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1. Introduction

In this article, we consider the oscillation of the second-order Emden-Fowler neutral delay
differential equation (

r(t) |z′(t)|α−1 z′(t)
)′

+ q(t) |y(σ(t))|β sgny(σ(t)) = 0, t ≥ t0, (1.1)

where z(t) = y(t) + p(t)y(τ(t)). We assume without further mention that
(H1) α and β are positive constants;
(H2) p, q ∈ C([t0,∞), [0,∞)), 0 ≤ p(t) ≤ p0 < 1, and q(t) is not eventually zero on [t∗,∞)

for t∗ ≥ t0;
(H3) τ, σ ∈ C([t0,∞),R), τ(t) ≤ t, σ(t) ≤ t, σ′(t) > 0, and lim

t→∞
τ(t) = lim

t→∞
σ(t) = ∞;

(H4) r ∈ C1([t0,∞), (0,∞)) satisfies

R(t, t0) =

∫ t

t0
r−

1
α (s)ds

and lim
t→∞

R(t, t0) = ∞.

A function y(t) ∈ C1([Tx,∞),R), Tx ≥ t0, is called a solution of (1.1) if it has the
property r(t)|z′(t)|α−1z′(t) ∈ C1([Tx,∞),R) and satisfies (1.1) on [Tx,∞).We only consider the nontrivial
solutions of (1.1) which ensure sup {|y(t)| : t ≥ T } > 0 for all T ≥ Tx. A solution of (1.1) is said to be
oscillatory if it has an arbitrarily large zero point on [Tx,∞); otherwise, it is called nonoscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

One of the main reasons for this study is that half-linear differential equations and neutral differential
equations arise in natural sciences and engineering; see, e.g., the papers [6,7,11,13,25,32], respectively.
In particular, (1.1) and its particular cases have numerous applications in mathematical, theoretical,
and chemical physics; see, e.g., the papers [5, 24, 30] for the oscillation of Emden-Fowler differential
equations, [4, 22, 23] for the oscillatory behavior of Emden-Fowler differential equations with a linear
neutral term, and [9, 31] for the oscillatory properties of Emden-Fowler differential equations with a
sublinear neutral term. The main aim of this article is to establish the classical Leighton-Hille-Kneser-
type oscillation criteria for (1.1), which differ from those obtained in the cited papers and improve
related results reported in [3, 13, 28].

1.1. Related work

Oscillation and delay phenomena arise in various models from real world applications; see, e.g.,
the papers [20, 21] for models from mathematical biology and physics where oscillation and/or delay
actions may be formulated by means of cross-diffusion terms. It has been shown that the increasing
interest in oscillatory properties of solutions to different classes of second-order differential and
functional differential equations; see, e.g., the monographs [1,2], the papers [8,10,28] for the oscillation
of delay differential equations, the papers [12,26,27] for the oscillatory behavior of neutral differential
equations, and the references cited therein. In the remaining part of this section, we briefly introduce
related results which motivated our investigation. There are many research studies concerning different
cases of (1.1), for instance, (

r(t)y′(t)
)′

+ q(t)y(t) = 0, (1.2)
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r(t) |y′(t)|α−1 y′(t)

)′
+ q(t) |y(σ(t))|α−1 y(σ(t)) = 0, (1.3)

(
r(t)(y′(t))α

)′
+ q(t)yβ(σ(t)) = 0, (1.4)

(y(t) + p(t)y(t − τ))′′ + q(t)y(t − σ) = 0, (1.5)

(
r(t)

[
y(t) + p(t)y(τ(t))

]′)′
+ q(t) |y(σ(t))|β sgny(σ(t)) = 0. (1.6)

For the linear equation (1.2), Leighton [19] proved the following oscillation result:
Theorem A. [19, Leighton-type oscillation criterion] Assume that∫ ∞

t0

1
r(t)

dt =

∫ ∞

t0
q(t)dt = ∞. (1.7)

Then (1.2) is oscillatory.
Grammatikopoulos [14] extended and improved the Leighton-type oscillation criterion and obtained

Theorem B. [14] Assuming that 0 ≤ p(t) < 1, q(t) ≥ 0, and∫ ∞

t0
q(t)[1 − p(t − σ)]dt = ∞,

then (1.5) is oscillatory.
In 1995, Kusano and Wang [18] studied the half-linear delay differential equation (1.4) with α = β

and presented the following result:
Theorem C. [18, Theorem 2] Let α = β in (1.4) and assume that

lim inf
t→∞

Rα(σ(t), t0)
∫ ∞

t
q(s)ds >

αα

(α + 1)α+1 .

Then (1.4) is oscillatory.
We mention here that Theorem C generalizes the following famous Hille-type oscillation criterion:

Theorem D. [15, Hille-type oscillation criterion] Let r(t) = 1 in (1.2) and assume that

lim inf
t→∞

t
∫ ∞

t
q(s)ds >

1
4
.

Then (1.2) is oscillatory.
Kneser [17] considered (1.2) with r(t) = 1, and another famous oscillation criterion is given

as follows:
Theorem E. [17, Kneser-type oscillation criterion] Let r(t) = 1 in (1.2) and assume that

lim inf
t→∞

t2q(t) >
1
4
.

Then (1.2) is oscillatory.
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Recently, Jadlovská and Džurina [16] studied the half-linear delay differential equation (1.3), and
improved the Kneser-type theorem as follows:
Theorem F. [16, Theorem 1] Assume that

lim inf
t→∞

r
1
α (t)Rα (σ(t), t0) R(t, t0)q(t) >

(
α

α + 1

)α+1
.

Then (1.3) is oscillatory.
In 2006, Sun and Meng [29] obtained the following oscillation result by using the

Riccati transformation.
Theorem G. [29, Theorem 2.1] Assume that∫ ∞

[
Rα (σ(t), t0) q(t) −

(
α

α + 1

)α+1 σ′(t)

R(σ(t), t0)r
1
α (σ(t))

]
dt = ∞.

Then (1.3) is oscillatory.
Now, we shall use some generalized Riccati inequalities to extend the classical Leighton-Hille-

Kneser-type oscillation criteria (for second-order linear differential equations) to the Emden-Fowler
neutral differential equation (1.1). To the best of our knowledge, very little is known regarding the
oscillation of (1.1). The applicability and effectiveness of our theorems are illustrated by carefully
selected examples. The rest of the paper is organized as follows. In Section 2, we state and prove our
main results. In Section 3, we present eight examples to illustrate our results. In Section 4, we give the
conclusion of this article.

2. Main results

Without loss of generality, we only deal with the positive solution of (1.1) in the proofs of our
results. We also assume that the following inequalities containing the variable t hold for all sufficiently
large t if there is no special note.

Lemma 1. [4, Lemma 3] Assume that y(t) is an eventually positive solution of (1.1). Then

z(t) > 0, z′(t) > 0, and
(
r(t)(z′(t))α

)′
≤ 0.

Now we have the following theorem which extends Theorems A and B.

Theorem 1. Assume that ∫ ∞

t0
r−

1
α (s)ds =

∫ ∞

t0
q(s)ds = ∞. (2.1)

Then (1.1) is oscillatory.

Proof. Assume that (1.1) has an eventually positive solution y(t). By Lemma 1, (1.1) can be written as(
r(t)(z′(t))α

)′
+ q(t)yβ (σ(t)) = 0, t ≥ t1 ≥ t0. (2.2)
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Since z(t) = y(t) + p(t)y(τ(t)) and z′(t) > 0, then

y(t) ≥ (1 − p(t)) z(t) ≥ (1 − p0)z(t).

It follows from (2.2) that (
r(t)(z′(t))α

)′
≤ −(1 − p0)βq(t)zβ(σ(t)). (2.3)

Define

u(t) =
r(t)(z′(t))α

zβ(σ(t))
, t ≥ t1.

Then u(t) > 0, t ≥ t1, and

u′(t) ≤ −(1 − p0)βq(t) − βσ′(t)
r(t)(z′(t))αz′(σ(t))

zβ+1(σ(t))
,

and so
u′(t) ≤ −(1 − p0)βq(t), t ≥ t1.

Integrating the above inequality from t1 to t, we obtain

u(t) ≤ u(t1) − (1 − p0)β
∫ t

t1
q(s)ds.

Letting t → ∞ in the latter inequality, from the hypothesis (2.1), we obtain a contradiction with u(t) > 0.
The proof is complete. �

Corollary 1. Assuming that (1.7) holds, then (1.6) is oscillatory.

Another crucial lemma is stated as follows.

Lemma 2. Let y(t) be a positive solution of (1.1). If∫ ∞
(

1
r(s)

∫ ∞

s
q(u)du

) 1
α

ds = ∞, (2.4)

then lim
t→∞

z(t) = ∞.

Proof. Letting y(t) be a positive solution of (1.1), there exists a t1 ≥ t0 such that z(t) > 0 and z(σ(t)) > 0
for t ≥ t1. From Lemma 1 and Theorem 1, we see that z′(t) > 0 and (2.3) holds, and thus(

r(t)(z′(t))α
)′

+ (1 − p0)βq(t)zβ(σ(t)) ≤ 0, t ≥ t1. (2.5)

If z(t) is bounded, then there exist positive constants c1 and c2 such that (notice that z′(t) > 0)

0 < c1 ≤ z(t) ≤ c2, c1 ≤ z(σ(t)) ≤ c2. (2.6)
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Integrating the inequality (2.5) from t to∞, we obtain

r(t)(z′(t))α ≥
∫ ∞

t
(1 − p0)βq(s)zβ(σ(s))ds.

Hence

z′(t) ≥
(
(1 − p0)β

r(t)

∫ ∞

t
q(s)zβ(σ(s))ds

) 1
α

, t ≥ t1.

Integrating the above inequality from t1 to t, we obtain

z(t) ≥ (1 − p0)
β
α

∫ t

t1

(
1

r(s)

∫ ∞

s
q(u)zβ(σ(u))du

) 1
α

ds.

Using (2.6), we have

c2 ≥ z(t) ≥ c
β
α

1 (1 − p0)
β
α

∫ t

t1

(
1

r(s)

∫ ∞

s
q(u)du

) 1
α

ds,

which contradicts (2.4). Therefore, z(t) is boundless. Noting that z′(t) > 0, we have lim
t→∞

z(t) =∞. The
proof is complete. �

In the following section, we use the following notation for a compact presentation of our criteria:

R(t) = R(t, t∗) and Q(t) = (1 − p0)βq(t).

Theorem 2. Equation (1.1) is oscillatory provided that one of the following conditions holds:
(i) α = β and ∫ ∞

(
Rα(σ(t))Q(t) −

(
α

α + 1

)α+1 σ′(t)

R(σ(t))r
1
α (σ(t))

)
dt = ∞; (2.7)

(ii) α < β, (2.4) and (2.7) hold;
(iii) α > β, and for all constants K > 0,∫ ∞

Rβ(σ(t))Q(t) −
(

β

β + 1

)β+1 Kσ′(t)

R(σ(t))r
1
α (σ(t))

 dt = ∞. (2.8)

Proof. Let y(t) be a positive solution of (1.1). From Lemma 1, we have

z(t) > 0, z′(t) > 0,
(
r(t)(z′(t))α

)′
≤ 0, t ≥ t1 ≥ t0,

which together with the assumption σ(t) ≤ t implies that r(t)(z′(t))α ≤ r(σ(t))(z′(σ(t)))α. Hence

z′(σ(t))
z′(t)

≥

(
r(t)

r(σ(t))

) 1
α

, t ≥ t1. (2.9)
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Let ρ(t) ∈ C1([t0,∞), (0,∞)), ρ′(t) ≥ 0 and define

v(t) = ρ(t)
r(t) (z′(t))α

zβ(σ(t))
, t ≥ t1. (2.10)

Subsequently, v(t) > 0. Using (2.3), (2.9) and (2.10), we get

v′(t) ≤ −ρ(t)Q(t) +
ρ′(t)
ρ(t)

v(t) − βσ′(t)ρ(t)r(t)
(

r(t)
r(σ(t))

) 1
α (z′(t))α+1

zβ+1(σ(t))
. (2.11)

Now we will discuss this inequality in three cases.
Case (i). Assume α = β. It follows from (2.10) and (2.11) that

v′(t) ≤ −ρ(t)Q(t) +
ρ′(t)
ρ(t)

v(t) −
ασ′(t)

(ρ(t)r(σ(t)))
1
α

v
α+1
α (t). (2.12)

Let µ = v(t), A =
ρ′(t)
ρ(t) , and B =

ασ′(t)

(ρ(t)r(σ(t)))
1
α
. Note that A ≥ 0, B > 0, and µ > 0. Hence by (2.12) and the

following inequality (see [32])

Aµ − Bµ
α+1
α ≤

αα

(α + 1)α+1

Aα+1

Bα
, (2.13)

we get

v′(t) ≤ −ρ(t)Q(t) +
r(σ(t))(ρ′(t))α+1

(α + 1)α+1(ρ(t)σ′(t))α
.

Letting ρ(t) = Rα(σ(t)) in the above inequality, we have

v′(t) ≤ −Rα(σ(t))Q(t) +

(
α

α + 1

)α+1 σ′(t)

R(σ(t))r
1
α (σ(t))

. (2.14)

Integrating both sides of (2.14) from t1 to∞, we obtain∫ ∞

t1

(
Rα(σ(s))Q(s) −

(
α

α + 1

)α+1 σ′(s)

R(σ(s))r
1
α (σ(s))

)
ds ≤ v(t1),

which contradicts the condition (2.7).
Case (ii). Suppose α < β. By (2.11), we obtain

v′(t) ≤ −ρ(t)Q(t) +
ρ′(t)
ρ(t)

v(t) −
ασ′(t) [z(σ(t))]

β−α
α

(ρ(t)r(σ(t)))
1
α

v
α+1
α (t).

By Lemma 2, there exists a t2 ≥ t1 such that

[z(σ(t))]
β−α
α ≥ 1
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for all sufficiently large t ≥ t2. Therefore, (2.12) holds. Similarly to the case α = β, we get a
contradiction with (2.7).
Case (iii). Assume now α > β. It follows from (2.11) that

v′(t) ≤ −ρ(t)Q(t) +
ρ′(t)
ρ(t)

v(t) (2.15)

−
βσ′(t)

(ρ(t)r(t))
1
β

(
r(t)

r(σ(t))

) 1
α [

z′(t)
] β−α

β v
β+1
β (t).

Write [
z′(t)

] β−α
β =

[r(t)(z′(t))α]
1
α−

1
β

(r(t))
1
α−

1
β

.

Noting that [r(t)(z′(t))α]
1
α−

1
β is an increasing function, there exists a t3 ≥ t2 and a

constant m > 0 such that [
r(t)(z′(t))α

] 1
α−

1
β ≥ m > 0, t ≥ t3.

Hence, (2.15) yields

v′(t) ≤ −ρ(t)Q(t) +
ρ′(t)
ρ(t)

v(t) −
βmσ′(t)

ρ
1
β (t)r

1
α (σ(t))

v
β+1
β (t).

By (2.13) we get

v′(t) ≤ −ρ(t)Q(t) +
r
β
α (σ(t)) (ρ′(t))β+1

(β + 1)β+1mβ (ρ(t)σ′(t))β
.

Letting ρ(t) = Rβ(σ(t)) in the above inequality, we have

v′(t) ≤ −Rβ(t)Q(t) +
ββ+1σ′(t)

mβ (β + 1)β+1 R(σ(t))r
1
α (σ(t))

.

Integrating the latter inequality, we obtain∫ ∞

t3

Rβ(σ(t))Q(t) −
(

β

β + 1

)β+1 Kσ′(t)

R(σ(t))r
1
α (σ(t))

 dt ≤ v(t3),

where K = 1
mβ , which contradicts condition (2.8). The proof is complete. �

Remark 1. Theorem 2 can be applied to the nonlinear neutral differential equation (1.1) and
generalizes Theorem G which deals with (1.3).

The following Hille-type oscillation criterion of (1.1) can be derived from the conditions (2.7)
and (2.8) of Theorem 2.
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Theorem 3. (Hille-type oscillation criterion) Assume that one of the following conditions holds:
(i) α = β and

lim inf
t→∞

Rα (σ(t))
∫ ∞

t
Q(s)ds >

αα

(α + 1)α+1 ; (2.16)

(ii) α < β, (2.4) and (2.16) hold;
(iii) α > β, and

lim inf
t→∞

Rα(σ(t))
∫ ∞

t
Q(s)ds >

Kββ

(β + 1)β+1 , (2.17)

for all constants K > 0. Then (1.1) is oscillatory.

Proof. Case (i). Let α = β. Assuming that (2.7) does not hold, then there exists a t1 ≥ t0 such that for
any ε > 0 and t ≥ t1, it holds∫ ∞

t

(
Rα(σ(s))Q(s) −

(
α

α + 1

)α+1 σ′(s)

R(σ(s))r
1
α (σ(s))

)
ds < ε.

Since R(σ(t)) is an increasing function, we conclude that

Rα(σ(t))
∫ ∞

t

(
Q(s) −

(
α

α + 1

)α+1 σ′(s)

Rα+1(σ(s))r
1
α (σ(s))

)
ds < ε,

or

Rα(σ(t))
∫ ∞

t

(
Q(s) +

αα

(α + 1)α+1

(
1

Rα(σ(s))

)′)
ds < ε.

Then, for any ε > 0, it holds

Rα(σ(t))
∫ ∞

t
Q(s)ds < ε +

αα

(α + 1)α+1 ,

which contradicts (2.16).
Case (ii). Assume α < β. Proceeding as in the proof of Theorem 2, from (2.16), we can see that (2.7)
holds. The remaining steps are similar to Case (i) in Theorem 3. Then (1.1) is oscillatory.
Case (iii). Suppose now α > β. Assuming that (2.8) does not hold, then there exists a t2 ≥ t1 such that
for any ε > 0 and t ≥ t2, it holds∫ ∞

t

Rβ(σ(s))Q(s) −
(

β

β + 1

)β+1 Kσ′(s)

R(σ(s))r
1
α (σ(s))

 ds < ε.

It follows that

Rβ(σ(t))
∫ ∞

t

Q(s) −
(

β

β + 1

)β+1 Kσ′(s)

Rβ+1(σ(s))r
1
α (σ(s))

 ds < ε,

or

Rβ(σ(t))
∫ ∞

t

(
Q(s) +

ββK
(β + 1)β+1

(
1

Rβ(σ(s))

)′)
ds < ε.
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Then, for any ε > 0, it holds

Rβ(σ(t))
∫ ∞

t
Q(s)ds < ε +

Kββ

(β + 1)β+1 ,

which contradicts (2.17). The proof is complete. �

Remark 2. Theorem 3 generalizes the result of [18, Theorem C]. It extends the Hille-type oscillation
criterion of the half-linear delay equation to the Hille-type criterion of the nonlinear neutral delay
equation. The application range of the Hille-type oscillation criterion is extended.

Lemma 3. Assuming that y(t) is an eventually positive solution of (1.1), then(
z(t)
R(t)

)′
≤ 0. (2.18)

Proof. Let y(t) be a positive solution of (1.1). From Lemma 1, we can see that r
1
α (t)z′(t) is

nonincreasing, then
r

1
α (s)z′(s) ≥ r

1
α (t)z′(t), s ∈ [t1, t].

It follows that

z(t) = z(t1) +

∫ t

t1
r−

1
α (s)r

1
α (s)z′(s)ds ≥ r

1
α (t)z′(t)R(t),

which implies that (2.18) holds. The proof is complete. �

Lemma 4. Supposing that α > β, then there exists a constant c > 0 such that for all sufficiently
large t, it holds

zβ−α(t) ≥ cRβ−α(t).

Proof. From Lemma 1, we see that (2.1) holds. Then we have

r(t)(z′(t))α ≤ r(t1)(z′(t1))α = M1.

Therefore,

z(t) ≤ z(t1) + M
1
α

1 R(t, t1). (2.19)

From (H4), there exist sufficiently large constants N > 0 and tN > t1 such that

R(t, t1) > N, t ≥ tN .

It follows from (2.19) that

z(t) ≤ z(t1)
R(t, t1)

N
+ M

1
α

1 R(t, t1) =

(
z(t1)

N
+ M

1
α

1

)
R(t, t1) = M2R(t, t1).

Hence for α > β, we obtain
zβ−α(t) ≥ cRβ−α(t),

where c = Mβ−α
2 . The proof is complete. �
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Theorem 4. Assume that one of the following conditions holds:
(i) α = β and ∫ ∞

(
Rα(σ(t))Q(t) −

α1

R(t)r
1
α (t)

)
dt = ∞; (2.20)

(ii) α < β, (2.4) and (2.20) hold;
(iii) α > β, and ∫ ∞

(
Rβ(σ(t))Q(t) −

Mα1

R(t)r
1
α (t)

)
dt = ∞ (2.21)

for all constants M > 0, where α1 =
(

α
α+1

)α+1
. Then (1.1) is oscillatory.

Proof. Let y(t) be a positive solution of (1.1). It follows from Lemma 3 that (2.18) holds, then we have

z(σ(t))
z(t)

≥
R(σ(t))

R(t)
, t ≥ t1. (2.22)

Let ρ(t) ∈ C1([t0,∞), (0,∞)), ρ′(t) ≥ 0 and define

w(t) = ρ(t)
r(t) (z′(t))α

zα(t)
, t ≥ t1. (2.23)

Then w(t) > 0. Using (2.3), (2.22), and (2.23), we have

w′(t) ≤ −ρ(t)Q(t)
zβ (σ(t))

zα(t)
+
ρ′(t)
ρ(t)

w(t) − αρ(t)r(t)
(
z′(t)
z(t)

)α+1

≤ −ρ(t)Q(t)
zβ (σ(t))

zα(t)
+
ρ′(t)
ρ(t)

w(t) −
α

(ρ(t)r(t))
1
α

w
α+1
α (t).

Using inequality (2.13) in the above inequality, we have

w′(t) ≤ −ρ(t)Q(t)
zβ (σ(t))

zα(t)
+

r(t)(ρ′(t))α+1

(α + 1)α+1ρα(t)
. (2.24)

Case (i). Suppose α = β. Setting ρ(t) = Rα(t) and noting that (2.22) holds, then (2.24) yields

w′(t) ≤ −Rα(σ(t))Q(t) +
α1

R(t)r
1
α (t)

, t ≥ t1, (2.25)

where α1 =
(

α
α+1

)α+1
. Integrating both sides of (2.25), we obtain∫ ∞

t1

(
Rα(σ(s))Q(s) −

α1

R(s)r
1
α (s)

)
ds ≤ w(t1),
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which contradicts (2.20).
Case (ii). Assume α < β. It follows from Lemma 2 that (2.4) holds, then lim

t→∞
z(t) = ∞. Therefore, there

exists a sufficiently large t2 ≥ t1 such that zβ−α(σ(t)) ≥ 1 for all t ≥ t2. Noting that (2.22) holds, then
we obtain (

z(σ(t))
z(t)

)α
≥

(
R(σ(t))

R(t)

)α
.

It follows from (2.24) that

w′(t) ≤ −ρ(t)Q(t)
(
R(σ(t))

R(t)

)α
+

r(t)(ρ′(t))α+1

(α + 1)α+1ρα(t)
.

Setting ρ(t) = Rα(t) in the above inequality, we can see that (2.25) holds. The rest of the proof is similar
to that of Case (i).
Case (iii). Let α > β. Using Lemma 4 in (2.24) we have zβ−α(σ(t)) ≥ cRβ−α(σ(t)), where c > 0 is a
constant. Hence

w′(t) ≤ −cρ(t)Q(t)Rβ−α(σ(t))
(
R(σ(t))

R(t)

)α
+

r(t)(ρ′(t))α+1

(α + 1)α+1ρα(t)
. (2.26)

Setting ρ(t) = Rα(t) in (2.26) yields

w′(t) ≤ −cRβ(σ(t))Q(t) +
α1

R(t)r
1
α (t)

, t ≥ t2. (2.27)

Integrating both sides of (2.27), we have∫ ∞

t2

(
Rβ(σ(s))Q(s) −

Mα1

R(s)r
1
α (s)

)
ds ≤ Mw(t2),

where M = 1
c , which contradicts (2.21). The proof is complete. �

Applying Theorem 4 we deduce the following Kneser-type oscillation criterion for (1.1).

Theorem 5. (Kneser-type oscillation criterion) Assume that one of the following conditions holds:
(i) α = β and

lim inf
t→∞

r
1
α (t)R(t)Rα(σ(t))Q(t) > α1; (2.28)

(ii) α < β, (2.4) and (2.28) hold;
(iii) α > β, and

lim inf
t→∞

r
1
α (t)R(t)Rβ(σ(t))Q(t) > Mα1 (2.29)

for all constants M > 0, where α1 =
(

α
α+1

)α+1
. Then (1.1) is oscillatory.
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Proof. We prove only the case α = β, the others are similar. Assuming that (2.28) holds, there exists a
sufficiently large T ≥ t0 such that

r
1
α (t)R(t)Rα(σ(t))Q(t) ≥ α1 + ε (2.30)

for any small ε > 0 and all t ≥ T. Dividing both sides of (2.30) by R(t)r
1
α (t) yields

Rα(σ(t))Q(t) −
α1

R(t)r
1
α (t)

>
ε

R(t)r
1
α (t)

. (2.31)

It follows from (2.31) that (2.20) holds, then (1.1) is oscillatory. The proof is complete. �

3. Examples

In this section, we provide some examples to illustrate our main results.

Example 1. [12, Example 2.11] For t > 5 and α > 0, consider the Emden-Fowler neutral
differential equation(

1
√

t

(
y(t) +

1
√

t − 1
y(t − 1)

)′)′
+

tα+1(2 + cos t)
(t − 2)α

∣∣∣∣∣y ( t
3

)∣∣∣∣∣α sgny
( t
3

)
= 0. (3.1)

Observe that p(t) = 1
√

t−1
≤ 1

2 , r(t) = 1
√

t
, and q(t) =

tα+1(2+cos t)
(t−2)α . Clearly, the condition (1.7) is satisfied.

Hence, by Corollary 1, (3.1) is oscillatory.

Example 2. [28, Example 2] Consider the nonlinear delay differential equation((
y′(t)

) 1
3

)′
+ tλy

7
3 (t − 2) = 0. (3.2)

Clearly, when λ ∈ [−1,∞), the condition (2.1) of Theorem 1 is satisfied. Hence, (3.2) is oscillatory.
This example has also been studied by Santra et al. [28, Example 2]. According to [28, Theorem 2],
every solution of (3.2) is oscillatory or converges to zero if λ = 1.

Example 3. [27, Eq (42)] Consider the Euler neutral equation(
y(t) +

1
2

y(τ0t)
)′′

+
q0

t2 y(λt) = 0, (3.3)

where q0 > 0 and λ, τ0 ∈ (0, 1).

We will use Theorem 3 to show that (3.3) is oscillatory. Note that r(t) = 1, p(t) = 1
2 , and q(t) =

q0
t2 .

Thus we have
lim inf

t→∞
Rα(σ(t))

∫ ∞

t
Q(s)ds = lim inf

t→∞
λt

q0

2t
>

1
4

when q0 > 0 and λ ∈ (0, 1). Then by Theorem 3, we conclude that (3.3) is oscillatory if q0 >
1

2λ .
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Remark 3. If we choose λ = 1
3 , then by Theorem 3, (3.3) is oscillatory if q0 > 1.5. According to [27,

Corollary 1], (3.3) is oscillatory if

λ
q0

2

(
1 +

1
2
λq0

)
ln

1
λ
>

1
e
,

that is, q0 > 1.588. Consequently, Theorem 3 improves the results of [27, Corollary 1].

Example 4. [13, Example 1] Consider the second-order neutral differential equation(
(z′(t))α

)′
+

q0

tα+1 yα(λt) = 0, (3.4)

where z(t) = y(t) + p0y(τ(t)), p0 ∈ [0, 1), λ ∈ (0, 1), q0 > 0, τ(t) ≤ t, and α is a ratio of odd
positive integers.

It follows from (2.16) that

lim inf
t→∞

Rα(σ(t))
∫ ∞

t
Q(s)ds = lim inf

t→∞
(λt)α

q0(1 − p0)α

αtα
.

Then by Theorem 3, we see that (3.4) is oscillatory if

λαq0(1 − p0)α >
(

α

α + 1

)α+1
. (3.5)

However, according to [13, Corollary 1], (3.4) is oscillatory if

λα(1 − p0)αq0
(α + λα(1 − p0)αq0)α

αα
ln

1
λ
>

1
e
. (3.6)

Remark 4. If we choose α = 1, p0 = 1
2 , λ = 1

e , and τ(t) = t − 1, then (3.4) reads(
y(t) +

1
2

y(t − 1)
)′′

+
q0

t2 y
( t
e

)
= 0. (3.7)

From (3.5), we can see that (3.7) is oscillatory if

q0 >
e
2
≈ 1.35914. (3.8)

Now, according to (3.6), (3.7) is oscillatory if

q0 >
√

e2 + 4e − e ≈ 1.55515. (3.9)

Obviously, the condition (3.8) is superior to (3.9). In addition, in (1.1), α , β. Consequently,
Theorem 3 improves the result of [13, Corollary 1].

Example 5. [3, Example 3] Consider the half-linear delay equation(
tα |y′(t)|α−1 y′(t)

)′
+

c
t (ln(ct))α+1

∣∣∣∣∣y ( t
2

)∣∣∣∣∣α−1

y
( t
2

)
= 0, t ≥ 1, (3.10)

where c > 0, α > 0.
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In this example, we can find that

R(t) = R(t, t0) =

∫ t

t0
r−

1
α (s)ds =

∫ t

1

1
s

ds = ln t

and

lim inf
t→∞

Rα(σ(t))
∫ ∞

t
q(s)ds = lim inf

t→∞

(
ln

t
2

)α ∫ ∞

t

c
s(ln(cs))α+1 ds

= lim inf
t→∞

c
(
ln t

2

)α
α(ln(ct))α

=
c
α
.

Then by Theorem 3(i), from (2.16), we can see that (3.10) is oscillatory if

c >
(

α

α + 1

)α+1
.

And according to [3, Theorem 2.3(I1)], (3.10) is oscillatory if

c > 2αα.

Consequently, Theorem 3 improves [3, Theorem 2.3].

Example 6. [28, Example 1] Consider the Emden-Fowler delay equation(
e−t (y′(t)) 11

3

)′
+

1
(t + 1)ξ

y
1
3 (t − 2) = 0, t ≥ 2. (3.11)

Comparing (3.11) with (1.4), we can see that α = 11
3 , β = 1

3 , r(t) = e−t, q(t) = 1
(t+1)ξ , and σ(t) = t−2.

According to [28, Example 1], every solution of (3.11) is oscillatory or converges to zero only for ξ = 1.
Now we use Theorem 5 to work through this example, we need to verify the conditions (2.4)

and (2.29). It follows from∫ ∞
(

1
r(t)

∫ ∞

t
q(s)ds

) 1
α

dt =

∫ ∞
(
et

∫ ∞

t

1
(1 + s)ξ

ds
) 1
α

dt = ∞

that (2.4) holds. To verify condition (2.29), we can see that r−
1
α (t) = e

3t
11 , R(t) = R(t, t0) = 11

3

(
e

3t
11 − e

6
11

)
,

and Rβ(σ(t)) =
[

11
3

(
e

3(t−2)
11 − e

6
11

)] 1
3
. Therefore, lim inf

t→∞
r

1
α R(t)Rβ(σ(t))Q(t) = ∞, as a result,

condition (2.29) is satisfied. Then by Theorem 5, (3.11) is oscillatory for all ξ ∈ R.
Therefore, Theorem 5 improves [28, Theorem 1].

Example 7. [13, Eq (22)] Consider the half-linear delay equation(
(y′(t))

1
3
)′

+
q0

t
4
3

y
1
3 (0.9t) = 0, t ≥ 1. (3.12)

AIMS Mathematics Volume 10, Issue 12, 29873–29891.



29888

In this example, α = 1
3 , r(t) = 1, q(t) =

q0

t
4
3
, and σ(t) = 0.9t. Then we have

lim inf
t→∞

r
1
α R(t)Rα(σ(t))Q(t) = lim inf

t→∞
(t − 1)(0.9t − 1)

1
3
q0

t
4
3

=
3√
0.9q0 >

(
α

α + 1

)α+1
=

3√0.25
4

,

which shows that condition (2.28) is satisfied. By Theorem 5, we find that (3.12) is oscillatory
if q0 > 0.35143. However, according to [13, Theorem 3], (3.12) is oscillatory when q0 > 1.92916.
Therefore, Theorem 5 improves the result of [13, Theorem 3].

Example 8. Consider the Emden-Fowler neutral delay differential equation(
tc |z′(t)|α−1 z′(t)

)′
+

1
t(ln t)1+ c

2

∣∣∣∣∣y ( t
2

)∣∣∣∣∣β sgny
( t
2

)
= 0, t ≥ t0, (3.13)

where α > 0, β > 0, c = min{α, β} and z(t) = y(t) + 1
2y(t − 1).

We claim that this equation satisfies conditions of Theorem 5. First, in (3.13), we can see
that r(t) = tc, p(t) = 1

2 , q(t) = 1
t(ln t)1+ c

2
, σ(t) = t

2 , and τ(t) = t − 1. Then we obtain

∫ ∞
(

1
r(t)

∫ ∞

t
q(s)ds

) 1
α

dt =

∫ ∞
(

2
α

) 1
α 1

t ln
1
2 t

dt = ∞.

Hence the condition (2.4) is satisfied. Note that

lim inf
t→∞

r
1
α (t)R(t)Rc (σ(t)) Q(t) = lim inf

t→∞
t
(
ln

t
t0

) (
ln

t
2t0

)c 1
t(ln t)1+ c

2
= ∞.

Hence (2.28) and (2.29) are satisfied. Therefore, by Theorem 5, (3.13) is oscillatory for any α > 0
and β > 0.

4. Conclusions

In this article, we use the Riccati transformation and several inequality techniques to establish
some new Leighton-Hille-Kneser-type oscillation criteria for the nonlinear neutral delay differential
equation (1.1). Our Leighton-type oscillation criterion can be used to deal with the canonical
equation (1.1) when q is integral. Theorem 3 extends [18, Hille-type criterion] to the nonlinear neutral
equation (1.1). Theorem 5 extends the [16, Kneser-type criterion] to (1.1). Those examples given in
Section 3 show that our results improve some well-known results reported recently in the literature. For
future research one could consider studying third-order or higher-order Emden-Fowler neutral delay
differential equations.
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16. I. Jadlovská, J. Džurina, Kneser-type oscillation criteria for second order half-
linear delay differential equations, Appl. Math. Comput., 380 (2020), 125289.
https://doi.org/10.1016/j.amc.2020.125289

17. A. Kneser, Untersuchungen über die reellen Nullstellen der Integrale linearer
Differentialgleichungen, Math. Ann., 42 (1893), 409–435. https://doi.org/10.1007/BF01444165

18. T. Kusano, J. Wang, Oscillation properties of half-linear functional differential equations of second
order, Hiroshima Math. J., 25 (1995), 371–385. https://doi.org/10.32917/hmj/1206127717

19. W. Leighton, The detection of the oscillation of solutions of a second order linear differential
equation, Duke Math. J., 17 (1950), 57–61. https://doi.org/10.1215/S0012-7094-50-01707-8

20. T. Li, D. A. Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent δ-
formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154
(2025), e70018. https://doi.org/10.1111/sapm.70018

21. T. Li, S. Frassu, G. Viglialoro, Combining effects ensuring boundedness in an attraction-repulsion
chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109.
https://doi.org/10.1007/s00033-023-01976-0

22. T. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr.,
288 (2015), 1150–1162. https://doi.org/10.1002/mana.201300029

23. T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral
differential equations, Monatsh. Math., 184 (2017), 489–500. https://doi.org/10.1007/s00605-017-
1039-9

24. T. Li, Y. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear
Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59.
https://doi.org/10.1016/j.aml.2016.11.007

25. T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-
order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293.
https://doi.org/10.1016/j.aml.2020.106293

26. O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Differ. Equ.,
2019 (2019), 484. https://doi.org/10.1186/s13662-019-2418-4

AIMS Mathematics Volume 10, Issue 12, 29873–29891.

https://dx.doi.org/
https://dx.doi.org/https://doi.org/10.1186/s13660-018-1767-y
https://dx.doi.org/https://doi.org/10.1090/S0002-9947-1948-0027925-7
https://dx.doi.org/https://doi.org/10.1016/j.amc.2020.125289
https://dx.doi.org/https://doi.org/10.1007/BF01444165
https://dx.doi.org/https://doi.org/10.32917/hmj/1206127717
https://dx.doi.org/https://doi.org/10.1215/S0012-7094-50-01707-8
https://dx.doi.org/https://doi.org/10.1111/sapm.70018
https://dx.doi.org/https://doi.org/10.1007/s00033-023-01976-0
https://dx.doi.org/https://doi.org/10.1002/mana.201300029
https://dx.doi.org/https://doi.org/10.1007/s00605-017-1039-9
https://dx.doi.org/https://doi.org/10.1007/s00605-017-1039-9
https://dx.doi.org/https://doi.org/10.1016/j.aml.2016.11.007
https://dx.doi.org/https://doi.org/10.1016/j.aml.2020.106293
https://dx.doi.org/https://doi.org/10.1186/s13662-019-2418-4


29891

27. O. Moaaz, R. A. El-Nabulsi, W. Muhsin, O. Bazighifan, Improved oscillation criteria for 2nd-order
neutral differential equations with distributed deviating arguments, Mathematics, 8 (2020), 849.
https://doi.org/10.3390/math8050849

28. S. S. Santra, O. Bazighifan, H. Ahmad, Y. M. Chu, Second-order differential equation:
Oscillation theorems and applications, Math. Probl. Eng., 2020 (2020), 8820066.
https://doi.org/10.1155/2020/8820066

29. Y. G. Sun, F. W. Meng, Note on the paper of Džurina and Staroulakis, Appl. Math. Comput., 174
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