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1. Introduction

In this paper, we introduce the Hardy spaces built on some exponential Orlicz functions. We call
these Hardy-type spaces the exponential Hardy spaces. They are generalizations of the classical Hardy
spaces Hp.

The classical Hardy spaces were introduced by Riesz in [1]. Since the introduction of Hardy space, it
has became one of the most important function spaces in complex analysis, real analysis, and harmonic
analysis. The reader is referred to [2–4] for the history, development, and results on the classical Hardy
spaces. In particular, one of the major topics of the Hardy spaces is the study of the operators on Hardy
spaces, such as the Hankel operator [5, 6], the Toeplitz operator, the Cauchy transform [7, 8], and the
Cesáro operator [9, 10].

Notice that the mapping properties of the above operators are for Hp with p < ∞, such as the
Cauchy transform and the Cesáro operator [1,8,11]. In this paper, we use the exponential Hardy spaces
to extend the mapping properties of the Cesáro operators and the Cauchy transform when p → ∞. In
particular, we establish some mapping properties of the Cesáro operators and the Cauchy transform for
H∞. We obtain these extensions by using a characterization of the exponential Orlicz spaces. These
characterizations already yield the mapping properties for the Bergman projections and the Berezin
transforms on the exponential Bergman spaces in [12].

This paper is organized as follows. Section 2 contains the definitions and the boundedness of the
Cesáro operator and the Cauchy transform on the classical Hardy spaces. The exponential Hardy
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spaces are defined in Section 3. It also contains the mapping properties of the Cesáro operator and the
Cauchy transform on the exponential Hardy spaces.

2. Preliminaries and definitions

Let D and ∂D = T be the unit disc and the unit circle on C, respectively. Let H(D) be the set of
holomorphic functions on D. Let dσ be the normalized Lebesgue measure on ∂D. That is,

∫
∂D

dσ = 1.
When ∂D is parameterized by θ → eiθ, the measure dσ is given by dθ

2π .
We recall the definition of the classical Hardy space Hp.

Definition 2.1. Let p ∈ (0,∞). The Hardy space Hp consists of all f ∈ H(D) satisfying

∥ f ∥Hp = sup
r∈(0,1)

(
1

2π

∫ 2π

0
| f (reiθ)|pdθ

) 1
p

< ∞.

The Hardy space H∞ consists of all f ∈ H(D) satisfying

∥ f ∥H∞ = sup
r∈(0,1),θ∈(0,2π]

| f (reiθ)| < ∞.

For the studies of the Hardy spaces Hp, the reader is referred to [1, 2, 13].
For any f ∈ H(D), the Cesáro operator C f is defined as

C f (z) =
1
z

∫ z

0

f (ξ)
1 − ξ

dξ, z ∈ D,

see [9, 10] and [14, Section 14].
The reader is referred to [10, 14] for the applications and related topics of the Cesáro operator. The

following are the boundedness of the Cesáro operator on the Hardy spaces. It is proved in [15] by using
the semigroups of weighted composition operators.

Theorem 2.1. Let p ∈ [1,∞). The Cesáro operator C : Hp → Hp is bounded.

(1) If p ∈ [2,∞), then ∥C∥Hp→Hp = p.
(2) If p ∈ [1, 2), then p ≤ ∥C∥Hp→Hp ≤ 2.

The Cauchy transform is defined as

Cg(z) =
∫
∂D

g(η)
1 − η̄z

dσ(η), g ∈ L1(∂D).

It is well known that the Cauchy transform C is bounded from Lp(∂D) to Hp.
The following result gives the mapping properties and the norm estimate for the Cauchy transform.

Theorem 2.2. Let 1 < p < ∞. For any f ∈ Lp(∂D)

∥C f ∥Hp ≤ csc
π

p
∥ f ∥Lp(∂D).

The proof of Theorem 2.2 follows the norm estimate for the Riesz projection obtained in [11].
In [16], it is shown that the norm estimate for the Cauchy transform is equivalent to the Riesz
projection, and the norm estimate for the Riesz projection was obtained in [11].
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3. Exponential Hardy spaces

In this section, we introduce the exponential Orlicz spaces and the exponential Hardy spaces. We
use the exponential Hardy spaces to establish the mapping properties of the Cauchy transform and the
Cesáro operator on the exponential Hardy spaces. Especially, we obtain the mapping properties of the
Cauchy transform and the Cesáro operator on H∞.

