We introduce some Hardy spaces built on exponential Orlicz functions. We use these Hardy-type spaces to study the mapping properties of the Cesáro operators and the Cauchy transform.
Citation: Kwok-Pun Ho. Exponential Hardy spaces and applications[J]. AIMS Mathematics, 2025, 10(12): 29892-29900. doi: 10.3934/math.20251313
We introduce some Hardy spaces built on exponential Orlicz functions. We use these Hardy-type spaces to study the mapping properties of the Cesáro operators and the Cauchy transform.
| [1] |
F. Riesz, Über die Randwerte einer analytischen Funktion, Math. Z., 18 (1923), 87–95. https://doi.org/10.1007/BF01192397 doi: 10.1007/BF01192397
|
| [2] | P. L. Duren, Theory of $H^{p}$ spaces, New York: Academic Press, 1970. |
| [3] | P. Koosis, Introduction to $H_{p}$ spaces, 2 Eds., Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511470950 |
| [4] | N. Nikolski, Hardy spaces, Cambridge: Cambridge University Press, 2019. https://doi.org/10.1017/9781316882108 |
| [5] | A. Bonami, Hankel operators on Hardy spaces, preprint. Available from: http://www.mat.unimi.it/users/peloso/Welcome/milano3.pdf. |
| [6] | J. R. Partington, An introduction to Hankel operator, Cambridge: Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511623769 |
| [7] |
K.-P. Ho, Cauchy integral and pluriharmonic conjugate functions on Banach function spaces, Math. Proc. Royal Irish Acad., 123A (2023), 13–27. https://doi.org/10.1353/mpr.2023.0001 doi: 10.1353/mpr.2023.0001
|
| [8] | J. A. Cima, A. Matheson, W. T. Ross, The Cauchy transform, In: Quadrature domains and their applications, 2005. https://doi.org/10.1007/3-7643-7316-4_4 |
| [9] | S. R. Garcia, J. Mashreghi, W. T. Ross, Operator theory by example, Oxford: Oxford Academic, 2023. https://doi.org/10.1093/oso/9780192863867.001.0001 |
| [10] | J. Mashreghi, W. T. Ross, The wonders of the Cesáro operator, Cham: Birkhäuser, 2026. |
| [11] |
B. Hollenbeck, I. E. Verbitsky, Best constants for the Riesz projection, J. Funct. Anal., 175 (2000), 370–392. https://doi.org/10.1006/jfan.2000.3616 doi: 10.1006/jfan.2000.3616
|
| [12] |
K.-P. Ho, Bergman projections, Berezin transforms and Cauchy transform on exponential Orlicz spaces and Lorentz-Zygmund spaces, Monatsh. Math., 199 (2022), 511–525. https://doi.org/10.1007/s00605-022-01757-3 doi: 10.1007/s00605-022-01757-3
|
| [13] | J. B. Garnett, Bounded analytic functions, New York: Academic Press, 1981. |
| [14] | W. T. Ross, The Cesáro operator, 2022, arXiv: 2210.08091. https://doi.org/10.48550/arXiv.2210.08091 |
| [15] |
A. G. Siskakis, Composition semigroups and the Cesáro operator on $H^{p}$, J. London Math. Soc., s2-36 (1987), 153–164. https://doi.org/10.1112/jlms/s2-36.1.153 doi: 10.1112/jlms/s2-36.1.153
|
| [16] |
I. Gohberg, N. Krupnik, Norm of the Hilbert transformation in the $L^{p}$ space, Funct. Anal. Appl., 2 (1968), 180–181. https://doi.org/10.1007/BF01075955 doi: 10.1007/BF01075955
|
| [17] |
K.-P. Ho, Exponential probabilistic inequalities, Lith. Math. J., 58 (2018), 399–407. https://doi.org/10.1007/s10986-018-9410-7 doi: 10.1007/s10986-018-9410-7
|
| [18] |
K.-P. Ho, Exponential integrability of martingales, Quaest. Math., 42 (2019), 201–206. https://doi.org/10.2989/16073606.2018.1443169 doi: 10.2989/16073606.2018.1443169
|
| [19] |
D. E. Edmunds, P. Gurka, B. Opic, Norms of embeddings of logarithmic Bessel potential spaces, Proc. Amer. Math. Soc., 126 (1998), 2417–2425. https://doi.org/10.1090/S0002-9939-98-04327-5 doi: 10.1090/S0002-9939-98-04327-5
|
| [20] |
A. Fiorenza, M. Krbec, On an optimal decomposition in Zygmund spaces, Georgian Math. J., 9 (2002), 271–286. https://doi.org/10.1515/GMJ.2002.271 doi: 10.1515/GMJ.2002.271
|