6)

To determine the leading-order exponent ϵ and the coefficient Ξ0, we substitute the dominant term
Ξ ≈ Ξ0Θ

ϵ (compare with Eq (2.4)) into the Kairat-X equation. By balancing the terms of the lowest
power in Θ, the following values are obtained:

ϵ = −1, Ξ0 = −2Θx. (2.7)

Substituting the full Laurent series expansion (2.3) into the Kairat-X equation and collecting terms
of the same power in Θ yields a set of equations for the coefficients Ξi. The indices i for which
the coefficient Ξi becomes arbitrary (due to the vanishing of the linear operator coefficient) are the
resonance values. These values are

i = −3,−1, 2, 4.

The resonance at i = −1 is always associated with the arbitrary nature of the singular manifold Θ(x, t),
and the negative values i = −3,−1 are not physical in this context. The positive integer resonances are
i = 2 and i = 4.
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The maximum positive resonance is rmax = 4. Based on this, the Laurent series is truncated up to
the Ξ4 term::

Ξ = Ξ0Θ
−1 + Ξ1 + Ξ2Θ

1 + Ξ3Θ
2 + Ξ4Θ

3. (2.8)

Putting Eq (2.8) into the Kairat-X equation yields the subsequent coefficients:

Ξ1 =
−2ΘtΘxt − ΘtΘxxxx − ΘttΘx − 4ΘxΘxxxt + 2ΘxtΘxxx

12ΘtΘ3
x

. (2.9)

Ξ3 =
−Θ3

tΘttΘ
2
x − 2Θ4

tΘxΘxt... − 6Θ3
tΘxΘxxΘxxxxx

144Θ3
tΘ

7
x

. (2.10)

The positive integer resonance values i = 2 and i = 4 indicate that the coefficients Ξ2 and Ξ4 must
appear as arbitrary functions. The final step requires checking the compatibility conditions at i = 2 and
i = 4. If the equations for Ξ2 and Ξ4 are satisfied identically when Ξ2 and Ξ4 are treated as arbitrary
functions, the compatibility conditions hold. Since the provided outcomes state that Ξ2 and Ξ4 appear
as arbitrary functions, and the compatibility conditions are thus satisfied, we conclude that the Kairat-X
equation (1.1) possesses the Painlevé property and is deemed Painlevé integrable.

3. The model’s bilinearization

The Hirota formula
j∏

i=1

Dni
µi
L. ξ =

j∏
i=1

(
∂

∂µi
−
∂

∂µ′i

)ni

L(µ1, ..., µ j)ξ(µ′1, ..., µ
′
j)

∣∣∣∣∣∣∣
µ1=µ

′
1,...,µ j=µ

′
j

. (3.1)

Equation ( 1.1) converts into bilinear form through the transformation u = −2(lnL)x,

− 2LtLxxx − 2L2
t + 2LLtt − 6LxLxxt + 6LxtLxx + 2LLxxxt = 0. (3.2)

In the form of D-operators, it can be expressed as:(
D2

t − 3DtD2
x + DtD3

x

)
L.L = 0. (3.3)

4. Application of the bilinear Hirota method

4.1. Breather wave solution

Let the following ansatz for a breather wave solution [24] be
ς1 = a1t + x,

ς2 = a2t + x,

L = e−p1ς1 + κ1cos(pς2) + κ2ep1ς1 .

(4.1)

Putting Eq (4.1) and their respective derivatives into Eq (3.2), we get the following algebraic system:

8a2κ
2
1 p4 − 2a2

2κ
2
1 p2 + 32a1κ2 p4

1 + 8a2
1κ2 p2

1 = 0,
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2a1κ1 p1 p3 + 6a2κ1 p1 p3 − 6a1κ1 p3
1 p − 2a2κ1 p3

1 p − 4a1a2κ1 p1 p = 0,
2a2κ1 p4 − 2a2

2κ1 p2 − 6a1κ1 p2
1 p2 − 6a2κ1 p2

1 p2 + 2a1κ1 p4
1 + 2a2

1κ1 p2
1 = 0,

−2a1κ1κ2 p1 p3 − 6a2κ1κ2 p1 p3 + 6a1κ1κ2 p3
1 p + 2a2κ1κ2 p3

1 p + 4a1a2κ1κ2 p1 p = 0,
2a2κ1κ2 p4 − 2a2

2κ1κ2 p2 − 6a1κ1κ2 p2
1 p2 − 6a2κ1κ2 p2

1 p2 + 2a1κ1κ2 p4
1 + 2a2

1κ1κ2 p2
1 = 0,

after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:
Set 1:

{a1 = 3p2 − p2
1, a2 = p2 − 3p2

1, κ2 =
κ21 p2

(
p2 − 3p2

1

)
4p2

1

(
p2

1 − 3p2
) }, (4.2)

u(x, t) = −
2
(
κ2 p1ep1((3p2−p2

1)t+x) − κ1 p sin
(
p
((

p2 − 3p2
1

)
t + x

))
+ p1

(
−e−p1((3p2−p2

1)t+x)
))

κ2ep1((3p2−p2
1)t+x) + κ1 cos

(
p
((

p2 − 3p2
1

)
t + x

))
+ e−p1((3p2−p2

1)t+x)
. (4.3)

Set 2:
{a1 =

4p2

3
, a2 = −

4ip2

3
√

3
, p1 = −

p
√

3
, κ2 =

1
8

(
−1 + 3i

√
3
)
κ21}, (4.4)

u(x, t) = −
2
(
κ2 p1ep1(a1t+x) − κ1 p sin (p (a2t + x)) + p1

(
−ep1(−(a1t+x))

))
κ2ep1(a1t+x) + κ1 cos (p (a2t + x)) + ep1(−(a1t+x)) . (4.5)

Set 3:

{a1 = −
4ip2

√
3
, a2 = −4p2, p1 = −

√
3p, κ2 =

iκ21
6
√

3 − 2i
}, (4.6)

u(x, t) = −
2
(
κ2 p1ep1(a1t+x) − κ1 p sin (p (a2t + x)) + p1

(
−ep1(−(a1t+x))

))
κ2ep1(a1t+x) + κ1 cos (p (a2t + x)) + ep1(−(a1t+x)) . (4.7)

Set 4:

{a1 =
4

49

(
1 + 4i

√
3
)

p2, a2 =
4

343

(
10 − 9i

√
3
)

p2, p1 = −
1
7

√
−i

(
4
√

3 − i
)

p2, κ1 = 0}, (4.8)

u(x, t) = −
2
√
−i

(
4
√

3 − i
)

p2
(
−κ2 + exp

(
2
7

√
−i

(
4
√

3 − i
)

p2
(
x + 4

49 p2
(
t + 4i

√
3t

))))
7
(
κ2 + exp

(
2
7

√
−i

(
4
√

3 − i
)

p2
(
x + 4

49 p2
(
t + 4i

√
3t

)))) . (4.9)

4.2. New periodic solution

Assume the following ansatz for a Lump-kink solution [25]:
ς1 = a2t + a1x + a3,

ς2 = b2t + b1x + b3,

ς3 = c2t + c1x + c3,

L = κ1eς1 + e−ς1 + κ2 cos(pς2) + κ3 cosh(ς3) + κ4.

(4.10)

Putting Eq (4.10) and their respective derivatives into Eq (3.2), we get the following algebraic
system:

8a2
2κ1 + 32a3

1a2κ1 + 8b3
1b2κ

2
2 p4 − 2b2

2κ
2
2 p2 − 2c2

2κ
2
3 − 8c3

1c2κ
2
3 = 0,
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−6b2
1b2c1κ2κ3 p3 − 2b3

1c2κ2κ3 p3 + 2b2c3
1κ2κ3 p + 6b1c2

1c2κ2κ3 p + 4b2c2κ2κ3 p = 0,
−6b1b2c2

1κ2κ3 p2 − 6b2
1c1c2κ2κ3 p2 + 2b3

1b2κ2κ3 p4 − 2b2
2κ2κ3 p2 + 2c2

2κ2κ3 + 2c3
1c2κ2κ3 = 0,

16c2c3
1κ

2
3 + 4c2

2κ
2
3 = 0,

2a2b3
1κ2 p3 + 6a1b2

1b2κ2 p3 − 6a2
1a2b1κ2 p − 2a3

1b2κ2 p − 4a2b2κ2 p = 0,
−6a1a2b2

1κ2 p2 − 6a2
1b1b2κ2 p2 + 2a2

2κ2 + 2a3
1a2κ2 + 2b3

1b2κ2 p4 − 2b2
2κ2 p2 = 0,

2a3
1c2κ3 + 6a2a2

1c1κ3 + 6a1c2
1c2κ3 + 2a2c3

1κ3 + 4a2c2κ3 = 0,
6a2

1c1c2κ3 + 6a2a1c2
1κ3 + 2a2a3

1κ3 + 2a2
2κ3 + 2c2

2κ3 + 2c3
1c2κ3 = 0,

2a2a3
1κ4 + 2a2

2κ4 = 0,
−2a2b3

1κ1κ2 p3 − 6a1b2
1b2κ1κ2 p3 + 6a2

1a2b1κ1κ2 p + 2a3
1b2κ1κ2 p + 4a2b2κ1κ2 p = 0,

−6a1a2b2
1κ1κ2 p2 − 6a2

1b1b2κ1κ2 p2 + 2a2
2κ1κ2 + 2a3

1a2κ1κ2 + 2b3
1b2κ1κ2 p4 − 2b2

2κ1κ2 p2 = 0,
−2a3

1c2κ1κ3 − 6a2a2
1c1κ1κ3 − 6a1c2

1c2κ1κ3 − 2a2c3
1κ1κ3 − 4a2c2κ1κ3 = 0,

6a2
1c1c2κ1κ3 + 6a2a1c2

1κ1κ3 + 2a2a3
1κ1κ3 + 2a2

2κ1κ3 + 2c2
2κ1κ3 + 2c3

1c2κ1κ3 = 0,
2a2a3

1κ1κ4 + 2a2
2κ1κ4 = 0,

2b3
1b2κ2κ4 p4 − 2b2

2κ2κ4 p2 = 0,
2c2c3

1κ3κ4 + 2c2
2κ3κ4 = 0,

after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:
Set 1:

{a1 = −ib1 p, a2 = −4ib3
1 p3, b2 = 4b3

1 p2, c1 = −ib1 p, c2 = −4ib3
1 p3, κ4 = 0}, (4.11)

u(x, t) = −
2
(
ib1 pe−a3+4ib3

1 p3t+ib1 px − b1κ3 p sin
(
4b3

1 p3t + b1 px + ic3

)
− b1κ2 p sin

(
p
(
4b3

1 p2t + b1x + b3

)))
e−a3+4ib3

1 p3t+ib1 px + κ3 cos
(
4b3

1 p3t + b1 px + ic3

)
+ κ2 cos

(
p
(
4b3

1 p2t + b1x + b3

)) . (4.12)

Set 2:
{a1 = ib1 p, a2 = 4ib3

1 p3, b2 = 4b3
1 p2, c1 = ib1 p, c2 = 4ib3

1 p3, κ4 = 0}, (4.13)

u(x, t) = −
2b1 p(iκ1ea3+ib1 p(4b2

1 p2t+x) − ie−a3−ib1 p(4b2
1 p2t+x) − κ3 sin(4b3

1 p3t + b1 px − ic3) − κ2 sin(p(4b3
1 p2t + b1x + b3)))

κ1ea3+ib1 p(4b2
1 p2t+x) + e−a3−ib1 p(4b2

1 p2t+x) + κ3 cos(4b3
1 p3t + b1 px − ic3) + κ2 cos(p(4b3

1 p2t + b1x + b3))
.

(4.14)

4.3. New periodic cross-kink wave solution

Let the following ansatz for a rogue wave solution [25] be
ς1 = a2t + a1x + a3,

ς2 = b2t + b1x + b3,

ς3 = c2t + c1x + c3,

L = κ1eς1 + e−ς1 + κ2 sin(pς2) + κ3 sinh(ς3) + κ4.

(4.15)

Putting Eq (4.15) and their respective derivatives into Eq (3.2), we get the following algebraic
system:

8a2
2κ1 + 32a3

1a2κ1 + 8b3
1b2κ

2
2 p4 − 2b2

2κ
2
2 p2 − 2c2

2κ
2
3 − 8c3

1c2κ
2
3 = 0,
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6b2
1b2c1κ2κ3 p3 + 2b3

1c2κ2κ3 p3 − 2b2c3
1κ2κ3 p − 6b1c2

1c2κ2κ3 p − 4b2c2κ2κ3 p = 0,
−6b1b2c2

1κ2κ3 p2 − 6b2
1c1c2κ2κ3 p2 + 2b3

1b2κ2κ3 p4 − 2b2
2κ2κ3 p2 + 2c2

2κ2κ3 + 2c3
1c2κ2κ3 = 0,

16c2c3
1κ

2
3 + 4c2

2κ
2
3 = 0,

−2a2b3
1κ2 p3 − 6a1b2

1b2κ2 p3 + 6a2
1a2b1κ2 p + 2a3

1b2κ2 p + 4a2b2κ2 p = 0,
−6a1a2b2

1κ2 p2 − 6a2
1b1b2κ2 p2 + 2a2

2κ2 + 2a3
1a2κ2 + 2b3

1b2κ2 p4 − 2b2
2κ2 p2 = 0,

2a3
1c2κ3 + 6a2a2

1c1κ3 + 6a1c2
1c2κ3 + 2a2c3

1κ3 + 4a2c2κ3 = 0,
6a2

1c1c2κ3 + 6a2a1c2
1κ3 + 2a2a3

1κ3 + 2a2
2κ3 + 2c2

2κ3 + 2c3
1c2κ3 = 0,

2a2a3
1κ4 + 2a2

2κ4 = 0,
2a2b3

1κ1κ2 p3 + 6a1b2
1b2κ1κ2 p3 − 6a2

1a2b1κ1κ2 p − 2a3
1b2κ1κ2 p − 4a2b2κ1κ2 p =0,

−6a1a2b2
1κ1κ2 p2 − 6a2

1b1b2κ1κ2 p2 + 2a2
2κ1κ2 + 2a3

1a2κ1κ2 + 2b3
1b2κ1κ2 p4 − 2b2

2κ1κ2 p2 = 0,
−2a3

1c2κ1κ3 − 6a2a2
1c1κ1κ3 − 6a1c2

1c2κ1κ3 − 2a2c3
1κ1κ3 − 4a2c2κ1κ3 = 0,

6a2
1c1c2κ1κ3 + 6a2a1c2

1κ1κ3 + 2a2a3
1κ1κ3 + 2a2

2κ1κ3 + 2c2
2κ1κ3 + 2c3

1c2κ1κ3 = 0,
2a2a3

1κ1κ4 + 2a2
2κ1κ4 = 0,

2b3
1b2κ2κ4 p4 − 2b2

2κ2κ4 p2 = 0,
2c2c3

1κ3κ4 + 2c2
2κ3κ4 = 0,

after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:
Set 1:

{a1 = ib1 p, a2 = 4ib3
1 p3, b2 = 4b3

1 p2, c1 = ib1 p, c2 = 4ib3
1 p3, κ4 = 0}, (4.16)

u(x, t) = −
2
(
(−i)b1 pe−a3−4ib3

1 p3t−ib1 px + ib1κ3 p cos
(
4b3

1 p3t + b1 px − ic3

)
+ b1κ2 p cos

(
p
(
4b3

1 p2t + b1x + b3

)))
e−a3−4ib3

1 p3t−ib1 px + iκ3 sin
(
4b3

1 p3t + b1 px − ic3

)
+ κ2 sin

(
p
(
4b3

1 p2t + b1x + b3

)) . (4.17)

Set 2:
{a1 = −ib1 p, a2 = −4ib3

1 p3, b2 = 4b3
1 p2, c1 = ib1 p, c2 = 4ib3

1 p3, κ4 = 0}, (4.18)

u(x, t) = −
2(−ib1κ1 pea3−4ib3

1 p3t−ib1 px + ib1 pe−a3+4ib3
1 p3t+ib1 px + ib1κ3 p cos(4b3

1 p3t + b1 px − ic3) + b1κ2 p cos(p(4b3
1 p2t + b1 x + b3)))

κ1ea3−4ib3
1 p3t−ib1 px + e−a3+4ib3

1 p3t+ib1 px + iκ3 sin(4b3
1 p3t + b1 px − ic3) + κ2 sin(p(4b3

1 p2t + b1 x + b3))
.

(4.19)

4.4. The interaction between kink solitary wave and rogue wave solutions

Assume the following ansatz for an interaction between Kink solitary wave and rogue wave
solutions [27]: 

ς1 = b1t + a1x,

ς2 = a2x2 + b2t2,

ς3 = b3t + a3x,

L = (ς1) 2 + (ς2) + κeς3 + 1.

(4.20)

Putting Eq (4.20) and their respective derivatives into Eq (3.2), we get the following algebraic
system:

24a3
1b1 + 24a2a1b1 + 4b2

1 + 4b2 = 0,
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−4a3
3b2

1κ − 4a3
3b2κ − 12a1a2

3b1b3κ − 8b2
1b3κ − 8b2b3κ = 0,

2a3
3b3κ + 12a1a2

3b1κ + 12a2
1a3b3κ + 12a2a3b3κ + 4b2

1κ + 2b2
3κ + 4b2κ = 0,

−4a2
1b2

1 + 4a2
1b2 + 4a2b2

1 + 4a2b2 = 0,
2a2

1a3
3b3κ + 2a2a3

3b3κ + 2a2
1b2

3κ + 2a2b2
3κ = 0,

−4b4
1 − 8b2b2

1 − 4b2
2 = 0,

2a3
3b2

1b3κ + 2a3
3b2b3κ + 2b2

1b2
3κ + 2b2b2

3κ = 0,
−4a1a3

3b1κ − 12a2
1a2

3b3κ − 12a2a2
3b3κ − 8a1b1b3κ = 0,
−8a1b3

1 − 8a1b2b1 = 0,
4a1a3

3b1b3κ + 4a1b1b2
3κ = 0,

after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:
Set 1:

{a2 = −a2
1, b1 = 0, b2 = 0, b3 = −a3

3}. (4.21)

Set 2:
{a1 = 0, a2 = 0, b2 = −b2

1, b3 = −a3
3}. (4.22)

Both sets 1 and 2 give the same solution as the following:

u(x, t) = −
2a3κea3 x−a3

3t

κea3 x−a3
3t + 1

. (4.23)

4.5. 1-Soliton solution

Assume the following ansatz for a 1-Soliton wave solution [28]:ς1 = b1t + a1x,

L = eκ(ς1)+δ + 1.
(4.24)

Putting Eq (4.24) and their respective derivatives into Eq (3.2), we get the following algebraic form:

2a3
1b1κ

4 + 2b2
1κ

2 = 0,

after symbolic computational calculation, we gain a solution set, which is listed as follows:
Set 1:

{a1 = a1, b1 = a3
1

(
−κ2

)
, κ = κ}, (4.25)

u(x, t) = −
2a1κeκ(a1 x−a3

1κ
2t)+δ

eκ(a1 x−a3
1κ

2t)+δ + 1
. (4.26)

4.6. 2-Soliton solution

Assume the following ansatz for a 2-Soliton wave solution [28]:
ς1 = b1t + a1x,

ς2 = b2t + a2x,

L = eκ1(ς1)+δ1 + eκ2(ς2)+δ2 + Aeκ1(ς1)+δ1+κ2(ς2)+δ2 + 1.
(4.27)
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Putting Eq (4.27) and their respective derivatives into Eq (3.2), we get the following algebraic
system:

2a3
2b2κ

4
2 + 2b2

2κ
2
2 = 0,

2a3
2Ab2κ

4
2 + 2Ab2

2κ
2
2 = 0,

2a3
1b1κ

4
1 + 2b2

1κ
2
1 = 0,

2a3
1Ab1κ

4
1 + 2Ab2

1κ
2
1 = 0,

2a3
1Ab1κ

4
1 + 6a2

1a2Ab1κ2κ
3
1 + 2a3

1Ab2κ2κ
3
1 + 6a1a2

2Ab1κ
2
2κ

2
1 + 6a2

1a2Ab2κ
2
2κ

2
1 + 2a3

2Ab1κ
3
2κ1 + 6a1a2

2Ab2κ
3
2κ1 + 2a3

2Ab2κ
4
2 + 2a3

1b1κ
4
1

−6a2
1a2b1κ2κ

3
1 − 2a3

1b2κ2κ
3
1 + 6a1a2

2b1κ
2
2κ

2
1 + 6a2

1a2b2κ
2
2κ

2
1 − 2a3

2b1κ
3
2κ1 − 6a1a2

2b2κ
3
2κ1 + 2a3

2b2κ
4
2 + 2Ab2

1κ
2
1 + 4Ab1b2κ2κ1

+2Ab2
2κ

2
2 + 2b2

1κ
2
1 − 4b1b2κ2κ1 + 2b2

2κ
2
2 = 0,

after symbolic computational calculations, we gain multiple solution sets, which are listed as follows:
Set 1:

{b1 = 0, b2 = −a3
2κ

2
2, A =

a2
1κ

2
1 − 3a1a2κ2κ1 + 3a2

2κ
2
2

a2
1κ

2
1 + 3a1a2κ2κ1 + 3a2

2κ
2
2

}, (4.28)

u(x, t) = −
2
(
A (a1κ1 + a2κ2) exp

(
κ2

(
a2x − a3

2κ
2
2t
)
+ a1κ1x + δ1 + δ2

)
+ a2κ2eκ2(a2 x−a3

2κ
2
2 t)+δ2 + a1κ1ea1κ1 x+δ1

)
A exp

(
κ2

(
a2x − a3

2κ
2
2t
)
+ a1κ1x + δ1 + δ2

)
+ eκ2(a2 x−a3

2κ
2
2 t)+δ2 + ea1κ1 x+δ1 + 1

. (4.29)

Set 2:

{b1 = −a3
1κ

2
1, b2 = −a3

2κ
2
2, A =

(a2κ2 − a1κ1) 2
(
a2

1κ
2
1 + a1a2κ2κ1 + a2

2κ
2
2

)
(a1κ1 + a2κ2) 2

(
a2

1κ
2
1 − a1a2κ2κ1 + a2

2κ
2
2

) }, (4.30)

u(x, t) = −
2(A(a1κ1 + a2κ2) exp(κ1(a1x − a3

1κ
2
1t) + κ2(a2x − a3

2κ
2
2t) + δ1 + δ2) + a1κ1eκ1(a1 x−a3

1κ
2
1 t)+δ1 + a2κ2eκ2(a2 x−a3

2κ
2
2 t)+δ2 )

A exp(κ1(a1x − a3
1κ

2
1t) + κ2(a2x − a3

2κ
2
2t) + δ1 + δ2) + eκ1(a1 x−a3

1κ
2
1 t)+δ1 + eκ2(a2 x−a3

2κ
2
2 t)+δ2 + 1

.

(4.31)
Set 3:

{b1 = −a3
1κ

2
1, b2 = 0, A =

3a2
1κ

2
1 − 3a1a2κ2κ1 + a2

2κ
2
2

3a2
1κ

2
1 + 3a1a2κ2κ1 + a2

2κ
2
2

}, (4.32)

u(x, t) = −
2
(
A (a1κ1 + a2κ2) exp

(
κ1

(
a1x − a3

1κ
2
1t
)
+ a2κ2x + δ1 + δ2

)
+ a1κ1eκ1(a1 x−a3

1κ
2
1t)+δ1 + a2κ2ea2κ2 x+δ2

)
A exp

(
κ1

(
a1x − a3

1κ
2
1t
)
+ a2κ2x + δ1 + δ2

)
+ eκ1(a1 x−a3

1κ
2
1t)+δ1 + ea2κ2 x+δ2 + 1

.

(4.33)

5. Graphical representation

Graphical representation by putting suitable values for the parameters in our analytical solutions
illustrates various types of wave structures, including breather waves, new periodic waves, new periodic
cross-kink waves, interactions between kink solitons and rogue waves, and 1-soliton and 2-soliton
wave solutions. These are depicted in the following figures: In Figure 1, breather wave solution u(x,t)
Eq (4.3) in (a) Abs(u) and (b) Re(u) are shown in 3-dim, contour, and 2-dim with p1 = 0.5, κ1 =
2.1, q = 1.3. In Figure 2, new periodic wave solution u(x,t) Eq (4.12) in (a) Abs(u) and (b) Re(u) are
shown in 3-dim, contour, and 2-dim with a3 = 0, b1 = 1.2, b3 = 0, c3 = 0, κ2 = 2.5, κ3 = 1.5, p =
1.1, and q = 1.3. In Figure 3, new periodic cross-kink wave solution u(x,t) Eq (4.17) in (a) Abs(u)
and (b) Re(u) are shown in 3-dim, contou,r and 2-dim with a3 = 1, b1 = 1.2, b3 = −1, c3 = 1, κ2 =
1.5, κ3 = 0.5, p = 0.4, and q = 0.5. In Figure 4, the interaction between kink solitary wave and rogue

AIMS Mathematics Volume 10, Issue 12, 30029–30052.



30039

wave solution u(x,t) Eq (4.23) in (a) Abs(u) and (b) Re(u) are shown in 3-dim, contour, and 2-dim
with a3 = 1.5 and κ = −1.9. In Figure 5, 1-Soliton wave solution u(x,t) Eq (4.26) in (a) Abs(u) and
(b) Re(u) are shown in 3-dim, contour, and 2-dim with a1 = −1.2, κ = 2.2 and δ = 0.2. In Figure 6,
2-Soliton wave solution u(x,t) Eq (4.29) in (a) Abs(u) and (b) Re(u) are shown in 3-dim, contour, and
2-dim with a1 = −1.5, κ1 = 1.5, δ1 = 0.2, a2 = 1.9, κ2 = 2.3 and δ2 = 0.5.

(a) (b)

Figure 1. Breather wave behavior of the solution is illustrated in Eq (4.3).

(a) (b)

Figure 2. New periodic wave behavior of solution appearance in Eq (4.12).
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(a) (b)

Figure 3. New periodic Cross-Kink wave behavior of the solution is presented in Eq (4.17).

(a) (b)

Figure 4. The interaction between Kink solitary wave and rogue wave behavior of the
solution is presented in Eq (4.23).
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(a) (b)

Figure 5. 1-Soliton wave behavior of the solution is presented in Eq (4.26).

(a) (b)

Figure 6. 2-Soliton wave behavior of the solution is presented in Eq (4.29).

6. Machine learning

Here, we use the machine learning MLP regressor algorithm, which consists of one input and output
with different hidden layers [32, 33]. Table 1 shows the configuration and training parameters of the
algorithm.
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Table 1. Neural network configuration and training parameters.

Parameter Description
Data Split 80% training and 20% testing
Normalization Range [0, 1]
Neural Network Structure Input and output layers with multiple hidden layers
Propagation Method Forward and backward propagation
Activation Function Sigmoid
Optimization Algorithm Gradient Descent
Loss Function Mean Squared Error (MSE)
Learning Rate 0.1
Training Iterations 10,000 and 100,000 epochs
Implementation Tool Python 3.13.1
Outputs Actual vs. predicted plots and loss convergence

6.1. Results and discussion

In this section, we present and analyze three distinct types of solutions, the new periodic cross-
kink, the one-soliton, and the two-soliton solutions, obtained for the problem under study. We then
examine the agreement between their analytical (actual) results and the predicted results generated by
a multilayer perceptron (MLP) regressor machine learning algorithm.

• Periodic cross-kink solution (Eq (4.17)):

– Physical behavior: Illustrated in Figure 3.
– MLP performance: The MLP regressor closely approximates the analytical solution, as

visually confirmed by the comparison between actual and predicted data in Figure 7.
– Training details: The model is trained for 100,000 epochs.
– Metrics: Achieve a minimal mean squared error (MSE) loss, which is summarized in Table 2.
– Computational time: The total prediction time is 106.738 seconds.

• One-soliton solution (Eq (4.26)):

– Physical behavior: Presented in Figure 5.
– MLP performance: The predicted results demonstrate excellent agreement with the actual

analytical data, as shown in Figure 8.
– Training details: The algorithm is trained for 10,000 epochs.
– Metrics: The resulting MSE loss is reported in Table 3.
– Computational time: The prediction is completed in 53.191 seconds.

• Two-soliton solution (Eq (4.29)):

– Physical behavior: Depicted in Figure 6.
– MLP performance: The MLP regressor produces results in close correspondence with the

actual data, displayed in Figure 9.
– Training details: Training is performed for 10,000 epochs.
– Metrics: The obtained MSE loss is listed in Table 4.
– Computational time: The total computation time for this case is 61.249 seconds.
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In all three cases, the MLP regressor proves to be an effective tool for accurately predicting
the analytical solutions, demonstrating its potential for approximating complex non-linear wave
phenomena.

(a) (b)

(c) (d)

Figure 7. Actual and predicted behavior of the solution appearance in Eq (4.17).

Table 2. Epoch and loss during the prediction of solution Eq (4.17).

For Re[u] solution
Epoch 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Loss 3.1320 2.0616 1.6779 1.1656 0.6285 0.4405 0.3903 0.3742 0.3671 0.3632
For Abs[u] solution
Epoch 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
Loss 5.2416 3.5760 2.7993 2.4498 2.3310 2.2892 2.2711 2.2610 2.2542 2.2491
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(a) (b)

(c) (d)

Figure 8. Actual and predicted behavior of the solution appearance in Eq (4.26).

Table 3. Epoch and loss during the prediction of solution Eq (4.26).

For Re[u] solution
Epoch 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Loss 0.0486 0.0262 0.0164 0.0110 0.0077 0.0056 0.0042 0.0032 0.0025 0.0020
For Abs[u] solution
Epoch 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Loss 0.0236 0.0120 0.0069 0.0044 0.0032 0.0025 0.0021 0.0018 0.0015 0.0013

Table 4. Epoch and loss during the prediction of solution Eq (4.29).

For Re[u] solution
Epoch 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Loss 1.8149 0.9199 0.686 0.5575 0.4563 0.3753 0.3293 0.3127 0.2990 0.2869
For Abs[u] solution
Epoch 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Loss 1.2110 0.9934 0.7461 0.5431 0.4050 0.3212 0.3049 0.2919 0.2801 0.2694
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(a) (b)

(c) (d)

Figure 9. Actual and predicted behavior of the solution appearance in Eq (4.29).

7. Asymptotic analysis of the solutions

In this section, we describe the asymptotic analysis of the gained solutions. Figures 10–13 depict
the asymptotic behavior of various solutions, as discussed in the following subsections. We aim to
better understand the long-time dynamics of solution u(x, t) in Eq (4.3).
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u(x,0)

Figure 10. Asymptotic behavior of the solution presented in Eq (4.3).

-10 -5 5 10
t

-300

-200

-100

100

200

300

u(0,t)

Figure 11. Asymptotic behavior of the solution presented in Eq (4.3).
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Figure 12. Asymptotic behavior of the solution presented in Eq (4.17).
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Figure 13. Asymptotic behavior of the solution presented in Eq (4.17).
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7.1. Asymptotic behavior as x→ ±∞ at t = 0

At time t = 0, the solution becomes:

u(x, 0) = −2 ·
Ae−p1 x − κ1 p sin(px) − p1e−p1 x

Ae−p1 x + κ1 cos(px) + e−p1 x .

7.2. Asymptotic behavior as t → ±∞ at x = 0

u(0, t) = −

2

κ21 p2(p2 − 3p2
1)ep1(3p2−p2

1)t

4p1(p2
1 − 3p2)

− κ1 p sin
[
p(p2 − 3p2

1)t
]
− p1e−p1(3p2−p2

1)t


κ21 p2(p2 − 3p2

1)ep1(3p2−p2
1)t

4p2
1(p2

1 − 3p2)
+ κ1 cos

[
p(p2 − 3p2

1)t
]
+ e−p1(3p2−p2

1)t

. (7.1)

This represents a transition from a constant state to a periodic nonlinear wave as time increases.
Asymptotic analysis of solution u(x, t) in Eq (4.17).

7.3. Asymptotic behavior as x→ ±∞ at t = 0

u(x, 0) = −
2
(
(−i)b1 pe−a3−ib1 px + ib1κ3 p cos(b1 px − ic3) + b1κ2 p cos

(
p(b1x + b3)

))
e−a3−ib1 px + iκ3 sin(b1 px − ic3) + κ2 sin

(
p(b1x + b3)

) . (7.2)

This represents a traveling front moving in the positive x-direction, connecting the asymptotic states.

7.4. Asymptotic behavior as t → ±∞ at x = 0

u(0, t) = −
2
(
(−i)b1 pe−a3−4ib3

1 p3t + ib1κ3 p cos(4b3
1 p3t − ic3) + b1κ2 p cos

(
p(4b3

1 p2t + b3)
))

e−a3−4ib3
1 p3t + iκ3 sin(4b3

1 p3t − ic3) + κ2 sin
(
p(4b3

1 p2t + b3)
) . (7.3)

This confirms that the solution represents a decaying front in time at fixed spatial locations.

8. Conclusions

Through the combined application of Painlevé analysis and the bilinear Hirota method, we have
entrenched the integrability and exact solvability of the newly proposed Kairat-X equation. By
performing an attentive Painlevé test, we verified that the equation holds the Painlevé property. This
integrability check validates the mathematical consistency of the problem and supports the application
of strong analytical techniques to obtain exact solutions. Utilizing Hirota’s bilinear formalism,
we successfully transformed the nonlinear equation into a bilinear form and constructed breather
wave, new periodic wave, new periodic cross-kink wave, the interaction between kink solitary and
rogue wave, 1-Soliton wave and 2-Soliton wave solutions. These solutions display the distinctive
characteristics of solitons, including shape preservation and elastic iterations upon impact. We
executed asymptotic analysis on the gain solution to check the asymptotic behavior of the gained
solutions. The machine learning multi-layer-perceptron regressor algorithm was successfully executed

AIMS Mathematics Volume 10, Issue 12, 30029–30052.



30049

to represent the behavior of the actual, and to predict, the above solutions. Furthermore, the analytical
framework developed in this work holds significant potential for applications in other fields such as
nonlinear fluid dynamics, optics, plasma physics, and other areas where solitonic phenomena show
a vital role in demonstrating and understanding complex wave interactions. These findings suggest
that the proposed model can be further explored in future research. The Painlevé analysis, being
a widely adopted technique for assessing the integrability of nonlinear models, remains a valuable
tool for such investigations. The obtained results were verified and validated using symbolic and
numerical computations through Mathematica software. Additionally, several of the derived solutions
are presented graphically using two-dimensional, three-dimensional, and contour plots to better convey
their physical characteristics and behaviors.
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