We begin with the definitions of the exponential Orlicz spaces on ∂D.

Definition 3.1. Let α > 0 and γ ∈ R. The exponential Orlicz space Eα consists of all Lebesgue
measurable functions f on ∂D satisfying

∥ f ∥Eα = inf
{
λ > 0 :

1
2π

∫ 2π

0
(exp((| f (eiθ)|/λ)α) − 1)dθ ≤ 1

}
< ∞.

The exponential Orlicz space Eα consists of all Lebesgue measurable functions f on T satisfying

∥ f ∥Eα = inf
{
λ > 0 :

1
2π

∫ 2π

0
(exp(exp((| f (eiθ)|/λ)α)) − e)dθ ≤ 1

}
< ∞.

The exponential Orlicz space ELα,γ consists of all Lebesgue measurable functions f on T satisfying

∥ f ∥ELα,γ = inf {λ > 0 : ρ(| f |/λ) ≤ 1} < ∞,

where

ρ( f ) =
1

2π

∫ 2π

0
(exp((| f (eiθ)|)α(1 + | log(| f (eiθ)|)|)α/γ) − 1)dθ.

The function spaces Eα, Eα and ELα,γ had been used in [12,17,18] for the studies of the martingale
inequalities, the probabilistic inequalities, and the mapping properties of the Bergman projections and
the Berezin transforms.

It is easy to see that
L∞ ↪→ Eα ↪→ Eα. (3.1)

We have the following characterizations of the exponential Orlicz spaces Eα, Eα, and ELα,γ.

Proposition 3.1. Let α > 0 and γ ∈ R.

(1) For any fixed k0 ∈ N, if supp∈N,p≥k0
p−1/α∥ f ∥Lp < ∞, then f ∈ Eα. Moreover, there exist constants

C0,C1 > 0 such that for all f ∈ Eα, we have

C0∥ f ∥Eα ≤ sup
p∈N,p≥k0

p−1/α∥ f ∥Lp ≤ C1∥ f ∥Eα . (3.2)

(2) For any fixed k0 ∈ N, if supp∈N\{1},p≥k0
(e + log p)−1/α∥ f ∥Lp < ∞, then f ∈ Eα. Moreover, there exist

constants C0,C1 > 0 such that for all f ∈ Eα, we have

C0∥ f ∥Eα ≤ sup
p∈N\{1},p≥k0

(e + log p)−1/α∥ f ∥Lp ≤ C1∥ f ∥Eα . (3.3)
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(3) For any fixed k0 ∈ N, if supp∈N\{1},p≥k0

(e+log p)1/γ

p1/α ∥ f ∥Lp < ∞, then f ∈ ELα,γ. Moreover, there exist
constants C0,C1 > 0 such that for all f ∈ ELα,γ, we have

C0∥ f ∥ELα,γ ≤ sup
p∈N\{1},p≥k0

(e + log p)1/γ

p1/α ∥ f ∥Lp ≤ C1∥ f ∥ELα,γ . (3.4)

The reader is referred to [19, Corollary 3.2], [20, (2.1)] and [13, Chapter VI, Exercise 17] for the
proofs of the above characterizations of exponential Orlicz spaces.

We now define the exponential Hardy spaces.

Definition 3.2. Let α > 0 and γ ∈ R. The exponential Hardy space H(Eα) consists of all f ∈ H(D)
satisfying

∥ f ∥H(Eα) = sup
r∈(0,1)

∥ f (r·)∥Eα < ∞.

The exponential Hardy space H(Eα) consists of all f ∈ H(D) satisfying

∥ f ∥H(Eα) = sup
r∈(0,1)

∥ f (r·)∥Eα < ∞.

The exponential Hardy space H(ELα,γ) consists of all f ∈ H(D) satisfying

∥ f ∥H(ELα,γ) = sup
r∈(0,1)

∥ f (r·)∥ELα,γ < ∞.

The above definitions are well-defined, as the radial restriction f (reiθ) is measurable.
As the radial limits preserve embedding, in view of (3.1), we find that

H∞ ↪→ H(Eα) ↪→ H(Eα).

We recall the Nevanlinna class in the following.

Definition 3.3. Let f ∈ H(D). We write f ∈ N(D) if

∥ f ∥N(D) = sup
r∈(0,1)

1
2π

∫
∂D

log+ | f (reiθ)|dθ < ∞

where log+(x) = max(0, log x), x ∈ (0,∞).

