Research article

Exponential Hardy spaces and applications

  • Published: 18 December 2025
  • MSC : 42B30, 47A05, 47B35

  • We introduce some Hardy spaces built on exponential Orlicz functions. We use these Hardy-type spaces to study the mapping properties of the Cesáro operators and the Cauchy transform.

    Citation: Kwok-Pun Ho. Exponential Hardy spaces and applications[J]. AIMS Mathematics, 2025, 10(12): 29892-29900. doi: 10.3934/math.20251313

    Related Papers:

  • We introduce some Hardy spaces built on exponential Orlicz functions. We use these Hardy-type spaces to study the mapping properties of the Cesáro operators and the Cauchy transform.



    加载中


    [1] F. Riesz, Über die Randwerte einer analytischen Funktion, Math. Z., 18 (1923), 87–95. https://doi.org/10.1007/BF01192397 doi: 10.1007/BF01192397
    [2] P. L. Duren, Theory of $H^{p}$ spaces, New York: Academic Press, 1970.
    [3] P. Koosis, Introduction to $H_{p}$ spaces, 2 Eds., Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511470950
    [4] N. Nikolski, Hardy spaces, Cambridge: Cambridge University Press, 2019. https://doi.org/10.1017/9781316882108
    [5] A. Bonami, Hankel operators on Hardy spaces, preprint. Available from: http://www.mat.unimi.it/users/peloso/Welcome/milano3.pdf.
    [6] J. R. Partington, An introduction to Hankel operator, Cambridge: Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511623769
    [7] K.-P. Ho, Cauchy integral and pluriharmonic conjugate functions on Banach function spaces, Math. Proc. Royal Irish Acad., 123A (2023), 13–27. https://doi.org/10.1353/mpr.2023.0001 doi: 10.1353/mpr.2023.0001
    [8] J. A. Cima, A. Matheson, W. T. Ross, The Cauchy transform, In: Quadrature domains and their applications, 2005. https://doi.org/10.1007/3-7643-7316-4_4
    [9] S. R. Garcia, J. Mashreghi, W. T. Ross, Operator theory by example, Oxford: Oxford Academic, 2023. https://doi.org/10.1093/oso/9780192863867.001.0001
    [10] J. Mashreghi, W. T. Ross, The wonders of the Cesáro operator, Cham: Birkhäuser, 2026.
    [11] B. Hollenbeck, I. E. Verbitsky, Best constants for the Riesz projection, J. Funct. Anal., 175 (2000), 370–392. https://doi.org/10.1006/jfan.2000.3616 doi: 10.1006/jfan.2000.3616
    [12] K.-P. Ho, Bergman projections, Berezin transforms and Cauchy transform on exponential Orlicz spaces and Lorentz-Zygmund spaces, Monatsh. Math., 199 (2022), 511–525. https://doi.org/10.1007/s00605-022-01757-3 doi: 10.1007/s00605-022-01757-3
    [13] J. B. Garnett, Bounded analytic functions, New York: Academic Press, 1981.
    [14] W. T. Ross, The Cesáro operator, 2022, arXiv: 2210.08091. https://doi.org/10.48550/arXiv.2210.08091
    [15] A. G. Siskakis, Composition semigroups and the Cesáro operator on $H^{p}$, J. London Math. Soc., s2-36 (1987), 153–164. https://doi.org/10.1112/jlms/s2-36.1.153 doi: 10.1112/jlms/s2-36.1.153
    [16] I. Gohberg, N. Krupnik, Norm of the Hilbert transformation in the $L^{p}$ space, Funct. Anal. Appl., 2 (1968), 180–181. https://doi.org/10.1007/BF01075955 doi: 10.1007/BF01075955
    [17] K.-P. Ho, Exponential probabilistic inequalities, Lith. Math. J., 58 (2018), 399–407. https://doi.org/10.1007/s10986-018-9410-7 doi: 10.1007/s10986-018-9410-7
    [18] K.-P. Ho, Exponential integrability of martingales, Quaest. Math., 42 (2019), 201–206. https://doi.org/10.2989/16073606.2018.1443169 doi: 10.2989/16073606.2018.1443169
    [19] D. E. Edmunds, P. Gurka, B. Opic, Norms of embeddings of logarithmic Bessel potential spaces, Proc. Amer. Math. Soc., 126 (1998), 2417–2425. https://doi.org/10.1090/S0002-9939-98-04327-5 doi: 10.1090/S0002-9939-98-04327-5
    [20] A. Fiorenza, M. Krbec, On an optimal decomposition in Zygmund spaces, Georgian Math. J., 9 (2002), 271–286. https://doi.org/10.1515/GMJ.2002.271 doi: 10.1515/GMJ.2002.271
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(358) PDF downloads(33) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog