Research article

Approximating common fixed points of non-expansive type multi-valued mappings in convex metric space

  • Published: 22 December 2025
  • MSC : 47H09, 47H10, 54E35

  • We propose a one-step iterative scheme to approximate common fixed points of multi-valued non-expansive mappings in a convex metric space $ \varUpsilon $, under certain mild boundary conditions. We present a numerical example to verify our convergence result obtained herein. We also establish some convergence results for multi-valued asymptotically non-expansive mappings in this context, which either improve or generalize results obtained for multi-valued non-expansive mappings on $ \varUpsilon $. Furthermore, we demonstrate how these findings can be applied to solve a system of two equations defined by multi-valued asymptotically non-expansive mappings on a convex metric space.

    Citation: Tanveer Hussain, Abdul Rahim Khan, Kiran Riaz, Hind Alamri. Approximating common fixed points of non-expansive type multi-valued mappings in convex metric space[J]. AIMS Mathematics, 2025, 10(12): 30053-30067. doi: 10.3934/math.20251321

    Related Papers:

  • We propose a one-step iterative scheme to approximate common fixed points of multi-valued non-expansive mappings in a convex metric space $ \varUpsilon $, under certain mild boundary conditions. We present a numerical example to verify our convergence result obtained herein. We also establish some convergence results for multi-valued asymptotically non-expansive mappings in this context, which either improve or generalize results obtained for multi-valued non-expansive mappings on $ \varUpsilon $. Furthermore, we demonstrate how these findings can be applied to solve a system of two equations defined by multi-valued asymptotically non-expansive mappings on a convex metric space.



    加载中


    [1] W. Takahashi, A convexity in metric space and nonexpansive mappings, Ⅰ, Kodai Math. Sem. Rep., 22 (1970), 142–149. https://doi.org/10.2996/kmj/1138846111 doi: 10.2996/kmj/1138846111
    [2] A. Kaewcharoen, B. Panyanak, Fixed points for multivalued mappings in uniformly convex metric spaces, Int. J. Math. Math. Sci., 2008 (2008), 163580. https://doi.org/10.1155/2008/163580 doi: 10.1155/2008/163580
    [3] S. Nawaz, K. Rafique, A. Batool, Z. Mahmood, T. Muhammad, Fixed point approximation of multi-valued non-expansive mappings in uniformly convex Banach spaces via AR-iteration, Modern Phys. Lett. B, 39 (2025), 2450495. https://doi.org/10.1142/s0217984924504955 doi: 10.1142/s0217984924504955
    [4] B. B. Salman, S. S. Abed, A new iterative sequence of ($\lambda, \rho$)-firmly nonexpansive multi-valued mappings in modular function spaces with applications, Math. Model. Eng. Probl., 10 (2023), 212–219. https://doi.org/10.18280/mmep.100124 doi: 10.18280/mmep.100124
    [5] A. Azam, M. Rashid, A. Kalsoom, F. Ali, Fixed-point convergence of multi-valued non-expansive mappings with applications, Axioms, 12 (2023), 1020. https://doi.org/10.3390/axioms12111020 doi: 10.3390/axioms12111020
    [6] A. R. Khan, V. Kumar, N. Hussain, Analytical and numerical treatment of Jungck-type iterative schemes, Appl. Math. Comput., 231 (2014), 521–535. https://doi.org/10.1016/j.amc.2013.12.150 doi: 10.1016/j.amc.2013.12.150
    [7] S. H. Khan, M. Abbas, B. E. Rhoades, A new one-step iterative scheme for approximating common fixed points of two multivalued nonexpansive mappings, Rend. Circ. Mat. Palermo, 59 (2010), 151–159. https://doi.org/10.1007/s12215-010-0012-4 doi: 10.1007/s12215-010-0012-4
    [8] A. R. Khan, M. A. Ahmed, Convergence of a general iterative scheme for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces and applications, Comput. Math. Appl., 59 (2010), 2990–2995. https://doi.org/10.1016/j.camwa.2010.02.017 doi: 10.1016/j.camwa.2010.02.017
    [9] M. Abbas, S. H. Khan, A. R. Khan, R. P. Agarwal, Common fixed points of two multivalued nonexpansive mappings by one-step iterative scheme, Appl. Math. Lett., 24 (2011), 97–102. https://doi.org/10.1016/j.aml.2010.08.025 doi: 10.1016/j.aml.2010.08.025
    [10] J. Ahmad, I. A. Kallel, A. Aloqaily, N. Mlaiki, On multi-valued generalized $\alpha$-nonexpansive mappings and an application to two-point BVPs, AIMS Math., 10 (2025), 403–419. https://doi.org/10.3934/math.2025019 doi: 10.3934/math.2025019
    [11] H. Fukhar-ud-Din, One step iterative scheme for a pair of nonexpansive mappings in a convex metric space, Hacet. J. Math. Stat., 44 (2015), 1023–1031.
    [12] Y. H. Yao, R. D. Chen, Weak and strong convergence of a modified Mann iteration for asymptotically nonexpansive mappings, Nonlinear Funct. Anal. Appl., 12 (2007), 307–315.
    [13] I. Uddin, J. J. Nieto, J. Ali, One-step iteration scheme for multivalued nonexpansive mappings in CAT(0) spaces, Mediterr. J. Math., 13 (2016), 1211–1225. https://doi.org/10.1007/s00009-015-0531-5 doi: 10.1007/s00009-015-0531-5
    [14] A. Tassaddiq, S. Kanwal, S. Perveen, R. Srivastava, Fixed points of single-valued and multi-valued mappings in sb-metric spaces, J. Inequal. Appl., 2022 (2022), 85. https://doi.org/10.1186/s13660-022-02814-z doi: 10.1186/s13660-022-02814-z
    [15] N. Hussain, H. Alamri, S. Alsulami, Fixed point approximation for a class of generalized nonexpansive multi-valued mappings in Banach spaces, Arab. J. Math., 12 (2023), 363–377. https://doi.org/10.1007/s40065-022-00403-y doi: 10.1007/s40065-022-00403-y
    [16] B. Nuntadilok, P. Kingkam, J. Nantadilok, Common fixed point theorems of two finite families of asymptotically quasi-nonexpansive mappings in hyperbolic spaces, J. Nonlinear Funct. Anal., 2023 (2023), 1–15. https://doi.org/10.23952/jnfa.2023.27 doi: 10.23952/jnfa.2023.27
    [17] A. J. Zaslavski, Convergence of inexact orbits of nonexpansive mappings in complete metric spaces, Commun. Optim. Theory, 2024 (2024), 1–10.
    [18] A. Latif, A. H. Alotaibi, M. Noorwali, Fixed point results via multivalued contractive type mappings involving a generalized distance on metric type spaces, J. Nonlinear Var. Anal., 8 (2024), 787–798. https://doi.org/10.23952/jnva.8.2024.5.06 doi: 10.23952/jnva.8.2024.5.06
    [19] K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171–174. https://doi.org/10.1090/s0002-9939-1972-0298500-3 doi: 10.1090/s0002-9939-1972-0298500-3
    [20] W. A. Kirk, H. K. Xu, Asymptotic pointwise contractions, Nonlinear Anal., 69 (2008), 4706–4712. https://doi.org/10.1016/j.na.2007.11.023 doi: 10.1016/j.na.2007.11.023
    [21] N. Hussain, M. A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Anal., 71 (2009), 4423–4429. https://doi.org/10.1016/j.na.2009.02.126 doi: 10.1016/j.na.2009.02.126
    [22] M. A. Khamsi, W. M. Kozlowski, On asymptotic pointwise nonexpansive mappings in modular function spaces, J. Math. Anal. Appl., 380 (2011), 697–708. https://doi.org/10.1016/j.jmaa.2011.03.031 doi: 10.1016/j.jmaa.2011.03.031
    [23] B. E. Rhoades, Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl., 183 (1994), 118–120. https://doi.org/10.1006/jmaa.1994.1135 doi: 10.1006/jmaa.1994.1135
    [24] P. K. F. Kuhfittig, Common fixed points of nonexpansive mappings by iteration, Pac. J. Math., 97 (1981), 137–139. https://doi.org/10.2140/pjm.1981.97.137 doi: 10.2140/pjm.1981.97.137
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(201) PDF downloads(21) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog