Research article Special Issues

Window-sliding based NSP algorithm for multiple change-points estimation

  • Published: 18 December 2025
  • MSC : 62F03, 62L10

  • A window-sliding based narrowest significance pursuit (WNSP) algorithm is proposed for multiple change-points estimation. The algorithm adopts a "post-inference selection" approach: first, it automatically identifies the narrowest significant intervals containing at least one change point using the narrow significance tracking (NSP) method at a global significance level $ \alpha $; then, within each interval, it employs adaptive bandwidth and single-peak detection techniques to achieve precise estimation of change-point locations. Theoretical analysis confirms the method's consistency and finite-sample reliability under general noise conditions. Numerical simulations and real-world data analysis demonstrate the WNSP algorithm's effectiveness and robustness across diverse noise distributions and signal structures.

    Citation: Xiaoyuan Zhang, Zhanshou Chen. Window-sliding based NSP algorithm for multiple change-points estimation[J]. AIMS Mathematics, 2025, 10(12): 29853-29872. doi: 10.3934/math.20251311

    Related Papers:

  • A window-sliding based narrowest significance pursuit (WNSP) algorithm is proposed for multiple change-points estimation. The algorithm adopts a "post-inference selection" approach: first, it automatically identifies the narrowest significant intervals containing at least one change point using the narrow significance tracking (NSP) method at a global significance level $ \alpha $; then, within each interval, it employs adaptive bandwidth and single-peak detection techniques to achieve precise estimation of change-point locations. Theoretical analysis confirms the method's consistency and finite-sample reliability under general noise conditions. Numerical simulations and real-world data analysis demonstrate the WNSP algorithm's effectiveness and robustness across diverse noise distributions and signal structures.



    加载中


    [1] G. B. Pezzatti, T. Zumbrunnen, M. Bürgi, P. Ambrosetti, M. Conedera, Fire regime shifts as a consequence of fire policy and socio-economic development: An analysis based on the change point approach, Forest Policy Econom., 29 (2013), 7–18. https://doi.org/10.1016/j.forpol.2011.07.002 doi: 10.1016/j.forpol.2011.07.002
    [2] K. J. Oh, I. Han, Using change-point detection to support artificial neural networks for interest rates forecasting, Expert Syst. Appl., 19 (2000), 105–115. https://doi.org/10.1016/s0957-4174(00)00025-7 doi: 10.1016/s0957-4174(00)00025-7
    [3] C. Contal, J. O'Quigley, An application of changepoint methods in studying the effect of age on survival in breast cancer, Comput. Stat. Data Anal., 30 (1999), 253–270. https://doi.org/10.1016/s0167-9473(98)00096-6 doi: 10.1016/s0167-9473(98)00096-6
    [4] W. Gu, J. Choi, M. Gu, H. Simon, K. Wu, Fast change point detection for electricity market analysis, In: 2013 IEEE International Conference on Big Data, 2 (2013), 50–57. https://doi.org/10.1109/bigdata.2013.6691733
    [5] D. Jarušková, Some problems with application of change‐point detection methods to environmental data, Environm. Official J. Int. Environm. Soc., 8 (1997), 469–483. https://doi.org/10.1002/(SICI)1099-095X(199709/10)8:5%3C469::AID-ENV265%3E3.0.CO;2-J doi: 10.1002/(SICI)1099-095X(199709/10)8:5%3C469::AID-ENV265%3E3.0.CO;2-J
    [6] J. Chen, A. K. Gupta, A. Gupta, Parametric Statistical Change Point Analysis, Boston: Birkhäuser, 2000. https://doi.org/10.1007/978-1-4757-3131-6
    [7] L. Horváth, G. Rice, Change Point Analysis for Time Series, New York: Springer, 2024. https://doi.org/10.1007/978-3-031-51609-2_2
    [8] D. M. Hawkins, Fitting multiple change-point models to data, Comput. Stat. Data Anal., 37 (2001), 323–341. https://doi. org/10.1016/s0167-9473(00)00068-2 https://doi.org/10.1016/s0167-9473(00)00068-2 doi: 10.1016/s0167-9473(00)00068-2
    [9] J. Pan, J. Chen, Application of modified information criterion to multiple change point problems, J. Multivar. Anal., 97 (2006), 2221–2241. https://doi.org/10.1016/j.jmva.2006.05.009 doi: 10.1016/j.jmva.2006.05.009
    [10] Y. C. Yao, S. T. Au, Least-squares estimation of a step function, Sankhyā: Indian J. Stat., 51 (1989), 370–381.
    [11] Z. Harchaoui, C. Lévy-Leduc, Multiple change-point estimation with a total variation penalty, J. Amer. Stat. Assoc., 105 (2010), 1480–1493. https://doi.org/10.1198/jasa.2010.tm09181
    [12] Q. Li, L. Wang, Robust change point detection method via adaptive LAD-LASSO, Stat. Papers., 61 (2020), 109–121. https://doi.org/10.1007/s00362-017-0927-3 doi: 10.1007/s00362-017-0927-3
    [13] R. Killick, P. Fearnhead, I. A. Eckley, Optimal detection of changepoints with a linear computational cost, J. Amer. Stat. Assoc., 107 (2012), 1590–1598. https://doi.org/10.1080/01621459.2012.737745 doi: 10.1080/01621459.2012.737745
    [14] L. Y. Vostrikova, Detecting "disorder" in multidimensional random processes, Russian Acad. Sci., 259 (1981), 270–274. https://doi.org/10.1007/978-1-4614-2386-7_3 doi: 10.1007/978-1-4614-2386-7_3
    [15] A. B. Olshen, E. S. Venkatraman, R. Lucito, M. Wigler, Circular binary segmentation for the analysis of array‐based DNA copy number data, Biostatistics., 5 (2004), 557–572. https://doi.org/10.1093/biostatistics/kxh008 doi: 10.1093/biostatistics/kxh008
    [16] P. Fryzlewicz, Wild binary segmentation for multiple change-point detection, Ann. Statist., 42 (2014), 2243–2281. https://doi.org/10.1214/14-aos1245 doi: 10.1214/14-aos1245
    [17] P. Fryzlewicz, Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection, J. Korean Stat. Soc., 49 (2020), 1027–1070. https://doi.org/10.1007/s42952-020-00060-x doi: 10.1007/s42952-020-00060-x
    [18] R. Baranowski, Y. Chen, P. Fryzlewicz, Narrowest-over-threshold detection of multiple change points and change-point-like features, J. Royal Stat. Soc. Ser. B: Stat. Methodol., 81 (2019), 649–672. https://doi.org/10.1111/rssb.12322 doi: 10.1111/rssb.12322
    [19] S. Kovács, P. Bühlmann, H. Li, A. Munk, Seeded binary segmentation: A general methodology for fast and optimal changepoint detection, Biometrika., 110 (2023), 249–256. https://doi.org/10.1093/biomet/asac052 doi: 10.1093/biomet/asac052
    [20] K. K. Korkas, Ensemble binary segmentation for irregularly spaced data with change-points, J. Korean Stat. Soc., 51 (2022), 65–86. https://doi.org/10.1007/s42952-021-00120-w doi: 10.1007/s42952-021-00120-w
    [21] Z. Chen, Y. Hu, Cumulative sum estimator for change-point in panel data, Stat. Papers, 58 (2017), 707–728. https://doi.org/10.1007/s00362-015-0722-y doi: 10.1007/s00362-015-0722-y
    [22] H. Cho, P. Fryzlewicz, Multiple-change-point detection for high dimensional time series via sparsified binary segmentation, J. Royal Stat. Soc. Ser. B: Stat. Methodol., 77 (2015), 475–507. https://doi.org/10.1111/rssb.12079 doi: 10.1111/rssb.12079
    [23] C. Truong, L. Oudre, N. Vayatis, Selective review of offline change point detection methods, Signal Proc., 167 (2020), 107–299. https://doi.org/10.1016/j.sigpro.2019.107299 doi: 10.1016/j.sigpro.2019.107299
    [24] H. Cho, C. Kirch, Data segmentation algorithms: Univariate mean change and beyond, Econom. Stat., 30 (2024), 76–95. https://doi.org/10.1016/j.ecosta.2021.10.008 doi: 10.1016/j.ecosta.2021.10.008
    [25] X. Shi, C. Gallagher, R. Lund, R. Killick, A comparison of single and multiple changepoint techniques for time series data, Comput. Stat. Data Anal., 170 (2022), 107–433. https://doi.org/10.1016/j.csda.2022.107433 doi: 10.1016/j.csda.2022.107433
    [26] Y. S. Niu, H. Zhang, The screening and ranking algorithm to detect DNA copy number variations, Ann. App. Stat., 6 (2012), 1306–1326. https://doi.org/10.1214/12-aoas539 doi: 10.1214/12-aoas539
    [27] S. Jun Shin, Y. Wu, N. Hao, A backward procedure for change‐point detection with applications to copy number variation detection, Canad. J. Stat., 48 (2020), 366–385. https://doi.org/10.1002/cjs.11535 doi: 10.1002/cjs.11535
    [28] C. Y. Yau, Z. Zhao, Inference for multiple change points in time series via likelihood ratio scan statistics, J. Royal Stat. Soc. Ser. B: Stat. Methodol., 78 (2016), 895–916. https://doi.org/10.1016/j.econlet.2019.03.017 doi: 10.1016/j.econlet.2019.03.017
    [29] B. Eichinger, C. Kirch, A MOSUM procedure for the estimation of multiple random change points, Bernoulli, 24 (2018), 526–524. https://doi.org/10.3150/16-BEJ887 doi: 10.3150/16-BEJ887
    [30] Z. Chen, Q. Xu, H. Li, Inference for multiple change points in heavy-tailed time series via rank likelihood ratio scan statistics, Econom. Lett., 179 (2019), 53–56. https://doi.org/10.3150/16-bej887 doi: 10.3150/16-bej887
    [31] A. Anastasiou, P. Fryzlewicz, Detecting multiple generalized change-points by isolating single ones, Metrika, 85 (2022), 141–174. https://doi.org/10.1007/s00184-021-00821-6 doi: 10.1007/s00184-021-00821-6
    [32] P. Fryzlewicz, Narrowest significance pursuit: inference for multiple change-points in linear models, J. Amer. Stat. Assoc., 119 (2024), 1633–1646. https://doi.org/10.1080/01621459.2023.2211733 doi: 10.1080/01621459.2023.2211733
    [33] R. Garcia, P. Perron, An analysis of the real interest rate under regime shifts, Review Econom. Stat., 78 (1996), 111–125. https://doi.org/10.2307/2109851 doi: 10.2307/2109851
    [34] J. Bai, P. Perron, Computation and analysis of multiple structural change models, J. Appl. Economet., 18 (2003), 1–22. https://doi.org/10.1002/jae.659 doi: 10.1002/jae.659
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(325) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog