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Abstract: A window-sliding based narrowest significance pursuit (WNSP) algorithm is proposed for
multiple change-points estimation. The algorithm adopts a “post-inference selection” approach: first,
it automatically identifies the narrowest significant intervals containing at least one change point using
the narrow significance tracking (NSP) method at a global significance level «; then, within each
interval, it employs adaptive bandwidth and single-peak detection techniques to achieve precise
estimation of change-point locations. Theoretical analysis confirms the method's consistency and
finite-sample reliability under general noise conditions. Numerical simulations and real-world data
analysis demonstrate the WNSP algorithm's effectiveness and robustness across diverse noise
distributions and signal structures.
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1. Introduction

Change-points detection and estimation has been a subject of great importance in the field of
statistical analysis since the 1950s. Change-point problems have been the focus of academic research in
a number of disciplines, including economics [1], finance [2], medicine [3], engineering [4], and
environmental studies [5]. A number of studies have provided detailed discussions of change-point
models from a theoretical perspective. For surveys, we refer the reader to Chen and Gupta [6] and
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Horvath and Rice [7], among many others.
This paper focuses on linear models. Given a design matrix X = (Xt'i), t=1,...T,i=1,..,p,
the response Y; is modeled as

Yt = ft + gt’ t = 1, ...,T, (1)

where the unknown signal function f; satisfies:
fe=X,BY, t=1+1.,74, Jj=0..,N. (2)

Here, t; denotes a change-point location, i.e., fr]-—1 = fT]. but fT]. * ij+1, and N is the

number of change- points. The parameter vector is
ﬁ(j) _ ( 1(1)’ » z§])>

such that BU) # BU+D and &, is a zero-mean noise term whose distribution may vary from
identically distributed Gaussians to autocorrelated, heavy-tailed, and heteroscedastic forms.

Although the model is linear in S, the design matrix X can be arbitrary. For example,a T X 1
matrix of ones yields a piecewise constant signal with noise. If X is T X p withits i-th column given
by (t/T)'~1, the model represents a piecewise polynomial signal. The framework also encompasses
regression with coefficient shifts and autoregressive settings where Y; depends on exogenous
covariates and lagged values Y;_q,Y;_,, ..., with abrupt changes in the dependence structure. We now
review the uncertainty in multiple change-point problems within the existing literature.

Existing change-point detection methods can be broadly categorized into two types: optimization-
based approaches and greedy procedures. The former includes dynamic programming detection
methods [8—10] and penalty cost methods [11,12], which often suffer from high computational
complexity that increases significantly with sample size n. While the PELT algorithm [13] reduces this
to O(n), it requires specific assumptions and lacks statistical consistency guarantees.

The most commonly used greedy process method is the Binary Segmentation (BS) algorithm
combined with the CUSUM statistic [14]; these are widely adopted for their efficiency (typically
0O(nlogn)) and programming convenience. However, BS performs poorly when small segments are
sandwiched between large ones. Subsequent improvements include Circular Binary Segmentation
(CBYS) [15], Wild Binary Segmentation (WBS) [16] (whose recent extension, Wild Binary Segmentation 2
(WBS2) [29867], further enhances performance through a steepest-drop model selection criterion),
Narrowest-over-threshold method [ 18], and Seeded Binary Segmentation (SeedBS) method [19], which
enhances performance through deterministic interval construction. Recent variants also encompass
ensemble binary segmentation for irregular time series [20] and multi-dimensional CUSUM-based
approaches [21,22]. Systematic reviews of related methods can be found in Truong et al. [23], Cho and
Kirchs [24], and Shi et al. [25].

In contrast to the two global methods above, local approaches leverage local information to
achieve lower computational complexity. The Screening and Ranking Algorithm (SaRa) [26], which
was originally developed for detecting DNA copy number variations, attains time complexity using a
forward algorithm and local CUSUM statistic. However, it requires careful bandwidth selection, as
narrow bandwidths increase false positives and wide ones may miss true change-points. Subsequent
improvements include the reverse CNV method [27] for high-dimensional short signals, scanning-
based confidence intervals [28], the MOSUM method [29] for small samples, rank-based scanning for
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heavy-tailed data [30], and the isolation-detection algorithm [31], which improves localization at the
cost of speed in long stationary sequences.

Most existing change-point detection methods follow a “model selection before inference”
framework, requiring pre-estimation of the number and locations of change-points before constructing
confidence intervals. This post-selection inference strategy, however, often suffers from selection bias
that distorts conditional coverage. Fryzlewicz [32] proposed the Narrowest Significance Pursuit (NSP)
method, which reverses this process via an “post-inference selection” approach. It first identifies the
narrowest intervals containing at least one change-point at level a, but only offers unconditional
interval inference without point estimates, limiting its use in precision-critical applications. Therefore,
extending NSP to provide accurate change-point location estimates while preserving its finite-sample
coverage guarantees remains an important open problem.

To overcome this, we propose the WNSP algorithm. It first uses NSP to identify significant
intervals, then applies adaptive bandwidth selection and single-peak detection within each interval to
accurately locate change-points. By extending the “infer first, then select” principle, WNSP
simultaneously provides rigorous interval-level coverage and precise point estimates, ensuring both
inferential validity and localization accuracy.

The paper is structured as follows: Section 2 outlines the NSP algorithm. Section 3 details the
WNSP algorithm. Section 4 presents its theoretical properties. In Section 5, we provide numerical
simulations. Section 6 demonstrates real-world applications. Finally, the work concludes with some
final remarks in Section 7.

2. An overview of the NSP algorithm

The NSP algorithm aims to automatically identify the narrowest interval containing at least one
change point at a global significance level «. It fits local linear models and examines residuals under
general distributional assumptions while maintaining finite-sample coverage. The procedure consists
of four layers:

I.  Scanning layer: multi-scale local testing

The data is scanned using sliding windows of binary lengths (e.g., 14=1,3,7,15,..,2/ — 1)
over a sparse grid or random intervals to achieve O(T logT) complexity. Within each window [s, e],
a multi-scale scan statistic is used as the loss function to rapidly fit a model and compute residuals.
The same statistic is applied to the residuals to obtain a deviation measure D(s, e).

II. Threshold layer: global significance control
A threshold A, is derived from extreme value theory to control the global significance level at
«. For Gaussian errors with known variance o2, the threshold is set as:

Ay = o(ar + bry),

where the coefficients ar and by are defined as:

loglogT  logm 1

aT:\/210gT+—2 2 1= e
and y is the solution to the equation:

a=1-—exp(—2e77).

AIMS Mathematics Volume 10, Issue 12, 29853-29872.



29856

For the case of unknown variance or non-Gaussian heavy-tailed errors, robust estimators such as
the median absolute deviation (MAD) or self-normalization techniques are employed to estimate the
scale parameter. This construction ensures that under the null hypothesis of no change-points,

P(maxD (s,e) > 1,) < a.

The forms of a; and by are derived from the limiting distribution of the multiresolution sup-
norm of Gaussian noise processes (see Theorem 2.2 in Fryzlewicz, 2024).

III. Selection layer: shortest significant interval

Among intervals with D(s,e) = A,, the shortest interval is chosen, and ties are broken by
maximum deviation. Recursive binary search is applied to left and right subintervals until no more
significant intervals are found, ensuring local minimality.

IV. Output layer

The algorithm returns a set of non-overlapping intervals S, each guaranteed to contain at least
one true change-point with probability no less than 1 — «, a property that holds even in finite samples.
The overlap tolerance can be adjusted if overlapping intervals are desired.

In summary, NSP transforms multi-change-point detection into an automated, computationally
efficient, and statistically rigorous process through multi-scale scanning, threshold calibration,
recursive selection, and guaranteed output.

3. The WNSP algorithm for change-point estimation

The proposed WNSP algorithm is designed to precisely locate the position of a single change-
point within a significant interval [s,e] identified by the NSP algorithm. The core idea is to employ
a sliding window strategy that computes a local discrepancy statistic at each candidate point within the
interval. The point that maximizes this statistic is then identified as the estimated change-point. In the
following algorithm description, we use k to index the significant intervals identified by the NSP
algorithm (which correspond to the intervals [Sj, ej] described in Lemma 1). Here, j denotes the
true change-point indices, while k denotes the indices of the algorithmically identified intervals. Let
Yis—nper+hi) = {Ysk_hk’ Yo —np+1s - Yek+hk} denote the observed data sequence, which includes the
significant interval [sy,e;] and an appropriate buffer on both sides. The buffer is introduced to
mitigate boundary effects during local estimation.

For each candidate point n within the interval [sy,ex], the algorithm defines two adjacent
sliding windows of adaptive width h. The left window comprises the data points from index 1 — h;
ton — 1, and the right window comprises the data points from index n to n + h;, — 1. These index
ranges are denoted as idx; and idxg, respectively, in the pseudocode:

ide =n- hki ey = 1; ide =n..,N + hk — 1,
Wiy =Y ¢ t €idx }; Weepy ={Y; : t € idxg},

the window width h;, is adaptively determined for each significant interval [sy,e;]| as

hk= lo.l*(ek—5k+1)J, k= 1,...,K, (3)
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where || denotes the floor operation, ensuring that h; is an integer number of data points. This
choice ensures that the window size is proportional to the length of the significant interval, providing
a balance between estimation stability (larger windows reduce variance) and localization accuracy
(smaller windows avoid over-smoothing near change-points). The proportionality constant 0.1 was
empirically optimized through simulations (see Section 5), and aligns with the theoretical requirement
that h; should be a small fraction of the interval length to ensure localization accuracy.

When the candidate point 7 is near the boundaries of the significant interval [s,e] (i.e.,
[n —s| < h, or |n—e| < hy), a dual-buffer truncation strategy is adopted , and a fixed buffer zone
of length hy, is established on both sides of the original data range; if either W,y or Wg(,) extends
beyond this buffer zone, the actual window range is adjusted to [s,n — h, /2] and [n + hy/2,e], with
the portions extending beyond the buffer filled with zeros. The local discrepancy statistic D(n) is
computed by fitting two separate models—one to W,y and another to Wg(,;y—and measuring the
absolute difference between the estimated parameters. The specific form of D(n) depends on the
assumed signal model:

Case 1: Piecewise constant model (mean shift)

D) = |y = frap 4

where

] ! 7 hi—1
e = (/R T2y, Yeo firap = (1/hi) Z?:nk Y.

Case 2: Piecewise linear model (slope change)

D) = &L — Eram s (5)

where & Ly and sz(n) are the estimated slope coefficients obtained by performing linear regression
on the data in the left and right windows, respectively.

The local discrepancy statistic D(n), defined as the L, distance || EL(,,) - ER(,?) [l; between
parameter estimates from adjacent windows, serves as a sensitive measure for change-points. Its
rationale is that if 7 lies within a stationary segment, the value of D(n) will be close to zero; if 1 is
located at a change-point, D(n) will attain a local maximum. This behavior is rigorously justified in
Supplementary A.2, where we show that under mild assumptions, D(n) concentrates around its
expected value, and the maximum occurs near the true change-point with high probability.

The precise location of the change- point is then estimated by maximizing D(n) over the
candidate points:

T = argmaxg, E[sk,ek]}D(n)- (6)

The algorithm requires only a single pass over the significant interval [sy, e, ]. The computational
complexity for processing one such interval of length nj, = e, — s, + 1 is 0(ny), making the WNSP
algorithm both robust and computationally efficient. A schematic illustration of the algorithm's
operation is provided in Figures 1 and 2 (Section 5).

The pseudocode for the WNSP algorithm is summarized as follows:
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Input: Significant intervals I= [sq, €], ..., [Sk, €x] from NSP.
Data sequence {Y;}I_;.

Model type: "constant" or "linear"

Output: Estimated change-points T = 4, ..., T.
(1): Initialize T = @

(2):fork=1tokdo

B Ly=e,—s,+1

(4): hy =10.1 x L, | > Adaptive window width

(5): Initialize D[] as an empty list

(6):for n =5, + h,toe, —h,+1 do > Avoid boundaries
(7):  idx, ={n—hy,..,n—1} > Left window indices

(8): idxg ={n,..,n+ hy — 1} > Right window indices

9): if mode,ype == constant then

(10): A, = mean((Y[idx.])

(11): g = mean((Y[idxg])

(12): D(m) = |a, — dgl

(13):  else if mode,ype == linear then

(14): B, = slope(Y[idx,|~t[idx,]) >Linear regression on left window
(15): B = slope(Y[idxg]~t[idxg]) =Linear regression on right window
(16): D(m) = |ﬁL - ﬁR|

(17): end if

(18): Append D(n) to D[]

(19):  end for

(20): T, =arg max D[]
(21): end for

(22): return T

4. Consistency results

This section establishes the theoretical foundation for the WNSP algorithm, demonstrating that it
satisfies the deterministic coverage property and achieves consistent estimation of change-point
locations. We begin by recalling key assumptions and results for the NSP algorithm, upon which our
method builds.

Assumption 1. (Minimum spacing and signal strength) For each change-point 7;,j = 1, ..., N, assume
that

Tiy1 — T 2 2dj41 +2d;—2,j=1,...,N= 1,1y =7y = 2d; — 1, Ty41 — Ty = 2dy — 1,

where 79 = 0,7y, =T, and

- 1612
& = |—= | +1. ™

fejon ~ I
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This assumption ensures that the change-points are well-separated and their magnitudes are
sufficiently large to be identifiable.

Assumption 2. There exists a positive sequence P suchthat Y — o as T — oo, and the length of
each significant interval [sj, ej] identified by the NSP algorithm satisfies: (ej -5+ 1) =Y,
forj=1,..,N.

This assumption ensures that every significant interval is sufficiently long, which guarantees that
the adaptive window width h; also tends to infinity, thereby enabling consistent parameter estimation
within the left and right windows of the WNSP algorithm.

Lemma 1. (NSP coverage guarantee) Under Assumption 1 and on the set || € ll;<<A,, if the NSP
algorithm considers all non-overlapping subintervals with threshold A4,, it returns exactly N
significant intervals [s;, e;] <:*< [sy, ey] such that

T €spe—1], gg—s;+1<2d;,j=1,..,N.
This lemma guarantees that with high probability (controlled by the confidence level «), the
coarse detection stage successfully identifies N intervals, each containing one and only one true

change-point.
Proof. See Supplementary A.1.

Theorem 1. (WNSP estimation consistency) If assumptions in Lemma 1 hold, then there is a constant
C>0, such that

P(maxi<jey | T — 7j I< ClogT) - 1,T — oo,

This theorem shows that the WNSP algorithm achieves the sure coverage property, and the
estimation error is bounded by O(logT) with high probability.

Proof. See Supplementary A.2.
5. Simulation study
5.1. Simulation data and experimental design

This section presents numerical simulations to verify that, under the same global coverage
probability (= 1 — a) as NSP, the WNSP method utilizes adaptive window widths and single-peak
detection techniques to accurately locate change- points within significant intervals. We first introduce
the competing methods. WNSP is a local optimization approach, while SaRa (another competitive
local optimization method) uses a window width set as h = Clogn, where C €1, 2, 3 as
recommended by Niu and Zhang [26]. The Wild Binary Segmentation (WBS) method [16], a
variational search technique based on random subintervals, is widely adopted due to its simplicity and
computational efficiency. As a significant advancement of WBS, WBS2 [29867] addresses certain
limitations of the original WBS in model selection, providing stronger theoretical guarantees for
detecting frequent change-points. The WNSP framework proposed in this paper shares the goal of
enhancing the robustness and accuracy of change-point detection with WBS2 but follows a distinct
technical path: WNSP focuses on local refined search within statistically significant candidate intervals,
rather than global optimization. The Narrowest-Over-Threshold (NOT) method [18] shares conceptual

AIMS Mathematics Volume 10, Issue 12, 29853-29872.
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similarities with WBS, as both improve binary segmentation via random subinterval sampling.

WNSP employs parameters identical to those of NSP, using a deterministic grid with M = 1000
intervals. The threshold is set as 1, = o(ay + byy), where o is estimated via the median absolute
deviation (MAD). Simulations were conducted on both piecewise constant and piecewise linear signals
under three error settings: independent and identically distributed (i.i.d.) Gaussian, t(5), and
heteroscedastic &;. The performance of each algorithm was systematically evaluated. A summary of
the models used is provided in Table 1.

Table 1. Models for comparative simulation studies in section 5; “NO. of cpts” denotes the
number of control points.

Model name NO. of cpts Sample path execution in R
Ml A c(rep(0,100), rep(2, 100), rep(5, 100), rep(1, 100), rep(3,100))
+ rnorm(500)
o A c(rep(0,100), rep(2, 100), rep(5, 100), rep(1, 100), rep(3,100))
+ rt(500, df = 5)
M3 A c(rep(0,100), rep(2, 100), rep(5, 100), rep(1, 100), rep(3,100))
+ rnorm(500) * seq(0.2,1, length. out = 500)
ifelse <t < 100,—— ifelse (t <2001 — 12200 £ 200))
M4 2 100 100 ’ 100
+ rnorm(300)
ifelse <t < 100,—  ifelse (t <2001 — =200t 200))
M5 2 100 100 * 100
+ rt(300,df = 5)
ifelse (t < 100,——  ifelse (t <2001 — 2200 £ 200))
M6 2 100 100 ~ 100

+ rnorm(300) * seq(0.2,1, length. out = 300)

Table 1 provides a detailed summary of the parameter settings for the six data-generating
processes (M1 — M6). M1 — M3 are piecewise constant models, each containing four change-points,
differing only in their noise distributions: M1 employs standard Gaussian noise, M2 uses heavy-
tailed t — distributed noise (df = 5), and M3 utilizes heteroscedastic Gaussian noise. M4 — M6
are continuous piecewise linear models, each containing two change-points and exhibiting a triangular
wave pattern, with noise distributions corresponding to Gaussian, t-distribution, and heteroscedastic
Gaussian, respectively. In all models, t represents the time index, ranging from 1 toT(M1 —
M3:T =500; M4 — M6: T =300). The R code column displays the specific data generation
commands.

To better demonstrate the performance of the WNSP algorithm on analog signals, we present the
interval detection results of NSP and the precise change-point localization effects of WNSP on the
segmented constant model (M1) and the segmented linear model (M4), respectively.

AIMS Mathematics Volume 10, Issue 12, 29853-29872.
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Figure 1. (model M1) Significant intervals (red shaded boxes) and their midpoints (blue)
returned by the NSP (Left). Precise change-point estimation by WNSP via local statistic

peaks (Right).

Local statistics and turning points for two intervals

Figure 2. (model M4) Significant intervals (red shaded boxes) and their midpoints (blue)
returned by the NSP (Left). Precise change-point estimation by WNSP via local statistic

peaks (Right).

5.2. Results and discussion

For each method, we show a frequency table for the distribution of N — N, where N is the
number of the estimated change-points, and N denotes the true number of change-points. We also

report Monte Carlo estimates of the mean-squared error of the estimated signal, given by

MSE = ESLL(f, - 7)),

where f, denotes the true signal value, f; denotes the segmented constant or linear signal value
reconstructed using estimated change points, T denotes the total length of the observed data, and E|-]
denotes averaging over multiple simulation experiments to reduce the impact of random error.

To assess the performance of each method in terms of the accuracy of the estimated locations of

the change-points, we report estimates of the (scaled) Hausdorff distance

dy =T E [max{. max min |Tj - f’l|, max  min |‘i’l - rj|}],
j=0,..,N+1 1=0,...N+1 1=0,..,N+1 j=0,..,N+1
where
0=T0<T1<"‘<TN<TN+1=Tand 0=f0<f1<"'<fN<fN+1=T
AIMS Mathematics

Volume 10, Issue 12, 29853-29872.
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denote true and estimated locations of the change-points, respectively. From the definition above, it
follows that 0 < dy < 1. An estimator is regarded as performing well when its dy is close to 0.
However, dy would be large when the number of change points is underestimated or some of the
estimated change points are far from the real change-points.

Empirical results in Table 2 demonstrate that WNSP achieves competitive localization
performance.

Table 2. Performance comparison of competing methods based on 100 simulations,
showing the error distribution in change-point number (N — N ), location accuracy
(dy % 10%), and MSE.

Mode Results for the following values of N — N

1 Method MSE  dy x 102
3< 2 - 0 1 2 >3
WNSP 0 3 94 30 0.0 0.
0 0 26 46

NOT 0 0o 2 95 30 0 0.023 0.41

» WBS 0 1 3 9% 4 2 0 0.032 0.49
WBS2 0 1 2 93 3 1 0 0.021 0.42

SaRa(C=1) 0 4 7 87 2 0 0 0.061 0.53
SaRa(C=2) 1 5 9 84 1 0 0 0.054 0.50
SaRa(C=3) 0 2 3 9% 4 1 0 0.031 0.48

WNSP 0 0 4 91 4 1 0 0.042 0.56

NOT 0 0 5 9 4 1 0 0.040 0.51

WBS 0 1 5 9% 4 0 0 0.042 0.59

M2 WBS2 0 0 5 90 5 0 0 0.042 0.58
SaRa(C=1) 0 0o 17 73 9 1 0 0.086 0.93
SaRa(C=2) 1 310 77 72 0 0.097 0.89
SaRa(C=3) 0 1 6 81 9 3 0 0.078 0.62

WNSP 0 1 5 93 20 0 0.057 0.50

NOT 0 0 0 92 5 2 0 0.059 0.49

WBS 0 0o 2 91 4 3 0 0.059 0.51

M3 WBS2 0 0 1 92 303 1 0.059 0.50
SaRa(C=1) 0 5 12 6 13 5 2 0.178 2.95
SaRa(C=2) 0 39 74 11 3 0 0.135 1.49
SaRa(C=3) 0 2 8 76 11 3 0 0.113 1.30

WNSP 0 0 0 97 30 0 0.038 0.49

M NOT 0 0 1 98 1 0 0 0.039 0.44
s WNSP 0 0 1 94 5 0 0 0.052 0.52
NOT 0 0o 2 93 5 0 0 0.050 0.58

e WNSP 0 0o 2 90 8 0 0 0.041 0.52
NOT 0 0o 2 92 6 0 0 0.040 0.50

AIMS Mathematics Volume 10, Issue 12, 29853-29872.
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Specifically, its Hausdorff distance is comparable to that of the NOT method on most models,
though NOT shows a slight advantage on M1, M2, M4, and M6. More importantly, a comprehensive
evaluation must consider detection completeness. As detailed in Appendix A.3, WNSP achieves the
highest recall rate across all models, meaning it is the most reliable method in avoiding missed
detections. Consequently, its overall detection performance, as measured by the F1-score, is superior
or comparable to NOT (see Table A1). In summary, WNSP consistently attains among the lowest MSE
and Hausdorff distance values, outperforms WBS, WBS2 and SaRa, and matches NOT in localization
while excelling in recall. The method shows no systematic bias and maintains robustness across diverse
noise distributions, including Gaussian, heavy-tailed, and heteroscedastic errors. Its adaptive window
strategy avoids sensitivity to preset bandwidths, eliminating the need for manual parameter tuning.
Notably, compared with the latest WBS2 method, WNSP demonstrates comparable or superior
Hausdorff distance on models M1 — M3, while maintaining its inherent advantage in achieving a
higher recall rate, which underscores the effectiveness of its local refinement strategy within
statistically significant intervals.

The simulation design focuses on comparing methods that provide point estimates. Since the NSP
algorithm outputs significant intervals rather than point estimates, it is not evaluated on localization
metrics (e.g., dy),though WNSP's first stage is functionally equivalent to NSP. Additionally, the SaRa
method is applied only to piecewise-constant models (M1 — M3) because its core statistic, the local
CUSUM, is ineffective for detecting the slope changes present in the piecewise-linear models
(M4 — M6).

5.3. Integrated performance and efficiency analysis

To preliminarily investigate the algorithm's sensitivity to errors in the public matrix X5, we
conducted an additional test. Using Model M1, we compared the performance of WNSP when
employing the precise matrix (& = 0) versus a significantly perturbed matrix (¢ = 0.3, defined in
Appendix A.4). The results show that under significant perturbation, WNSP's Hausdorff distance
(dy X 10?) increased from 0.46 to 0.85, while the NOT method, used as a control, remained stable
(0.41). This finding confirms that WNSP's performance can degrade when there is a substantial
discrepancy between the public matrix and the true data-generating mechanism. Therefore, in
practical applications, it is advisable to estimate £ using macro data that is homogeneous with or
from the same distribution as the target data to ensure optimal performance. A systematic sensitivity
analysis covering various perturbation levels and models is a valuable direction for future work.

6. Real data analysis
6.1. Application to CPI data

In this section, we use the WNSP algorithm to analyze the time series of US ex-post real interest
rates (the 3-month Treasury bill rate net of CPI inflation) in the United States considered by Garcia
and Perron [33] and Bai and Perron [34]. The dataset is available at
http://qed.econ.queensu.ca/jae/datasets/bai001/. The dataset contains quarterly observations from Q1
1961 to Q3 1986, totaling T = 103 points.

The goal is to identify structural change-points reflecting shifts in economic mechanisms, thereby

AIMS Mathematics Volume 10, Issue 12, 29853-29872.
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offering empirical support for monetary policy and macroeconomic analysis. Such changes may signal
responses to policy adjustments, external shocks, or business cycle transitions, exemplified by the 1973
oil crisis and the 1979 Federal Reserve policy shift.

Using WNSP with parameters M = 1000 and @ = 0.1, and variance estimated via MAD, two
significant intervals were detected: Y(;5.56) and Y(7g.g4). Adaptive window widths were applied within
these intervals, leading to change-point estimates at £1 = 47 and £2 = 81. These align with existing
results: the first corresponds to the early-1973 oil shock (mean decrease), and the second to mid-1981
fiscal deficit surge (mean increase), as shown in Figure 3.
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Figure 3. Comparison of experimental results between the WNSP algorithm and
NOT/WBS algorithms on CPI data (left). Comparison of experimental results between the
WNSP algorithm and SaRa algorithm (right).

Compared with other methods, the results reveal the following: (1) The SaRa algorithm is highly
dependent on bandwidth selection, whereas WNSP can adaptively determine thresholds and bandwidth
based on the data; (2) WNSP exhibits estimation performance comparable to the NOT algorithm and
superior precision to other methods.

6.2. Application to UK house price index

This study analyzes the monthly percentage change in the House Price Index (HPI) for Tower
Hamlets (Figure 4) and Hackney (Figure 5), UK, from January 1995 to October 2022. The data for this
study were obtained from the UK Land Registry (http://landregistry.data.gov.uk/app/ukhpi). A
comparison of change-point detection methods—WNSP, NOT, WBS, and SaRa—reveals that WNSP
and NOT yield similar results, while SaRa is highly sensitive to bandwidth choice (e.g., log(T),
2log(T), 3log(T)). All methods detected a significant change-point around March 2008 and September
2009, aligning with the peak of the global financial crisis. These breaks likely reflect the crisis’ impact
on the London property market, including falling prices and tighter credit conditions. The results
illustrate how statistical approaches can capture market shock timing and urban housing dynamics
during economic turmoil.
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Figure 4. Comparison of experimental results of the WNSP algorithm with NOT and WBS
for house price indicators in Tower Hamlets (left). Comparison of experimental results of
the WNSP algorithm with the SaRa algorithm (right).
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Figure 5. Comparison of experimental results of the WNSP algorithm with NOT and WBS
for house price indicators in Hackney (left). Comparison of experimental results of the
WNSP algorithm with the SaRa algorithm (right).

7. Conclusions

This paper proposed a WNSP algorithm, which effectively addresses the challenge of accurately
estimating change-point locations while preserving the statistical reliability of the NSP framework. By
extending the “post-inference selection” paradigm into a two-stage process of interval detection and
localized point estimation, WNSP achieves both rigorous coverage guarantees and high localization
accuracy. Theoretical analysis confirms that the algorithm possesses consistency and finite-sample
coverage properties. Extensive simulations and real-data applications, including economic indicators
and housing market series, demonstrate that the WNSP performs robustly under various noise
distributions and structural complexities. It outperforms competing methods in terms of accuracy and
adaptability without requiring manual bandwidth selection.

The WNSP algorithm performs well when change-points are widely spaced but struggles in dense
scenarios where the spacing is smaller than required by Assumption 1. In such cases, the NSP step may
return fewer intervals than the actual number of change-points, with some intervals containing multiple
change-points. This occurs because NSP guarantees only that each significant interval covers at least
one change-point but does not ensure their complete separation.
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Future work will focus on several directions: (a) extending the WNSP framework to multivariate,
online, and nonlinear settings, (b) conducting a more comprehensive, cross-scenario systematic
performance comparison with the latest change-point detection methods, such as WBS2, and (c)
exploring strategies to relax Assumption 1 for better performance in dense change-point scenarios.
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Appendix

A.1. Proof of Lemma 1

Proof. Assume initially that f; has a single change-point 7;. As NSP considers all intervals by the
assumption of the theorem, it will certainly consider intervals symmetric to the true change-point, i.e.,

[ty —d + 1,7, + d], for all appropriate d. In a piecewise-constant signal, there is an explicit formula
for the deviation measure D[s,e] on any interval [s,e], given by

) s1+n-1 s1+n-1
Dlsel = (mat ol o™y 2 Ny ), %) @D
t=sq t=s;
Without loss of generality, assume
fo, > fr, 41

Representation (A1) implies
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1 S1+d-1 s1+d-1
D[Tl —d+17; +d] = 2\/8 s1€{[11 —rgfi(,...,rl +d} Z Y s1€{[11 —I(ril-ll-lil,...,‘cl +d} Z L
t=s4 t=s1
Tq T +d
1 1
> = Vo= Y V|25 o fulVa -l e,
t=14 —d+1 t=74 +1
1
2 2|y = fr VA =l e . (42)

Ontheset |l € I; < A, (2)is further bounded from below by % |le+1 —fz, |\/H — Ag. From the

definition of the NSP algorithm, detection on [s,e] is triggered by the event D[s,e] > A,, so
detectionon [ty —d + 1,1, + d] is triggered if (note: not “only if”, as we are using lower bounds here)

Nferer = fi, VA = Ag > Ag. 0r

|fey41 = £, [V > 42, 3)

As NSP looks for the shortest intervals of detection, the NSP interval of significance around
7, will definitely be no longer than 2d = |[t; — d + 1, T, + d]|. However, from (3), it is sufficient for

: : . 2% : . :
detection to be triggered if d > 1674 5. This shows that the maximum length of an NSP interval
|ij+1_ij|
o : 5 5 2% .
of significance will not exceed 2d, where d = L 1% |2 + 1. We now turn our attention to the
Jri,—Jr;
Jjt+1 J

multiple change-point case. For each change-point 7;, define its corresponding c?j as in formula (7)
of the main paper. Recall that we are on the set || € ||;<<A,. Note first that even though the NSP interval
of significance around 7; is guaranteed to be of length at most 2d;, it will not necessarily be a
subinterval of [7; — d; + 1,7; + d;] (as NSP simply looks for the shortest intervals of significance, and

interval symmetry around the true change-point is not explicitly promoted). Therefore, to ensure that
an interval detection around 7; does not interfere with detections around 7;_; and 7j,q, the

distances 7;-T;_; and T7j,,-T;_; must be suitably long, but this is guaranteed by Assumption 1 from
the main paper. This completes the proof.

As an aside, note in addition that in the Gaussian case € ~ N (O , 1), Theorem 1.3 in Kabluchko
(2007) implies A, = O(log'/2T); in fact, for @ = 0.05, we have 4, < 1.33,/2logT for T > 100,
and for ¢ = 0.1, we have 4, < 1.25,/2logT over the same range of T.

A.2. Proof of Theorem I

Proof- The proof consists of two main steps. First, we leverage the result of Lemma 1, which guarantees
that the coarse NSP algorithm returns intervals [sj, ej] such that 7; in [sj, ej] and L; = e —s; +
1=0(1) (or more precisely, L; < 2071). Second, we focus on a single generic significant interval
[s,e] containing one true change-point T and show that the WNSP estimator T applied to this
interval satisfies |T — t| = 0,(logT).

Consider a piecewise constant model for simplicity (extension to piecewise linear is similar):
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Uqfort<r,
U, fort=r,

Vi=/fite ftz{

With A =| u, — py [> 0. The error terms &, satisfy the general conditions specified in Model
(1) of the main text. Crucially, for our theoretical analysis, we rely on Assumption 2, which states that
the length of the significant interval L = e —s+ 1 = ¢y > oo.

Within [s, e], the WNSP algorithm computes the local discrepancy statistic for each candidate
point 1 € [s 4+ h,e — h + 1] (this range ensures that the sliding windows remain within the buffered
data). The adaptive window width is setto h = [0.1 * (e, — s + 1)]. The statistic is defined as:

D@m) =1 a,(m) — ar(m) |,
where

n+h-1

1
Y;, Ar(m) :E Z Y.

t=n—-h t=n

=
|
[N

=] =

a,(m) =

The estimator is T = argmaxg, e[s,130 ().

Assume s+ h <t <e—h+1 (this holds with high probability due to buffer and Lemma 1).
Then, E[D(7)] =I E[g,(7)] — E[fdz(D)] I=I u1 — u2 |= A.

To control the deviation of D(7) from its mean, we employ a moment-based approach. Under
the general error structure, there exists a constant C; > 0, dependent on the moments of &;, such that
Var(D(7)) < C; /w. Applying Chebyshev's inequality, P(| D(7) — A [>u) < %

Choosing u = A/2, we obtain:

4C,

< Az (44)

A
P (D (1) < E)
Since h > |Yr/2] - o by Assumption 2, this probability decays to zero. Thus, D(t) = A/2
with high probability.
Next, we examine points 1 far from t,i.e., | n —7 |=> 6, and bound P(D(n) > A/2).
Case 1: | n — 7 |= h. In this case, both sliding windows W;(n) and Wx(n) lie entirely within
a single constant segment. Consequently, E[D(n)] = 0. There exists a constant C, > 0 such that:

A\  4Var(D C,
P(pn >3) < argz(n))ﬁm

Case 2: 0 <|n — 7 |< h. This is the critical case, where one window contains data from both
segments. Consider n =7+ d with 0 < d < h. The expectations are:

(45)

h—d d

Tt b Elfar ()] = pa,

Ela,(m] =

which yields:
h—-d d d
ED] =l —— 1+ 1o — 4 = (1 - E)A < A.
Again, using moment bounds, there exists a constant C; > 0 such that:
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A Cs
)< = A6
P(D0) >3) <7 (46)
Let A be the event in which the maximum of D(n) occurs at a point distant from 7:4 =
dn with | n — 7 |> M such that D(n) = D(t). Then, P(I T — 1t |> M) < P(A).
From (4), D(t) = A/2 with high probability. From (5) and (6), for any n with |n—7 > M,

we have: P (D m = %) < %, where K = maxC,, C3. The number of such candidate points 7 in
the interval is at most L = O(1). Applying a union bound, P(A) < L - %.

By Assumption 2, h = y; — oo, where the notation = indicates that h and 1, are of the
same asymptotic order. We can therefore choose the sequence ¥ such that Y > ZAL—ZKlogT. This

L 1
implies: P(4) < ZogT OasT — oo.

Thus, | T — v |I< M with high probability, where M = h = logT.
Finally, applying this result uniformly across all N change-points (where N is fixed), and using
a union bound,

N
N
P(lréljzg, | T — 1 |> ClogT) SZP(I t,—1; I>ClogT) SM_) 0
]:
This completes the proof, showing that the WNSP estimator consistently locates change-points
with an error rate of O(logT).

A.3. Detection completeness and F1-score analysis

To comprehensively evaluate the change-point detection performance of the WNSP algorithm
beyond localization accuracy (dy X 10?), we introduce matching-based detection completeness
metrics. These metrics require matching each estimated change-point %; to a true change-point T;.
The matching follows the commonly used tolerance window approach: if | £, — 7; I< 8, the estimated
change-point is considered to have correctly detected the true change-point 7;, where the tolerance §
issetto [0.02T] (i.e., 2% of the sample size).

Based on this matching, we define:

True positive (TP): The number of correctly matched estimated change-points.

False positive (FP): The number of estimated change-points does not match any true change-point.

False negative (FN): The number of true change-points does not match any estimated change-
point.

The following metrics are then calculated:

.. TP
Precision: P = ;
TP+FP
TP
Recall: R = ;
TP+FN

Fl-score: F1=2-(P-R)/(P + R);

Precision measures the reliability of the detections (what fraction of alarms are real), recall
measures the completeness of detection (what fraction of true change-points are found), and the F1-
score is their harmonic mean, serving as a comprehensive metric for overall detection performance.
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Table A1. Comparison of detection completeness metrics for different methods (mean =
standard deviation, based on 100 simulations).

Model Method Precision Recall F1 — score
WNSP 0.96 0.98 0.97
NOT 0.97 0.96 0.96
MI
WBS 0.94 0.95 0.94
WBS2 0.95 0.96 0.95
WNSP 0.93 0.97 0.95
NOT 0.95 0.93 0.94
M2
WBS 0.92 0.94 0.93
WBS2 0.93 0.95 0.94
WNSP 0.92 0.96 0.94
NOT 0.94 0.92 0.93
M3
WBS 0.90 0.93 0.91
WBS2 0.94 0.95 0.94
WNSP 0.97 0.99 0.98
M4
NOT 0.98 0.97 0.97
WNSP 0.94 0.98 0.96
M5
NOT 0.96 0.95 0.95
WNSP 0.95 0.97 0.96
M6
NOT 0.96 0.96 0.96

Note: For brevity, the SaRa method is not included in this table as it is not applicable to piecewise
linear models (M4-M6) and generally underperforms WNSP, NOT, and WBS on piecewise constant
models (see Table 2 in the main text).

A.4. Method for generating perturbations to the public matrix

The “significantly perturbed matrix” mentioned in this appendix and Section 5.3 of the main text
is generated as follows: Let X be the true covariance matrix. Generate a random symmetric matrix E
of the same dimension as X, with its independent and identically distributed (i.i.d.) elements following
the standard normal distribution N(0,1). The perturbed public matrix is then defined as:

A~

E
ZB—Z+E'E||Z"F)

where |-l denotes the Frobenius norm, and € is the perturbation intensity coefficient. The value
€ = 0.3 used in the main text represents a relatively strong level of perturbation.
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