We see that for any x > 0,

log+(x) < ex − 1, and log+(x) < exα(1+| log(x)|α/γ − 1.

We also have
log+(x) < eexα

− e

because α > 0 gives
eexα

> e1+xα = eexα > e(1 + xα) > e + log x, x > 1.

Therefore,
H(Eα),H(Eα),H(ELα,γ) ⊂ N(D).

As a well-known fact from the Nevanlinna class N(D) [13, Theorem 5.3], we have the following
result for the exponential Hardy spaces.

Theorem 3.2. Let α > 0 and γ ∈ R. For any θ ∈ (0, 2π) and f ∈ H(Eα) ∪ H(Eα) ∪ H(ELα,γ), the
nontangential boundary value limz→eiθ f (z) exists a.e. and

f (eiθ) = lim
z→eiθ

f (z).
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4. Cesáro operators and Cauchy transform

In this section, we establish the main results of this paper, the mapping properties of the Cesáro
operators and Cauchy transform on the exponential Orlicz spaces and the exponential Hardy spaces.

We begin with the characterizations of the exponential Hardy spaces. The followings are the
characterizations of the exponential Hardy spaces H(Eα), H(Eα), and H(ELα,γ).

Proposition 4.1. Let α > 0, γ ∈ R, and k0 ∈ N.

(1) If supp∈N,p≥k0
p−1/α∥ f ∥Hp < ∞, then f ∈ H(Eα). Moreover, there exist constants C0,C1 > 0

depending on α, k0 such that for all f ∈ H(Eα), we have

C0∥ f ∥H(Eα) ≤ sup
p∈N,p≥k0

p−1/α∥ f ∥Hp ≤ C1∥ f ∥H(Eα). (4.1)

(2) If supp∈N,p≥k0
(e+ log p)−1/α∥ f ∥Hp < ∞, then f ∈ H(Eα). Moreover, there exist constants C0,C1 > 0

depending on α, k0 such that for all f ∈ H(Eα), we have

C0∥ f ∥H(Eα) ≤ sup
p∈N\{1},p≥k0

(e + log p)−1/α∥ f ∥Hp ≤ C1∥ f ∥H(Eα). (4.2)

(3) If supp∈N\{1},p≥k0

(e+log p)1/γ

p1/α ∥ f ∥Hp < ∞, then f ∈ H(ELα,γ), Moreover, there exist constants C0,C1 >

0 depending on α, k0, γ such that for all f ∈ H(ELα,γ), we have

C0∥ f ∥H(ELα,γ) ≤ sup
p∈N\{1},p≥k0

(e + log p)1/γ

p1/α ∥ f ∥Hp ≤ C1∥ f ∥H(ELα,γ). (4.3)

Proof. As the proofs for (4.2) and (4.3) are similar to the proof of (4.1), for simplicity, we just present
the proof for (4.1).

For any f ∈ H(Eα) and r ∈ (0, 1), (3.2) assures that there exist C0,C1 independent of r such that

C0∥ f (r·)∥Eα ≤ sup
p∈N,p≥k0

p−1/α∥ f (r·)∥Lp ≤ C1∥ f (r·)∥Eα .

By taking the supremum over r ∈ (0, 1), we have

D sup
r∈(0,1)

∥ f (r·)∥Eα ≤ sup
r∈(0,1)

sup
p∈N,p≥k0

p−1/α∥ f (r·)∥Lp ≤ C sup
r∈(0,1)

∥ f (r·)∥Eα

for some C,D > 0 because f (r·) ∈ Lp guarantees that we can swap the supremum over r and the
supremum over p. As

sup
r∈(0,1)

sup
p∈N,p≥k0

p−1/α∥ f (r·)∥Lp = sup
p∈N,p≥k0

p−1/α sup
r∈(0,1)

∥ f (r·)∥Lp = sup
p∈N,p≥k0

p−1/α∥ f ∥Hp ,

we find that

C0∥ f ∥H(Eα) ≤ sup
p∈N,p≥k0

p−1/α∥ f ∥Hp ≤ C1∥ f ∥H(Eα)

for some C0,C1 > 0. □

AIMS Mathematics Volume 10, Issue 12, 29892–29900.



29897

We establish the mapping properties of the Cesáro operator on the exponential Hardy spaces in the
following.

Theorem 4.2. Let α > 0.

(1) The Cesáro operator C : H∞ → H(E1) is bounded.
(2) The Cesáro operator C : H(Eα)→ H(E α

α+1
) is bounded.

(3) The Cesáro operator C : H(Eα)→ H(EL1,−α) is bounded.

Proof. Let f ∈ H∞. We have f ∈ Hp for all p ∈ (1,∞); therefore, C f is well defined.
For any r ∈ (0, 1) and fixed k0 ∈ N, we find that supp∈N,p≥k0

∥ f (r·)∥Lp = ∥ f (r·)∥L∞ . Consequently,

sup
p∈N,p≥k0

∥ f ∥Hp = sup
p∈N,p≥k0

sup
r∈(0,1)

∥ f (r·)∥Lp = sup
r∈(0,1)

sup
p∈N,p≥k0

∥ f (r·)∥Lp

= sup
r∈(0,1)

∥ f (r·)∥L∞ = ∥ f ∥H∞ . (4.4)

According to Theorem 2.1, we find that

p−1∥C f ∥Hp ≤ K∥ f ∥Hp (4.5)

for some K > 0 independent of p and f . By taking the supremum over p ∈ N with p ≥ k0 on both
sides of the above inequality and using (4.4), we obtain

sup
p∈N,p≥k0

p−1∥C f ∥Hp ≤ K sup
p∈N,p≥k0

∥ f ∥Hp = K∥ f ∥H∞ .

Thus, supp∈N,p≥k0
p−1∥C f ∥Hp < ∞, Item (1) of Proposition 4.1 yields C f ∈ H(E1) and

∥C f ∥H(E1) ≤ K∥ f ∥H∞

for some K > 0.
Let f ∈ H(Eα). As H(Eα) ↪→ Hp for all p ∈ (1,∞), C f is well defined. By multiplying p−

1
α on both

sides of (4.5), we find that
p−

1
α−1∥C f ∥Hp ≤ K p−

1
α ∥ f ∥Hp

for some K > 0 independent of p and f . By taking the supremum over p ∈ N with p ≥ k0 on both
sides of the above inequality, (4.1) assures that

sup
p∈N,p≥k0

p−
1
α−1∥C f ∥Hp ≤ K sup

p∈N,p≥k0

p−
1
α ∥ f ∥Hp = K∥ f ∥H(Eα).

Therefore, Item (1) of Proposition 4.1 gives C f ∈ H(E α
α+1

) and

∥C f ∥H(E α
α+1

) ≤ K∥ f ∥H(Eα)

for some K > 0.
Similarly, for any f ∈ H(Eα), as H(Eα) ↪→ Hp for all p ∈ (1,∞), C f is well defined. By multiplying

(e + log p)−1/α on both sides of (4.5), we have

(e + log p)−1/α

p
∥C f ∥Hp ≤ K(e + log p)−1/α∥ f ∥Hp
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for some K > 0 independent of p and f .
By taking the supremum over p ∈ N\{1} with p ≥ k0 on both sides of the above inequality, (4.2)

guarantees that

sup
p∈N,p≥k0

(e + log p)−1/α

p
∥C f ∥Hp ≤ K sup

p∈N,p≥k0

(e + log p)−1/α∥ f ∥Hp

= K∥ f ∥H(Eα).

Consequently, Item (3) of Proposition 4.1 gives C f ∈ H(EL1,−α) and

∥C f ∥H(EL1,−α) ≤ K∥ f ∥H(Eα)

for some K > 0. □

We also have the mapping properties of the Cauchy transform on the exponential Hardy spaces.

Theorem 4.3. Let α > 0.

(1) The Cauchy transform C : L∞ → H(E1) is bounded.
(2) The Cauchy transform C : E α

α+1
→ H(Eα) is bounded.

(3) The Cauchy transform C : EL1,−α → H(Eα) is bounded.

Since limp→∞
π/p

sin(π/p) = 1, there is a k0 ∈ N such that csc πp ≤
1
π

p when p > k0. Consequently, the
above results follow from Theorem 2.2 and Proposition 4.1.

5. Conclusions

This paper introduces the exponential Hardy spaces. These exponential Hardy spaces provide
applications to the boundedness of the Cauchy transform and the Cesáro operator.
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14. W. T. Ross, The Cesáro operator, 2022, arXiv:2210.08091.
https://doi.org/10.48550/arXiv.2210.08091

15. A. G. Siskakis, Composition semigroups and the Cesáro operator on Hp, J. London Math. Soc.,
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