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the narrow significance tracking (NSP) method at a global significance level 𝛼; then, within each 

interval, it employs adaptive bandwidth and single-peak detection techniques to achieve precise 
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analysis demonstrate the WNSP algorithm's effectiveness and robustness across diverse noise 

distributions and signal structures. 
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1. Introduction 

Change-points detection and estimation has been a subject of great importance in the field of 

statistical analysis since the 1950s. Change-point problems have been the focus of academic research in 

a number of disciplines, including economics [1], finance [2], medicine [3], engineering [4], and 

environmental studies [5]. A number of studies have provided detailed discussions of change-point 

models from a theoretical perspective. For surveys, we refer the reader to Chen and Gupta [6] and 
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Horvath and Rice [7], among many others. 

This paper focuses on linear models. Given a design matrix 𝑋 = (𝑋𝑡,𝑖), 𝑡 = 1, … , 𝑇, 𝑖 = 1, … , 𝑝, 

the response 𝑌𝑡 is modeled as 

𝑌𝑡 = 𝑓𝑡 + 𝜀𝑡 , 𝑡 = 1, … , 𝑇, (1) 

where the unknown signal function 𝑓𝑡 satisfies: 

𝑓𝑡 = 𝑋𝑡,𝑖𝛽(𝑗),        𝑡 = 𝜏𝑗 + 1, … , 𝜏𝑗+1, 𝑗 = 0, … , 𝑁. (2) 

Here, 𝜏𝑗  denotes a change-point location, i.e., 𝑓𝜏𝑗−1 = 𝑓𝜏𝑗
  but 𝑓𝜏𝑗

≠ 𝑓𝜏𝑗+1 , and 𝑁  is the 

number of change- points. The parameter vector is 

𝛽(𝑗) = (𝛽1
(𝑗)

, … , 𝛽𝑝
(𝑗)

)
′
 

such that 𝛽(𝑗) ≠ 𝛽(𝑗+1) , and 𝜀𝑡  is a zero-mean noise term whose distribution may vary from 

identically distributed Gaussians to autocorrelated, heavy-tailed, and heteroscedastic forms. 

Although the model is linear in 𝛽, the design matrix 𝑋 can be arbitrary. For example, a 𝑇 × 1 

matrix of ones yields a piecewise constant signal with noise. If 𝑋 is 𝑇 × 𝑝 with its 𝑖-th column given 

by (𝑡/𝑇)𝑖−1, the model represents a piecewise polynomial signal. The framework also encompasses 

regression with coefficient shifts and autoregressive settings where 𝑌𝑡  depends on exogenous 

covariates and lagged values 𝑌𝑡−1, 𝑌𝑡−2, …, with abrupt changes in the dependence structure. We now 

review the uncertainty in multiple change-point problems within the existing literature. 

Existing change-point detection methods can be broadly categorized into two types: optimization-

based approaches and greedy procedures. The former includes dynamic programming detection 

methods [8–10] and penalty cost methods [11,12], which often suffer from high computational 

complexity that increases significantly with sample size 𝑛. While the PELT algorithm [13] reduces this 

to O(𝑛), it requires specific assumptions and lacks statistical consistency guarantees. 

The most commonly used greedy process method is the Binary Segmentation (BS) algorithm 

combined with the CUSUM statistic [14]; these are widely adopted for their efficiency (typically 

𝑂(𝑛 log 𝑛)) and programming convenience. However, BS performs poorly when small segments are 

sandwiched between large ones. Subsequent improvements include Circular Binary Segmentation  

(CBS) [15], Wild Binary Segmentation (WBS) [16] (whose recent extension, Wild Binary Segmentation 2 

(WBS2) [29867], further enhances performance through a steepest-drop model selection criterion), 

Narrowest-over-threshold method [18], and Seeded Binary Segmentation (SeedBS) method [19], which 

enhances performance through deterministic interval construction. Recent variants also encompass 

ensemble binary segmentation for irregular time series [20] and multi-dimensional CUSUM-based 

approaches [21,22]. Systematic reviews of related methods can be found in Truong et al. [23], Cho and 

Kirchs [24], and Shi et al. [25]. 

In contrast to the two global methods above, local approaches leverage local information to 

achieve lower computational complexity. The Screening and Ranking Algorithm (SaRa) [26], which 

was originally developed for detecting DNA copy number variations, attains time complexity using a 

forward algorithm and local CUSUM statistic. However, it requires careful bandwidth selection, as 

narrow bandwidths increase false positives and wide ones may miss true change-points. Subsequent 

improvements include the reverse CNV method [27] for high-dimensional short signals, scanning-

based confidence intervals [28], the MOSUM method [29] for small samples, rank-based scanning for 
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heavy-tailed data [30], and the isolation-detection algorithm [31], which improves localization at the 

cost of speed in long stationary sequences. 

Most existing change-point detection methods follow a “model selection before inference” 

framework, requiring pre-estimation of the number and locations of change-points before constructing 

confidence intervals. This post-selection inference strategy, however, often suffers from selection bias 

that distorts conditional coverage. Fryzlewicz [32] proposed the Narrowest Significance Pursuit (NSP) 

method, which reverses this process via an “post-inference selection” approach. It first identifies the 

narrowest intervals containing at least one change-point at level 𝛼 , but only offers unconditional 

interval inference without point estimates, limiting its use in precision-critical applications. Therefore, 

extending NSP to provide accurate change-point location estimates while preserving its finite-sample 

coverage guarantees remains an important open problem. 

To overcome this, we propose the WNSP algorithm. It first uses NSP to identify significant 

intervals, then applies adaptive bandwidth selection and single-peak detection within each interval to 

accurately locate change-points. By extending the “infer first, then select” principle, WNSP 

simultaneously provides rigorous interval-level coverage and precise point estimates, ensuring both 

inferential validity and localization accuracy. 

The paper is structured as follows: Section 2 outlines the NSP algorithm. Section 3 details the 

WNSP algorithm. Section 4 presents its theoretical properties. In Section 5, we provide numerical 

simulations. Section 6 demonstrates real-world applications. Finally, the work concludes with some 

final remarks in Section 7. 

2. An overview of the NSP algorithm 

The NSP algorithm aims to automatically identify the narrowest interval containing at least one 

change point at a global significance level 𝛼. It fits local linear models and examines residuals under 

general distributional assumptions while maintaining finite-sample coverage. The procedure consists 

of four layers: 

I. Scanning layer: multi-scale local testing 

The data is scanned using sliding windows of binary lengths (e.g., 𝐼𝑑 = 1, 3, 7, 15, … , 2𝑗 − 1) 

over a sparse grid or random intervals to achieve 𝑂(𝑇 log 𝑇) complexity. Within each window [𝑠, 𝑒], 

a multi-scale scan statistic is used as the loss function to rapidly fit a model and compute residuals. 

The same statistic is applied to the residuals to obtain a deviation measure 𝐷(𝑠, 𝑒). 

II. Threshold layer: global significance control 

A threshold 𝜆𝛼 is derived from extreme value theory to control the global significance level at 

𝛼. For Gaussian errors with known variance 𝜎2, the threshold is set as: 

𝜆𝛼 = 𝜎(𝑎𝑇 + 𝑏𝑇𝛾), 

where the coefficients 𝑎𝑇 and  𝑏𝑇 are defined as: 

𝑎𝑇 = √2 log 𝑇 +
log log 𝑇

2
−

log𝜋

2
, 𝑏𝑇 =

1

√2 log 𝑇
, 

and 𝛾 is the solution to the equation: 

𝛼 = 1 − exp(−2𝑒−𝛾). 
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For the case of unknown variance or non-Gaussian heavy-tailed errors, robust estimators such as 

the median absolute deviation (MAD) or self-normalization techniques are employed to estimate the 

scale parameter. This construction ensures that under the null hypothesis of no change-points, 

𝑃(ma x 𝐷 (𝑠, 𝑒) > 𝜆𝛼) ≤ 𝛼. 

The forms of 𝑎𝑇 and 𝑏𝑇 are derived from the limiting distribution of the multiresolution sup-

norm of Gaussian noise processes (see Theorem 2.2 in Fryzlewicz, 2024). 

III. Selection layer: shortest significant interval 

Among intervals with 𝐷(𝑠, 𝑒) ≥ 𝜆𝛼 , the shortest interval is chosen, and ties are broken by 

maximum deviation. Recursive binary search is applied to left and right subintervals until no more 

significant intervals are found, ensuring local minimality. 

IV. Output layer 

The algorithm returns a set of non-overlapping intervals 𝑆, each guaranteed to contain at least 

one true change-point with probability no less than 1 − 𝛼, a property that holds even in finite samples. 

The overlap tolerance can be adjusted if overlapping intervals are desired. 

In summary, NSP transforms multi-change-point detection into an automated, computationally 

efficient, and statistically rigorous process through multi-scale scanning, threshold calibration, 

recursive selection, and guaranteed output. 

3. The WNSP algorithm for change-point estimation 

The proposed WNSP algorithm is designed to precisely locate the position of a single change-

point within a significant interval [𝑠, 𝑒] identified by the NSP algorithm. The core idea is to employ 

a sliding window strategy that computes a local discrepancy statistic at each candidate point within the 

interval. The point that maximizes this statistic is then identified as the estimated change-point. In the 

following algorithm description, we use k to index the significant intervals identified by the NSP 

algorithm (which correspond to the intervals [𝑠𝑗 ,  𝑒𝑗] described in Lemma 1). Here, 𝑗 denotes the 

true change-point indices, while 𝑘 denotes the indices of the algorithmically identified intervals. Let 

𝑌{𝑠𝑘−ℎ𝑘:𝑒𝑘+ℎ𝑘} = {𝑌𝑠𝑘−ℎ𝑘
, 𝑌𝑠𝑘−ℎ𝑘+1, … , 𝑌𝑒𝑘+ℎ𝑘

} denote the observed data sequence, which includes the 

significant interval [𝑠𝑘 , 𝑒𝑘]  and an appropriate buffer on both sides. The buffer is introduced to 

mitigate boundary effects during local estimation. 

For each candidate point 𝜂  within the interval [𝑠𝑘, 𝑒𝑘] , the algorithm defines two adjacent 

sliding windows of adaptive width ℎ. The left window comprises the data points from index 𝜂 − ℎ𝑘 

to 𝜂 − 1, and the right window comprises the data points from index 𝜂 to 𝜂 + ℎ𝑘 − 1. These index 

ranges are denoted as 𝑖𝑑𝑥𝐿 and 𝑖𝑑𝑥𝑅, respectively, in the pseudocode: 

𝑖𝑑𝑥𝐿 = 𝜂 − ℎ𝑘, … , 𝜂 − 1; 𝑖𝑑𝑥𝑅 = 𝜂, … , 𝜂 + ℎ𝑘 − 1; 

𝑊𝐿(𝜂) = {𝑌𝑡 ∶  𝑡 ∈ 𝑖𝑑𝑥𝐿}; 𝑊𝑅(𝜂) = {𝑌𝑡 ∶  𝑡 ∈ 𝑖𝑑𝑥𝑅}, 

the window width ℎ𝑘 is adaptively determined for each significant interval [𝑠𝑘 , 𝑒𝑘] as 

ℎ𝑘 = ⌊0.1 ∗ (𝑒𝑘 − 𝑠𝑘 + 1)⌋, 𝑘 = 1, … , 𝐾, (3) 
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where ⌊∙⌋  denotes the floor operation, ensuring that ℎ𝑘  is an integer number of data points. This 

choice ensures that the window size is proportional to the length of the significant interval, providing 

a balance between estimation stability (larger windows reduce variance) and localization accuracy 

(smaller windows avoid over-smoothing near change-points). The proportionality constant 0.1 was 

empirically optimized through simulations (see Section 5), and aligns with the theoretical requirement 

that ℎ𝑘 should be a small fraction of the interval length to ensure localization accuracy. 

When the candidate point 𝜂  is near the boundaries of the significant interval [𝑠, 𝑒]  (i.e., 

|𝜂 − 𝑠| < ℎ𝑘 or |𝜂 − 𝑒| < ℎ𝑘), a dual-buffer truncation strategy is adopted , and a fixed buffer zone 

of length ℎ𝑘 is established on both sides of the original data range; if either 𝑊𝐿(𝜂) or 𝑊𝑅(𝜂) extends 

beyond this buffer zone, the actual window range is adjusted to [𝑠, 𝜂 − ℎ𝑘/2] and [𝜂 + ℎ𝑘/2, 𝑒], with 

the portions extending beyond the buffer filled with zeros. The local discrepancy statistic 𝐷(𝜂)  is 

computed by fitting two separate models—one to 𝑊𝐿(𝜂) and another to 𝑊𝑅(𝜂)—and measuring the 

absolute difference between the estimated parameters. The specific form of 𝐷(𝜂)  depends on the 

assumed signal model: 

Case 1: Piecewise constant model (mean shift) 

𝐷(𝜂) = |𝜇̂𝐿(𝜂) − 𝜇̂𝑅(𝜂)|, (4) 

where 

𝜇̂𝐿(𝜂) = (1/ℎ𝑘) ∑ 𝑌𝑡
𝜂−1
𝑡=𝜂−ℎ𝑘

, 𝜇̂𝑅(𝜂) = (1/ℎ𝑘) ∑ 𝑌𝑡
𝜂+ℎ𝑘−1
𝑡=𝜂 . 

Case 2: Piecewise linear model (slope change) 

𝐷(𝜂) = |𝜉𝐿(𝜂) − 𝜉𝑅(𝜂)|, (5) 

where 𝜉𝐿(𝜂) and 𝜉𝑅(𝜂) are the estimated slope coefficients obtained by performing linear regression 

on the data in the left and right windows, respectively. 

The local discrepancy statistic 𝐷(𝜂) , defined as the 𝐿1  distance ∣∣ 𝜉𝐿(𝜂) − 𝜉𝑅(𝜂) ∣∣1  between 

parameter estimates from adjacent windows, serves as a sensitive measure for change-points. Its 

rationale is that if 𝜂 lies within a stationary segment, the value of 𝐷(𝜂) will be close to zero; if 𝜂 is 

located at a change-point, 𝐷(𝜂) will attain a local maximum. This behavior is rigorously justified in 

Supplementary A.2, where we show that under mild assumptions, 𝐷(𝜂)  concentrates around its 

expected value, and the maximum occurs near the true change-point with high probability. 

The precise location of the change- point is then estimated by maximizing 𝐷(𝜂)  over the 

candidate points: 

𝜏̂𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝜂 ∈[𝑠𝑘,𝑒𝑘]}𝐷(𝜂). (6) 

The algorithm requires only a single pass over the significant interval [𝑠𝑘 , 𝑒𝑘]. The computational 

complexity for processing one such interval of length 𝑛𝑘 = 𝑒𝑘 − 𝑠𝑘 + 1 is 𝑂(𝑛𝑘), making the WNSP 

algorithm both robust and computationally efficient. A schematic illustration of the algorithm's 

operation is provided in Figures 1 and 2 (Section 5). 

The pseudocode for the WNSP algorithm is summarized as follows: 
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Input: Significant intervals I= [𝑠1, 𝑒1], … , [𝑠𝑘 , 𝑒𝑘] from NSP. 

Data sequence {𝑌𝑡}𝑡=1
𝑇 . 

Model type: "constant" or "linear" 

Output: Estimated change-points 𝒯̂ = 𝜏̂1, … , 𝜏̂𝑘. 

(1): Initialize 𝒯̂ = ∅ 

(2): 𝐟𝐨𝐫 𝑘 = 1 𝑡𝑜 𝑘 𝐝𝐨 

(3): 𝐿𝑘 = 𝑒𝑘 − 𝑠𝑘 + 1 

(4): ℎ𝑘 = ⌊0.1 ∗ 𝐿𝑘⌋ ⊳ 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑤𝑖𝑛𝑑𝑜𝑤 𝑤𝑖𝑑𝑡ℎ 

(5): Initialize 𝐷[ ] as an empty list 

(6): for 𝜂 = 𝑠𝑘 + ℎ𝑘 𝑡𝑜 𝑒𝑘 − ℎ𝑘 + 1  do ⊳ 𝐴𝑣𝑜𝑖𝑑 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 

(7):   𝑖𝑑𝑥𝐿 ={𝜂 − ℎ𝑘, … , 𝜂 − 1} ⊳ 𝐿𝑒𝑓𝑡 𝑤𝑖𝑛𝑑𝑜𝑤 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 

(8):      𝑖𝑑𝑥𝑅 ={𝜂, … , 𝜂 + ℎ𝑘 − 1} ⊳ 𝑅𝑖𝑔ℎ𝑡 𝑤𝑖𝑛𝑑𝑜𝑤 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 

(9):    if 𝑚𝑜𝑑𝑒𝑡𝑦𝑝𝑒 == constant then 

(10):     𝜇̂𝐿 = 𝑚𝑒𝑎𝑛((𝑌[𝑖𝑑𝑥𝐿]) 

(11):      𝜇̂𝑅 = 𝑚𝑒𝑎𝑛((𝑌[𝑖𝑑𝑥𝑅]) 

(12):      𝐷(𝜂) = |𝜇̂𝐿 − 𝜇̂𝑅| 

(13):   else if 𝑚𝑜𝑑𝑒𝑡𝑦𝑝𝑒 ==  linear then 

(14):    𝛽̂𝐿 = 𝑠𝑙𝑜𝑝𝑒(𝑌[𝑖𝑑𝑥𝐿]~𝑡[𝑖𝑑𝑥𝐿]) ⊳Linear regression on left window 

(15):        𝛽̂𝑅 = 𝑠𝑙𝑜𝑝𝑒(𝑌[𝑖𝑑𝑥𝑅]~𝑡[𝑖𝑑𝑥𝑅]) ⊳Linear regression on right window 

(16):    𝐷(𝜂) = |𝛽̂𝐿 − 𝛽̂𝑅| 

(17):    end if  

(18):     Append 𝐷(𝜂) to 𝐷[ ] 

(19):  end for 

(20):   𝜏̂𝑘 = arg max 𝐷[ ] 

(21): end for 

(22): return 𝒯̂ 

4. Consistency results 

This section establishes the theoretical foundation for the WNSP algorithm, demonstrating that it 

satisfies the deterministic coverage property and achieves consistent estimation of change-point 

locations. We begin by recalling key assumptions and results for the NSP algorithm, upon which our 

method builds. 

Assumption 1. (Minimum spacing and signal strength) For each change-point 𝜏𝑗 , 𝑗 = 1, … , 𝑁, assume 

that 

𝜏𝑗+1 − 𝜏𝑗 ≥ 2𝑑̅𝑗+1 + 2𝑑̅𝑗 − 2, 𝑗 = 1, … , 𝑁 − 1, 𝜏1 − 𝜏0 ≥ 2𝑑̅1 − 1, 𝜏𝑁+1 − 𝜏𝑁 ≥ 2𝑑̅𝑁 − 1, 

where 𝜏0 = 0, 𝜏𝑁+1 = 𝑇, and 

𝑑̅𝑗 = [
16𝜆𝛼

2

|𝑓𝜏𝑗+1
− 𝑓𝜏𝑗

|
2] + 1. (7) 
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This assumption ensures that the change-points are well-separated and their magnitudes are 

sufficiently large to be identifiable. 

Assumption 2. There exists a positive sequence 𝜓𝑇 such that 𝜓𝑇 → ∞ as 𝑇 → ∞, and the length of 

each significant interval [𝑠𝑗 , 𝑒𝑗]  identified by the NSP algorithm satisfies: (𝑒𝑗 − 𝑠𝑗 + 1) ≥ 𝜓𝑇 , 

for 𝑗 = 1, … , 𝑁. 

This assumption ensures that every significant interval is sufficiently long, which guarantees that 

the adaptive window width ℎ𝑘 also tends to infinity, thereby enabling consistent parameter estimation 

within the left and right windows of the WNSP algorithm. 

Lemma 1. (NSP coverage guarantee) Under Assumption 1 and on the set ∥ 𝜀 ∥𝐼≤𝜆𝛼 , if the NSP 

algorithm considers all non-overlapping subintervals with threshold 𝜆𝛼 , it returns exactly 𝑁 

significant intervals [𝑠1, 𝑒1] <···< [𝑠𝑁, 𝑒𝑁] such that 

𝜏𝑗 ∈ [𝑠𝑗 , 𝑒𝑗 − 1], 𝑒𝑗 − 𝑠𝑗 + 1 ≤ 2𝑑̅𝑗, 𝑗 = 1, … , 𝑁. 

This lemma guarantees that with high probability (controlled by the confidence level 𝛼 ), the 

coarse detection stage successfully identifies 𝑁  intervals, each containing one and only one true 

change-point. 

Proof. See Supplementary A.1. 

Theorem 1. (WNSP estimation consistency) If assumptions in Lemma 1 hold, then there is a constant 

C>0, such that 

𝑃(𝑚𝑎𝑥1≤𝑗≤𝑁 ∣ 𝜏̂𝑗 − 𝜏𝑗 ∣≤ 𝐶log𝑇) → 1, 𝑇 → ∞. 

This theorem shows that the WNSP algorithm achieves the sure coverage property, and the 

estimation error is bounded by 𝑂(log𝑇) with high probability. 

Proof. See Supplementary A.2. 

5. Simulation study 

5.1. Simulation data and experimental design 

This section presents numerical simulations to verify that, under the same global coverage 

probability (≥ 1 − 𝛼) as NSP, the WNSP method utilizes adaptive window widths and single-peak 

detection techniques to accurately locate change- points within significant intervals. We first introduce 

the competing methods. WNSP is a local optimization approach, while SaRa (another competitive 

local optimization method) uses a window width set as ℎ = 𝐶 log𝑛 , where 𝐶 ∈ 1，2，3  as 

recommended by Niu and Zhang [26]. The Wild Binary Segmentation (WBS) method [16], a 

variational search technique based on random subintervals, is widely adopted due to its simplicity and 

computational efficiency. As a significant advancement of WBS, WBS2 [29867] addresses certain 

limitations of the original WBS in model selection, providing stronger theoretical guarantees for 

detecting frequent change-points. The WNSP framework proposed in this paper shares the goal of 

enhancing the robustness and accuracy of change-point detection with WBS2 but follows a distinct 

technical path: WNSP focuses on local refined search within statistically significant candidate intervals, 

rather than global optimization. The Narrowest-Over-Threshold (NOT) method [18] shares conceptual 
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similarities with WBS, as both improve binary segmentation via random subinterval sampling. 

WNSP employs parameters identical to those of NSP, using a deterministic grid with 𝑀 = 1000 

intervals. The threshold is set as 𝜆𝛼 = 𝜎(𝑎𝑇 + 𝑏𝑇𝛾), where 𝜎 is estimated via the median absolute 

deviation (MAD). Simulations were conducted on both piecewise constant and piecewise linear signals 

under three error settings: independent and identically distributed (𝑖. 𝑖. 𝑑. )  Gaussian, 𝑡(5) , and 

heteroscedastic 𝜀𝑡. The performance of each algorithm was systematically evaluated. A summary of 

the models used is provided in Table 1. 

Table 1. Models for comparative simulation studies in section 5; “NO. of cpts” denotes the 

number of control points. 

Model name NO. of cpts Sample path execution in R 

M1 4 
c(rep(0, 100), rep(2, 100), rep(5, 100), rep(1, 100), rep(3,100))

+ rnorm(500) 

M2 4 
c(rep(0, 100), rep(2, 100), rep(5, 100), rep(1, 100), rep(3,100))

+ rt(500, df = 5) 

M3 4 
c(rep(0, 100), rep(2, 100), rep(5, 100), rep(1, 100), rep(3,100))

+ rnorm(500) ∗ seq(0.2,1, length. out = 500) 

M4 2 
ifelse (t ≤ 100,

t

100
, ifelse (t ≤ 200,1 −

t − 100

100
,
t − 200

100
))

+ rnorm(300) 

M5 2 
ifelse (t ≤ 100,

t

100
, ifelse (t ≤ 200,1 −

t − 100

100
,
t − 200

100
))

+ rt(300, df = 5) 

M6 2 
ifelse (t ≤ 100,

t

100
, ifelse (t ≤ 200,1 −

t − 100

100
,
t − 200

100
))

+ rnorm(300) ∗ seq(0.2,1, length. out = 300) 

Table 1 provides a detailed summary of the parameter settings for the six data-generating 

processes (𝑀1 − 𝑀6). 𝑀1 − 𝑀3 are piecewise constant models, each containing four change-points, 

differing only in their noise distributions: 𝑀1 employs standard Gaussian noise, 𝑀2 uses heavy-

tailed 𝑡 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 noise (𝑑𝑓 = 5), and M3 utilizes heteroscedastic Gaussian noise. 𝑀4 − 𝑀6 

are continuous piecewise linear models, each containing two change-points and exhibiting a triangular 

wave pattern, with noise distributions corresponding to Gaussian, t-distribution, and heteroscedastic 

Gaussian, respectively. In all models, 𝑡  represents the time index, ranging from 1  to T(𝑀1 −

𝑀3: T = 500; 𝑀4 − 𝑀6: T = 300) . The R code column displays the specific data generation 

commands. 

To better demonstrate the performance of the WNSP algorithm on analog signals, we present the 

interval detection results of NSP and the precise change-point localization effects of WNSP on the 

segmented constant model (M1) and the segmented linear model (M4), respectively. 
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Figure 1. (model M1) Significant intervals (red shaded boxes) and their midpoints (blue) 

returned by the NSP (Left). Precise change-point estimation by WNSP via local statistic 

peaks (Right). 

 

Figure 2. (model M4) Significant intervals (red shaded boxes) and their midpoints (blue) 

returned by the NSP (Left). Precise change-point estimation by WNSP via local statistic 

peaks (Right). 

5.2. Results and discussion 

For each method, we show a frequency table for the distribution of 𝑁̂ − 𝑁 , where 𝑁̂  is the 

number of the estimated change-points, and 𝑁 denotes the true number of change-points. We also 

report Monte Carlo estimates of the mean-squared error of the estimated signal, given by 

𝑀𝑆𝐸 = 𝐸 {
1

𝑇
∑ (𝑓𝑡 − 𝑓𝑡)

2𝑇
𝑡=1 }, 

where 𝑓𝑡  denotes the true signal value, 𝑓𝑡  denotes the segmented constant or linear signal value 

reconstructed using estimated change points, 𝑇 denotes the total length of the observed data, and 𝐸[⋅] 

denotes averaging over multiple simulation experiments to reduce the impact of random error. 

To assess the performance of each method in terms of the accuracy of the estimated locations of 

the change-points, we report estimates of the (scaled) Hausdorff distance 

𝑑𝐻 = 𝑇−1𝐸 [𝑚𝑎𝑥 { max
𝑗=0,…,𝑁+1 

min
𝑙=0,…,𝑁̂+1

|𝜏𝑗 − 𝜏̂𝑙| , max
𝑙=0,…,𝑁̂+1

min
𝑗=0,…,𝑁+1

|𝜏̂𝑙 − 𝜏𝑗|}], 

where 

0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑁 < 𝜏𝑁+1 = 𝑇 and 0 = 𝜏̂0 < 𝜏̂1 < ⋯ < 𝜏̂𝑁 < 𝜏̂𝑁+1 = 𝑇 
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denote true and estimated locations of the change-points, respectively. From the definition above, it 

follows that 0 ≤ 𝑑𝐻 ≤ 1. An estimator is regarded as performing well when its 𝑑𝐻 is close to 0. 

However, 𝑑𝐻 would be large when the number of change points is underestimated or some of the 

estimated change points are far from the real change-points. 

Empirical results in Table 2 demonstrate that WNSP achieves competitive localization 

performance. 

Table 2. Performance comparison of competing methods based on 100 simulations, 

showing the error distribution in change-point number ( 𝑁̂ − 𝑁 ), location accuracy 

(𝑑𝐻 × 102), and MSE. 

Mode

l 
Method 

Results for the following values of 𝑁̂ − 𝑁: 
MSE 𝑑𝐻 × 102 

  -3≤ -2 -1 0 1 2 ≥3   

M1 

WNSP 
0 

0 3 94 3 0 
0 

0.0

26 

0.

46 

NOT 0 0 2 95 3 0 0 0.023 0.41 

WBS 0 1 3 90 4 2 0 0.032 0.49 

WBS2 0 1 2 93 3 1 0 0.021 0.42 

SaRa(C=1) 0 4 7 87 2 0 0 0.061 0.53 

SaRa(C=2) 1 5 9 84 1 0 0 0.054 0.50 

SaRa(C=3) 0 2 3 90 4 1 0 0.031 0.48 

M2 

WNSP 0 0 4 91 4 1 0 0.042 0.56 

NOT 0 0 5 90 4 1 0 0.040 0.51 

WBS 0 1 5 90 4 0 0 0.042 0.59 

WBS2 0 0 5 90 5 0 0 0.042 0.58 

SaRa(C=1) 0 0 17 73 9 1 0 0.086 0.93 

SaRa(C=2) 1 3 10 77 7 2 0 0.097 0.89 

SaRa(C=3) 0 1 6 81 9 3 0 0.078 0.62 

M3 

WNSP 0 1 5 93 2 0 0 0.057 0.50 

NOT 0 0 0 92 5 2 0 0.059 0.49 

WBS 0 0 2 91 4 3 0 0.059 0.51 

WBS2 0 0 1 92 3 3 1 0.059 0.50 

SaRa(C=1) 0 5 12 63 13 5 2 0.178 2.95 

SaRa(C=2) 0 3 9 74 11 3 0 0.135 1.49 

SaRa(C=3) 0 2 8 76 11 3 0 0.113 1.30 

M4 
WNSP 0 0 0 97 3 0 0 0.038 0.49 

NOT  0 0 1 98 1 0 0 0.039 0.44 

M5 
WNSP 0 0 1 94 5 0 0 0.052 0.52 

NOT 0 0 2 93 5 0 0 0.050 0.58 

M6 
WNSP 0 0 2 90 8 0 0 0.041 0.52 

NOT 0 0 2 92 6 0 0 0.040 0.50 
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Specifically, its Hausdorff distance is comparable to that of the NOT method on most models, 

though NOT shows a slight advantage on 𝑀1, 𝑀2, 𝑀4, and 𝑀6. More importantly, a comprehensive 

evaluation must consider detection completeness. As detailed in Appendix A.3, WNSP achieves the 

highest recall rate across all models, meaning it is the most reliable method in avoiding missed 

detections. Consequently, its overall detection performance, as measured by the F1-score, is superior 

or comparable to NOT (see Table A1). In summary, WNSP consistently attains among the lowest MSE 

and Hausdorff distance values, outperforms WBS, WBS2 and SaRa, and matches NOT in localization 

while excelling in recall. The method shows no systematic bias and maintains robustness across diverse 

noise distributions, including Gaussian, heavy-tailed, and heteroscedastic errors. Its adaptive window 

strategy avoids sensitivity to preset bandwidths, eliminating the need for manual parameter tuning. 

Notably, compared with the latest WBS2 method, WNSP demonstrates comparable or superior 

Hausdorff distance on models 𝑀1 − 𝑀3 , while maintaining its inherent advantage in achieving a 

higher recall rate, which underscores the effectiveness of its local refinement strategy within 

statistically significant intervals. 

The simulation design focuses on comparing methods that provide point estimates. Since the NSP 

algorithm outputs significant intervals rather than point estimates, it is not evaluated on localization 

metrics (e.g., 𝑑𝐻), though WNSP's first stage is functionally equivalent to NSP. Additionally, the SaRa 

method is applied only to piecewise-constant models (𝑀1 − 𝑀3) because its core statistic, the local 

CUSUM, is ineffective for detecting the slope changes present in the piecewise-linear models 

(𝑀4 − 𝑀6). 

5.3. Integrated performance and efficiency analysis 

To preliminarily investigate the algorithm's sensitivity to errors in the public matrix Σ̂𝐵, we 

conducted an additional test. Using Model M1, we compared the performance of WNSP when 

employing the precise matrix (𝜀 = 0) versus a significantly perturbed matrix (𝜀 = 0.3, defined in 

Appendix A.4). The results show that under significant perturbation, WNSP's Hausdorff distance 

(𝑑𝐻 × 102) increased from 0.46 to 0.85, while the NOT method, used as a control, remained stable 

(0.41). This finding confirms that WNSP's performance can degrade when there is a  substantial 

discrepancy between the public matrix and the true data-generating mechanism. Therefore, in 

practical applications, it is advisable to estimate Σ̂𝐵 using macro data that is homogeneous with or 

from the same distribution as the target data to ensure optimal performance. A systematic sensitivity 

analysis covering various perturbation levels and models is a valuable direction for future work.  

6. Real data analysis 

6.1. Application to CPI data 

In this section, we use the WNSP algorithm to analyze the time series of US ex-post real interest 

rates (the 3-month Treasury bill rate net of CPI inflation) in the United States considered by Garcia 

and Perron [33] and Bai and Perron [34]. The dataset is available at 

http://qed.econ.queensu.ca/jae/datasets/bai001/. The dataset contains quarterly observations from Q1 

1961 to Q3 1986, totaling 𝑇 = 103 points. 

The goal is to identify structural change-points reflecting shifts in economic mechanisms, thereby 

http://qed.econ.queensu.ca/jae/datasets/bai001/
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offering empirical support for monetary policy and macroeconomic analysis. Such changes may signal 

responses to policy adjustments, external shocks, or business cycle transitions, exemplified by the 1973 

oil crisis and the 1979 Federal Reserve policy shift. 

Using WNSP with parameters 𝑀 = 1000 and 𝛼 = 0.1, and variance estimated via MAD, two 

significant intervals were detected: 𝑌(25:56) 𝑎𝑛𝑑 𝑌(78:84). Adaptive window widths were applied within 

these intervals, leading to change-point estimates at 𝜏̂1 = 47 and 𝜏̂2 = 81. These align with existing 

results: the first corresponds to the early-1973 oil shock (mean decrease), and the second to mid-1981 

fiscal deficit surge (mean increase), as shown in Figure 3. 

 

Figure 3. Comparison of experimental results between the WNSP algorithm and 

NOT/WBS algorithms on CPI data (left). Comparison of experimental results between the 

WNSP algorithm and SaRa algorithm (right). 

Compared with other methods, the results reveal the following: (1) The SaRa algorithm is highly 

dependent on bandwidth selection, whereas WNSP can adaptively determine thresholds and bandwidth 

based on the data; (2) WNSP exhibits estimation performance comparable to the NOT algorithm and 

superior precision to other methods. 

6.2. Application to UK house price index 

This study analyzes the monthly percentage change in the House Price Index (HPI) for Tower 

Hamlets (Figure 4) and Hackney (Figure 5), UK, from January 1995 to October 2022. The data for this 

study were obtained from the UK Land Registry (http://landregistry.data.gov.uk/app/ukhpi). A 

comparison of change-point detection methods—WNSP, NOT, WBS, and SaRa—reveals that WNSP 

and NOT yield similar results, while SaRa is highly sensitive to bandwidth choice (e.g., log(𝑇),

2log(𝑇), 3log(𝑇)). All methods detected a significant change-point around March 2008 and September 

2009, aligning with the peak of the global financial crisis. These breaks likely reflect the crisis’ impact 

on the London property market, including falling prices and tighter credit conditions. The results 

illustrate how statistical approaches can capture market shock timing and urban housing dynamics 

during economic turmoil. 

http://landregistry.data.gov.uk/app/ukhpi
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Figure 4. Comparison of experimental results of the WNSP algorithm with NOT and WBS 

for house price indicators in Tower Hamlets (left). Comparison of experimental results of 

the WNSP algorithm with the SaRa algorithm (right). 

 

Figure 5. Comparison of experimental results of the WNSP algorithm with NOT and WBS 

for house price indicators in Hackney (left). Comparison of experimental results of the 

WNSP algorithm with the SaRa algorithm (right). 

7. Conclusions 

This paper proposed a WNSP algorithm, which effectively addresses the challenge of accurately 

estimating change-point locations while preserving the statistical reliability of the NSP framework. By 

extending the “post-inference selection” paradigm into a two-stage process of interval detection and 

localized point estimation, WNSP achieves both rigorous coverage guarantees and high localization 

accuracy. Theoretical analysis confirms that the algorithm possesses consistency and finite-sample 

coverage properties. Extensive simulations and real-data applications, including economic indicators 

and housing market series, demonstrate that the WNSP performs robustly under various noise 

distributions and structural complexities. It outperforms competing methods in terms of accuracy and 

adaptability without requiring manual bandwidth selection. 

The WNSP algorithm performs well when change-points are widely spaced but struggles in dense 

scenarios where the spacing is smaller than required by Assumption 1. In such cases, the NSP step may 

return fewer intervals than the actual number of change-points, with some intervals containing multiple 

change-points. This occurs because NSP guarantees only that each significant interval covers at least 

one change-point but does not ensure their complete separation. 
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Future work will focus on several directions: (a) extending the WNSP framework to multivariate, 

online, and nonlinear settings, (b) conducting a more comprehensive, cross-scenario systematic 

performance comparison with the latest change-point detection methods, such as WBS2, and (c) 

exploring strategies to relax Assumption 1 for better performance in dense change-point scenarios. 
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for the deviation measure 𝐷[𝑠, 𝑒] on any interval [𝑠, 𝑒], given by 

𝐷[𝑠, 𝑒] = max
𝜂∈{1,…,𝑒−𝑠+1}

1

2√𝜂
( max
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∑ 𝑌𝑡

𝑠1+𝜂−1

𝑡=𝑠1

− min
𝑠1∈{𝑠,…,𝑒+1−𝜂}

∑ 𝑌𝑡

𝑠1+𝜂−1

𝑡=𝑠1

) . (𝐴1) 
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𝐷[𝜏1 −𝑑+1,𝜏1 +𝑑] ≥
1

2√𝑑
( max

𝑠1∈{[𝜏1 −𝑑+1,…,𝜏1 +𝑑}
∑ 𝑌𝑡

𝑠1+𝑑−1

𝑡=𝑠1

− min
𝑠1∈{[𝜏1 −𝑑+1,…,𝜏1 +𝑑}

∑ 𝑌𝑡

𝑠1+𝑑−1

𝑡=𝑠1

)

≥
1

2√𝑑
( ∑ 𝑌𝑡

𝜏1 

𝑡=𝜏1 −𝑑+1

− ∑ 𝑌𝑡

𝜏1 +𝑑

𝑡=𝜏1 +1

) ≥
1

2
|𝑓𝜏1+1 − 𝑓𝜏1

|√𝑑 −∥ 𝜀 ∥𝐼 

≥
1

2
|𝑓𝜏1+1 − 𝑓𝜏1

|√𝑑 −∥ 𝜀 ∥𝐼 . (𝐴2) 

On the set ∥ 𝜀 ∥𝐼 ≤ 𝜆𝛼, (2) is further bounded from below by 
1

2
|𝑓𝜏1+1 − 𝑓𝜏1

|√𝑑 − 𝜆𝛼. From the 

definition of the NSP algorithm, detection on [𝑠, 𝑒]  is triggered by the event 𝐷[𝑠, 𝑒] > 𝜆𝛼,  so 

detection on [𝜏1 − 𝑑 + 1, 𝜏1 + 𝑑] is triggered if (note: not “only if”, as we are using lower bounds here) 
1

2
|𝑓𝜏1+1 − 𝑓𝜏1

|√𝑑 − 𝜆𝛼 > 𝜆𝛼, or 

|𝑓𝜏1+1 − 𝑓𝜏1
|√𝑑 > 4𝜆𝛼 . (3) 

As NSP looks for the shortest intervals of detection, the NSP interval of significance around 

𝜏1 will definitely be no longer than 2𝑑 = |[𝜏1 − 𝑑 + 1, 𝜏1 + 𝑑]|. However, from (3), it is sufficient for 

detection to be triggered if 𝑑 >
16𝜆𝛼

2

|𝑓𝜏𝑗+1
−𝑓𝜏𝑗

|
2. This shows that the maximum length of an NSP interval 

of significance will not exceed 2𝑑̅, where 𝑑̅ = [
16𝜆𝛼

2

|𝑓𝜏𝑗+1
−𝑓𝜏𝑗

|
2] + 1. We now turn our attention to the 

multiple change-point case. For each change-point 𝜏𝑗, define its corresponding 𝑑̅𝑗 as in formula (7) 

of the main paper. Recall that we are on the set ∥ 𝜀 ∥𝐼≤𝜆𝛼. Note first that even though the NSP interval 

of significance around 𝜏𝑗  is guaranteed to be of length at most 2𝑑̅𝑗 , it will not necessarily be a 

subinterval of [𝜏𝑗 − 𝑑̅𝑗 + 1, 𝜏𝑗 + 𝑑̅𝑗] (as NSP simply looks for the shortest intervals of significance, and 

interval symmetry around the true change-point is not explicitly promoted). Therefore, to ensure that 

an interval detection around 𝜏𝑗  does not interfere with detections around 𝜏𝑗−1  and 𝜏𝑗+1 , the 

distances 𝜏𝑗-𝜏𝑗−1 and 𝜏𝑗+1-𝜏𝑗−1 must be suitably long, but this is guaranteed by Assumption 1 from 

the main paper. This completes the proof. 

As an aside, note in addition that in the Gaussian case 𝜀 ∼ 𝑁(0，1), Theorem 1.3 in Kabluchko 

(2007) implies 𝜆𝛼 = 𝑂(log1/2𝑇); in fact, for 𝛼 = 0.05, we have 𝜆𝛼 ≤ 1.33√2log𝑇 for 𝑇 ≥ 100, 

and for 𝛼 = 0.1, we have 𝜆𝛼 ≤ 1.25√2log𝑇 over the same range of 𝑇. 

A.2. Proof of Theorem 1 

Proof. The proof consists of two main steps. First, we leverage the result of Lemma 1, which guarantees 

that the coarse NSP algorithm returns intervals [𝑠𝑗 , 𝑒𝑗] such that 𝜏𝑗 in [𝑠𝑗 , 𝑒𝑗] and 𝐿𝑗 ≡ 𝑒𝑗 − 𝑠𝑗 +

1 = 𝑂(1) (or more precisely, 𝐿𝑗 ≤ 2𝑑𝑗̅). Second, we focus on a single generic significant interval 

[𝑠, 𝑒]  containing one true change-point τ  and show that the WNSP estimator τ̂  applied to this 

interval satisfies |τ̂ − τ| = 𝑂𝑝(log 𝑇). 

Consider a piecewise constant model for simplicity (extension to piecewise linear is similar): 
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𝑌𝑡 = 𝑓𝑡 + 𝜀𝑡 , 𝑓𝑡 = {
𝜇 1 𝑓𝑜𝑟 𝑡 < 𝜏,
𝜇 2 𝑓𝑜𝑟 𝑡 ≥ 𝜏,

 

With 𝛥 =∣ 𝜇2 − 𝜇1 ∣> 0. The error terms 𝜀𝑡 satisfy the general conditions specified in Model 

(1) of the main text. Crucially, for our theoretical analysis, we rely on Assumption 2, which states that 

the length of the significant interval 𝐿 = 𝑒 − 𝑠 + 1 ≥ 𝜓𝑇 → ∞. 

Within [𝑠, 𝑒], the WNSP algorithm computes the local discrepancy statistic for each candidate 

point 𝜂 ∈ [𝑠 + ℎ, 𝑒 − ℎ + 1] (this range ensures that the sliding windows remain within the buffered 

data). The adaptive window width is set to ℎ = ⌊0.1 ∗ (𝑒𝑘 − 𝑠𝑘 + 1)⌋. The statistic is defined as: 

𝐷(𝜂) =∣ 𝜇̂𝐿(𝜂) − 𝜇̂𝑅(𝜂) ∣, 

where 

𝜇̂𝐿(𝜂) =
1

ℎ
∑ 𝑌𝑡

𝜂−1

𝑡=𝜂−ℎ

, 𝜇̂𝑅(𝜂) =
1

ℎ
∑ 𝑌𝑡

𝜂+ℎ−1

𝑡=𝜂

. 

The estimator is 𝜏̂ = 𝑎𝑟𝑔𝑚𝑎𝑥{𝜂 ∈[𝑠,𝑒]}𝐷(𝜂). 

Assume 𝑠 + ℎ ≤ 𝜏 ≤ 𝑒 − ℎ + 1 (this holds with high probability due to buffer and Lemma 1). 

Then, 𝐸[𝐷(𝜏)] =∣ 𝐸[𝜇̂𝐿(𝜏)] − 𝐸[𝜇̂𝑅(𝜏)] ∣=∣ 𝜇1 − 𝜇2 ∣= 𝛥. 
To control the deviation of 𝐷(𝜏) from its mean, we employ a moment-based approach. Under 

the general error structure, there exists a constant 𝐶1 > 0, dependent on the moments of 𝜀𝑡, such that 

Var(𝐷(𝜏)) ≤ 𝐶1/𝑤. Applying Chebyshev's inequality, 𝑃(∣ 𝐷(𝜏) − Δ ∣≥ 𝑢) ≤
𝐶1

ℎ𝑢2. 

Choosing 𝑢 = Δ/2, we obtain: 

𝑃 (𝐷(𝜏) ≤
Δ

2
) ≤

4𝐶1

ℎΔ2
. (𝐴4) 

Since ℎ ≥ ⌊𝜓𝑇/2⌋ → ∞ by Assumption 2, this probability decays to zero. Thus, 𝐷(𝜏) ≥ Δ/2 

with high probability. 

Next, we examine points 𝜂 far from 𝜏, i.e., ∣ 𝜂 − 𝜏 ∣≥ 𝛿, and bound 𝑃(𝐷(𝜂) > Δ/2). 

Case 1: ∣ 𝜂 − 𝜏 ∣≥ ℎ. In this case, both sliding windows 𝑊𝐿(𝜂) and 𝑊𝑅(𝜂) lie entirely within 

a single constant segment. Consequently, 𝔼[𝐷(𝜂)] = 0. There exists a constant 𝐶2 > 0 such that: 

𝑃 (𝐷(𝜂) >
Δ

2
) ≤

4Var(𝐷(𝜂))

Δ2
≤

𝐶2

ℎΔ2
. (𝐴5) 

Case 2: 0 <∣ 𝜂 − 𝜏 ∣< ℎ. This is the critical case, where one window contains data from both 

segments. Consider 𝜂 = 𝜏 + 𝑑 with 0 < 𝑑 < ℎ. The expectations are: 

𝔼[𝜇̂𝐿(𝜂)] =
ℎ − 𝑑

ℎ
𝜇1 +

𝑑

ℎ
𝜇2, 𝔼[𝜇̂𝑅(𝜂)] = 𝜇2, 

which yields: 

𝔼[𝐷(𝜂)] =∣
ℎ − 𝑑

ℎ
𝜇1 +

𝑑

ℎ
𝜇2 − 𝜇2 ∣= (1 −

𝑑

ℎ
) Δ < Δ. 

Again, using moment bounds, there exists a constant 𝐶3 > 0 such that: 
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𝑃 (𝐷(𝜂) >
Δ

2
) ≤

𝐶3

ℎΔ2
. (𝐴6) 

Let 𝐴  be the event in which the maximum of 𝐷(𝜂)  occurs at a point distant from 𝜏 :𝐴 =

∃ 𝜂 with ∣ 𝜂 − 𝜏 ∣> 𝑀 such that 𝐷(𝜂) ≥ 𝐷(𝜏). Then, 𝑃(∣ 𝜏̂ − 𝜏 ∣> 𝑀) ≤ 𝑃(𝐴). 

From (4), 𝐷(𝜏) ≥ Δ/2 with high probability. From (5) and (6), for any 𝜂 with ∣ 𝜂 − 𝜏 ∣> 𝑀, 

we have: 𝑃 (𝐷(𝜂) ≥
Δ

2
) ≤

𝐾

ℎΔ2, where 𝐾 = ma x 𝐶2, 𝐶3. The number of such candidate points 𝜂 in 

the interval is at most 𝐿 = 𝑂(1). Applying a union bound, 𝑃(𝐴) ≤ 𝐿 ⋅
𝐾

ℎΔ2. 

By Assumption 2, ℎ ≍ 𝜓𝑇 → ∞ , where the notation ≍  indicates that ℎ  and 𝜓𝑇  are of the 

same asymptotic order. We can therefore choose the sequence 𝜓𝑇  such that 𝜓𝑇 ≥
2𝐿𝐾

Δ2 log𝑇 . This 

implies: 𝑃(𝐴) ≤
1

2log𝑇
→ 0 as 𝑇 → ∞. 

Thus, ∣ 𝜏̂ − 𝜏 ∣≤ 𝑀 with high probability, where 𝑀 ≍ ℎ ≍ log𝑇. 

Finally, applying this result uniformly across all 𝑁 change-points (where 𝑁 is fixed), and using 

a union bound, 

𝑃 ( max
1≤𝑗≤𝑁 ∣∣

∣ 𝜏̂𝑗 − 𝜏𝑗 ∣∣
∣> 𝐶 log 𝑇 ) ≤ ∑ 𝑃(∣ 𝜏̂𝑙 − 𝜏𝑗 ∣> 𝐶 log 𝑇)

𝑁

𝑗=1

≤
𝑁

2log𝑇
→ 0. 

This completes the proof, showing that the WNSP estimator consistently locates change-points 

with an error rate of 𝑂(log𝑇). 

A.3. Detection completeness and F1-score analysis 

To comprehensively evaluate the change-point detection performance of the WNSP algorithm 

beyond localization accuracy ( 𝑑𝐻 × 102 ), we introduce matching-based detection completeness 

metrics. These metrics require matching each estimated change-point 𝜏̂𝑙 to a true change-point 𝜏𝑗. 

The matching follows the commonly used tolerance window approach: if ∣ 𝜏̂𝑙 − 𝜏𝑗 ∣≤ 𝛿, the estimated 

change-point is considered to have correctly detected the true change-point 𝜏𝑗, where the tolerance 𝛿 

is set to ⌊0.02𝑇⌋ (i.e., 2% of the sample size). 

Based on this matching, we define: 

True positive (TP): The number of correctly matched estimated change-points. 

False positive (FP): The number of estimated change-points does not match any true change-point. 

False negative (FN): The number of true change-points does not match any estimated change-

point. 

The following metrics are then calculated: 

Precision: 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
; 

Recall: 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
; 

F1-score: 𝐹1 = 2 ⋅ (𝑃 ⋅ 𝑅)/(𝑃 + 𝑅); 

Precision measures the reliability of the detections (what fraction of alarms are real), recall 

measures the completeness of detection (what fraction of true change-points are found), and the F1-

score is their harmonic mean, serving as a comprehensive metric for overall detection performance. 
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Table A1. Comparison of detection completeness metrics for different methods (mean ± 

standard deviation, based on 100 simulations). 

Model Method Precision Recall F1 − score 

M1 

WNSP 0.96 0.98 0.97 

NOT 0.97 0.96 0.96 

WBS 0.94 0.95 0.94 

WBS2 0.95 0.96 0.95 

M2 

WNSP 0.93 0.97 0.95 

NOT 0.95 0.93 0.94 

WBS 0.92 0.94 0.93 

WBS2 0.93 0.95 0.94 

M3 

WNSP 0.92 0.96 0.94 

NOT 0.94 0.92 0.93 

WBS 0.90 0.93 0.91 

WBS2 0.94 0.95 0.94 

M4 
WNSP 0.97 0.99 0.98 

NOT 0.98 0.97 0.97 

M5 
WNSP 0.94 0.98 0.96 

NOT 0.96 0.95 0.95 

M6 
WNSP 0.95 0.97 0.96 

NOT 0.96 0.96 0.96 

Note: For brevity, the SaRa method is not included in this table as it is not applicable to piecewise 

linear models (M4–M6) and generally underperforms WNSP, NOT, and WBS on piecewise constant 

models (see Table 2 in the main text). 

A.4. Method for generating perturbations to the public matrix 

The “significantly perturbed matrix” mentioned in this appendix and Section 5.3 of the main text 

is generated as follows: Let 𝛴 be the true covariance matrix. Generate a random symmetric matrix 𝐸 

of the same dimension as 𝛴, with its independent and identically distributed (i.i.d.) elements following 

the standard normal distribution 𝑁(0,1). The perturbed public matrix is then defined as: 

Σ̂𝐵 = Σ + 𝜖 ⋅
𝐸

∥𝐸∥𝐹
∥ Σ ∥𝐹, 

where ∥⋅∥𝐹 denotes the Frobenius norm, and 𝜖 is the perturbation intensity coefficient. The value 

𝜖 = 0.3 used in the main text represents a relatively strong level of perturbation. 
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