Research article Special Issues

Leighton-Hille-Kneser-type oscillation criteria for Emden-Fowler neutral delay differential equations

  • Published: 18 December 2025
  • MSC : 34C10, 34K11

  • Emden-Fowler differential equations have numerous applications in physics and engineering. In this article, we extended the classical Leighton, Hille, and Kneser types oscillation criteria for second-order linear differential equations to the second-order Emden-Fowler neutral delay differential equation

    $ \left(r(t)\left|z^\prime(t)\right|^{\alpha-1}z^\prime(t)\right)^\prime+q(t)\left|y(\sigma(t))\right|^{\beta}\hbox{sgn} y(\sigma(t)) = 0, \; \; t\geq t_{0}, $

    where $ z(t) = y(t)+p(t)y(\tau(t)). $ The criteria obtained extended and improved some well-known results reported in the literature. Moreover, several examples are provided to show the significance of the new findings.

    Citation: Yingzhu Wu, Shizheng Li, Jinsen Xiao, Yuanhong Yu. Leighton-Hille-Kneser-type oscillation criteria for Emden-Fowler neutral delay differential equations[J]. AIMS Mathematics, 2025, 10(12): 29873-29891. doi: 10.3934/math.20251312

    Related Papers:

  • Emden-Fowler differential equations have numerous applications in physics and engineering. In this article, we extended the classical Leighton, Hille, and Kneser types oscillation criteria for second-order linear differential equations to the second-order Emden-Fowler neutral delay differential equation

    $ \left(r(t)\left|z^\prime(t)\right|^{\alpha-1}z^\prime(t)\right)^\prime+q(t)\left|y(\sigma(t))\right|^{\beta}\hbox{sgn} y(\sigma(t)) = 0, \; \; t\geq t_{0}, $

    where $ z(t) = y(t)+p(t)y(\tau(t)). $ The criteria obtained extended and improved some well-known results reported in the literature. Moreover, several examples are provided to show the significance of the new findings.



