We propose a one-step iterative scheme to approximate common fixed points of multi-valued non-expansive mappings in a convex metric space $ \varUpsilon $, under certain mild boundary conditions. We present a numerical example to verify our convergence result obtained herein. We also establish some convergence results for multi-valued asymptotically non-expansive mappings in this context, which either improve or generalize results obtained for multi-valued non-expansive mappings on $ \varUpsilon $. Furthermore, we demonstrate how these findings can be applied to solve a system of two equations defined by multi-valued asymptotically non-expansive mappings on a convex metric space.
Citation: Tanveer Hussain, Abdul Rahim Khan, Kiran Riaz, Hind Alamri. Approximating common fixed points of non-expansive type multi-valued mappings in convex metric space[J]. AIMS Mathematics, 2025, 10(12): 30053-30067. doi: 10.3934/math.20251321
We propose a one-step iterative scheme to approximate common fixed points of multi-valued non-expansive mappings in a convex metric space $ \varUpsilon $, under certain mild boundary conditions. We present a numerical example to verify our convergence result obtained herein. We also establish some convergence results for multi-valued asymptotically non-expansive mappings in this context, which either improve or generalize results obtained for multi-valued non-expansive mappings on $ \varUpsilon $. Furthermore, we demonstrate how these findings can be applied to solve a system of two equations defined by multi-valued asymptotically non-expansive mappings on a convex metric space.
| [1] |
W. Takahashi, A convexity in metric space and nonexpansive mappings, Ⅰ, Kodai Math. Sem. Rep., 22 (1970), 142–149. https://doi.org/10.2996/kmj/1138846111 doi: 10.2996/kmj/1138846111
|
| [2] |
A. Kaewcharoen, B. Panyanak, Fixed points for multivalued mappings in uniformly convex metric spaces, Int. J. Math. Math. Sci., 2008 (2008), 163580. https://doi.org/10.1155/2008/163580 doi: 10.1155/2008/163580
|
| [3] |
S. Nawaz, K. Rafique, A. Batool, Z. Mahmood, T. Muhammad, Fixed point approximation of multi-valued non-expansive mappings in uniformly convex Banach spaces via AR-iteration, Modern Phys. Lett. B, 39 (2025), 2450495. https://doi.org/10.1142/s0217984924504955 doi: 10.1142/s0217984924504955
|
| [4] |
B. B. Salman, S. S. Abed, A new iterative sequence of ($\lambda, \rho$)-firmly nonexpansive multi-valued mappings in modular function spaces with applications, Math. Model. Eng. Probl., 10 (2023), 212–219. https://doi.org/10.18280/mmep.100124 doi: 10.18280/mmep.100124
|
| [5] |
A. Azam, M. Rashid, A. Kalsoom, F. Ali, Fixed-point convergence of multi-valued non-expansive mappings with applications, Axioms, 12 (2023), 1020. https://doi.org/10.3390/axioms12111020 doi: 10.3390/axioms12111020
|
| [6] |
A. R. Khan, V. Kumar, N. Hussain, Analytical and numerical treatment of Jungck-type iterative schemes, Appl. Math. Comput., 231 (2014), 521–535. https://doi.org/10.1016/j.amc.2013.12.150 doi: 10.1016/j.amc.2013.12.150
|
| [7] |
S. H. Khan, M. Abbas, B. E. Rhoades, A new one-step iterative scheme for approximating common fixed points of two multivalued nonexpansive mappings, Rend. Circ. Mat. Palermo, 59 (2010), 151–159. https://doi.org/10.1007/s12215-010-0012-4 doi: 10.1007/s12215-010-0012-4
|
| [8] |
A. R. Khan, M. A. Ahmed, Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications, Comput. Math. Appl., 59 (2010), 2990–2995. https://doi.org/10.1016/j.camwa.2010.02.017 doi: 10.1016/j.camwa.2010.02.017
|
| [9] |
M. Abbas, S. H. Khan, A. R. Khan, R. P. Agarwal, Common fixed points of two multivalued nonexpansive mappings by one-step iterative scheme, Appl. Math. Lett., 24 (2011), 97–102. https://doi.org/10.1016/j.aml.2010.08.025 doi: 10.1016/j.aml.2010.08.025
|
| [10] |
J. Ahmad, I. A. Kallel, A. Aloqaily, N. Mlaiki, On multi-valued generalized $\alpha$-nonexpansive mappings and an application to two-point BVPs, AIMS Math., 10 (2025), 403–419. https://doi.org/10.3934/math.2025019 doi: 10.3934/math.2025019
|
| [11] | H. Fukhar-ud-Din, One step iterative scheme for a pair of nonexpansive mappings in a convex metric space, Hacet. J. Math. Stat., 44 (2015), 1023–1031. |
| [12] | Y. H. Yao, R. D. Chen, Weak and strong convergence of a modified Mann iteration for asymptotically nonexpansive mappings, Nonlinear Funct. Anal. Appl., 12 (2007), 307–315. |
| [13] |
I. Uddin, J. J. Nieto, J. Ali, One-step iteration scheme for multivalued nonexpansive mappings in CAT(0) spaces, Mediterr. J. Math., 13 (2016), 1211–1225. https://doi.org/10.1007/s00009-015-0531-5 doi: 10.1007/s00009-015-0531-5
|
| [14] |
A. Tassaddiq, S. Kanwal, S. Perveen, R. Srivastava, Fixed points of single-valued and multi-valued mappings in sb-metric spaces, J. Inequal. Appl., 2022 (2022), 85. https://doi.org/10.1186/s13660-022-02814-z doi: 10.1186/s13660-022-02814-z
|
| [15] |
N. Hussain, H. Alamri, S. Alsulami, Fixed point approximation for a class of generalized nonexpansive multi-valued mappings in Banach spaces, Arab. J. Math., 12 (2023), 363–377. https://doi.org/10.1007/s40065-022-00403-y doi: 10.1007/s40065-022-00403-y
|
| [16] |
B. Nuntadilok, P. Kingkam, J. Nantadilok, Common fixed point theorems of two finite families of asymptotically quasi-nonexpansive mappings in hyperbolic spaces, J. Nonlinear Funct. Anal., 2023 (2023), 1–15. https://doi.org/10.23952/jnfa.2023.27 doi: 10.23952/jnfa.2023.27
|
| [17] | A. J. Zaslavski, Convergence of inexact orbits of nonexpansive mappings in complete metric spaces, Commun. Optim. Theory, 2024 (2024), 1–10. |
| [18] |
A. Latif, A. H. Alotaibi, M. Noorwali, Fixed point results via multivalued contractive type mappings involving a generalized distance on metric type spaces, J. Nonlinear Var. Anal., 8 (2024), 787–798. https://doi.org/10.23952/jnva.8.2024.5.06 doi: 10.23952/jnva.8.2024.5.06
|
| [19] |
K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171–174. https://doi.org/10.1090/s0002-9939-1972-0298500-3 doi: 10.1090/s0002-9939-1972-0298500-3
|
| [20] |
W. A. Kirk, H. K. Xu, Asymptotic pointwise contractions, Nonlinear Anal., 69 (2008), 4706–4712. https://doi.org/10.1016/j.na.2007.11.023 doi: 10.1016/j.na.2007.11.023
|
| [21] |
N. Hussain, M. A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Anal., 71 (2009), 4423–4429. https://doi.org/10.1016/j.na.2009.02.126 doi: 10.1016/j.na.2009.02.126
|
| [22] |
M. A. Khamsi, W. M. Kozlowski, On asymptotic pointwise nonexpansive mappings in modular function spaces, J. Math. Anal. Appl., 380 (2011), 697–708. https://doi.org/10.1016/j.jmaa.2011.03.031 doi: 10.1016/j.jmaa.2011.03.031
|
| [23] |
B. E. Rhoades, Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl., 183 (1994), 118–120. https://doi.org/10.1006/jmaa.1994.1135 doi: 10.1006/jmaa.1994.1135
|
| [24] |
P. K. F. Kuhfittig, Common fixed points of nonexpansive mappings by iteration, Pac. J. Math., 97 (1981), 137–139. https://doi.org/10.2140/pjm.1981.97.137 doi: 10.2140/pjm.1981.97.137
|