    加载中


    [1] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Dordrecht: Springer, 2002. https://doi.org/10.1007/978-94-017-2515-6_1
    [2] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order dynamic equations, London: CRC Press, 2002. https://doi.org/10.4324/9780203222898
    [3] R. P. Agarwal, S. R. Grace, D. O'Regan, On the oscillation of second order functional differential equations, Adv. Math. Sci. Appl., 12 (2002), 257–272.
    [4] B. Baculíková, J. Džurina, Oscillation theorems for second-order nonlinear neutral differential equations, Comput. Math. Appl., 62 (2011), 4472–4478. https://doi.org/10.1016/j.camwa.2011.10.024 doi: 10.1016/j.camwa.2011.10.024
    [5] M. Bartušek, Z. Došlá, M. Marini, Oscillatory solutions of Emden-Fowler type differential equation, Electron. J. Qual. Theo. Differ. Equ., 54 (2021), 1–17.
    [6] M. Bohner, T. S. Hassan, T. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indagat. Math., 29 (2018), 548–560. https://doi.org/10.1016/j.indag.2017.10.006 doi: 10.1016/j.indag.2017.10.006
    [7] G. E. Chatzarakis, S. R. Grace, I. Jadlovská, On the sharp oscillation criteria for half-linear second-order differential equations with several delay arguments, Appl. Math. Comput., 397 (2021), 125915. https://doi.org/10.1016/j.amc.2020.125915 doi: 10.1016/j.amc.2020.125915
    [8] G. E. Chatzarakis, I. Jadlovská, Improved oscillation results for second-order half-linear delay differential equations, Hacet. J. Math. Stat., 48 (2019), 170–179.
    [9] J. Džurina, S. R. Grace, I. Jadlovská, T. Li, Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
    [10] J. Džurina, I. Jadlovská, A sharp oscillation result for second-order half-linear noncanonical delay differential equations, Electron. J. Qual. Theo. Differ. Equ., 46 (2020), 1–14.
    [11] O. Došlý, P. Řehák, Half-linear differential equations, Elsevier, 202 (2005).
    [12] L. Erbe, T. S. Hassan, A. Peterson, Oscillation of second order neutral delay differential equations, Adv. Dyn. Syst. Appl., 3 (2008), 53–71.
    [13] S. R. Grace, J. Džurina, I. Jadlovská, T. Li, An improved approach for studying oscillation of second-order neutral delay differential equations, J. Inequal. Appl., 193 (2018), 1–13. https://doi.org/10.1186/s13660-018-1767-y doi: 10.1186/s13660-018-1767-y
    [14] M. K. Grammatikopoulos, G. Ladas, A. Meimaridou, Oscillations of second order neutral delay differential equations, Rad. Mat., 1 (1985), 267–274.
    [15] E. Hille, Non-Oscillation theorems, T. Am. Math. Soc., 64 (1948), 234–252. https://doi.org/10.1090/S0002-9947-1948-0027925-7 doi: 10.1090/S0002-9947-1948-0027925-7
    [16] I. Jadlovská, J. Džurina, Kneser-type oscillation criteria for second order half-linear delay differential equations, Appl. Math. Comput., 380 (2020), 125289. https://doi.org/10.1016/j.amc.2020.125289 doi: 10.1016/j.amc.2020.125289
    [17] A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen, Math. Ann., 42 (1893), 409–435. https://doi.org/10.1007/BF01444165 doi: 10.1007/BF01444165
    [18] T. Kusano, J. Wang, Oscillation properties of half-linear functional differential equations of second order, Hiroshima Math. J., 25 (1995), 371–385. https://doi.org/10.32917/hmj/1206127717 doi: 10.32917/hmj/1206127717
    [19] W. Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J., 17 (1950), 57–61. https://doi.org/10.1215/S0012-7094-50-01707-8 doi: 10.1215/S0012-7094-50-01707-8
    [20] T. Li, D. A. Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent $\delta$-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), e70018. https://doi.org/10.1111/sapm.70018 doi: 10.1111/sapm.70018
    [21] T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0
    [22] T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150–1162. https://doi.org/10.1002/mana.201300029 doi: 10.1002/mana.201300029
    [23] T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489–500. https://doi.org/10.1007/s00605-017-1039-9 doi: 10.1007/s00605-017-1039-9
    [24] T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59. https://doi.org/10.1016/j.aml.2016.11.007 doi: 10.1016/j.aml.2016.11.007
    [25] T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293. https://doi.org/10.1016/j.aml.2020.106293 doi: 10.1016/j.aml.2020.106293
    [26] O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Differ. Equ., 2019 (2019), 484. https://doi.org/10.1186/s13662-019-2418-4 doi: 10.1186/s13662-019-2418-4
    [27] O. Moaaz, R. A. El-Nabulsi, W. Muhsin, O. Bazighifan, Improved oscillation criteria for 2nd-order neutral differential equations with distributed deviating arguments, Mathematics, 8 (2020), 849. https://doi.org/10.3390/math8050849 doi: 10.3390/math8050849
    [28] S. S. Santra, O. Bazighifan, H. Ahmad, Y. M. Chu, Second-order differential equation: Oscillation theorems and applications, Math. Probl. Eng., 2020 (2020), 8820066. https://doi.org/10.1155/2020/8820066 doi: 10.1155/2020/8820066
    [29] Y. G. Sun, F. W. Meng, Note on the paper of Džurina and Staroulakis, Appl. Math. Comput., 174 (2006), 1634–1641. https://doi.org/10.1016/j.amc.2005.07.008 doi: 10.1016/j.amc.2005.07.008
    [30] J. S. W. Wong, On the generalized Emden-Fowler equation, SIAM Rev., 17 (1975), 339–360. https://doi.org/10.1137/1017036 doi: 10.1137/1017036
    [31] Y. Wu, Y. Yu, J. Xiao, Z. Jiao, Oscillatory behaviour of a class of second order Emden-Fowler differential equations with a sublinear neutral term, Appl. Math. Sci. Eng., 31 (2023), 2246098. https://doi.org/10.1080/27690911.2023.2246098 doi: 10.1080/27690911.2023.2246098
    [32] S. Zhang, Q. Wang, Oscillation of second-order nonlinear neutral dynamic equations on time scales, Appl. Math. Comput., 216 (2010), 2837–2848. https://doi.org/10.1016/j.amc.2010.03.134 doi: 10.1016/j.amc.2010.03.134
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(316) PDF downloads(27) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog