This study investigated the influence of Brownian motion and noise effects on the dynamics of the stochastic Poisson-Nernst-Planck system with M-truncated fractional derivative. To explore exact analytical representations of the soliton solutions, the study employed the modified extended direct algebraic method. The method successfully produces closed-form exact soliton solutions that capture the stochastic behavior of the system in the presence of random perturbations. The addition of the M-truncated fractional derivative provides a more flexible structure to describe anomalous transport, offering an advanced mathematical representation of electro-diffusion processes. The obtained results highlight the combined role of noise, fractional dynamics, and stochastic fluctuations in shaping the system's evolution, thereby deepening the theoretical understanding of nonlinear stochastic transport models and opening potential avenues for applications in complex biological and physical systems. Moreover, the study presented graphical demonstrations that illustrate the effect of noise and the fractional order of derivation in 3D, 2D, and contour surfaces.
Citation: Waseem Razzaq, Asim Zafar, Abdulaziz Khalid Alsharidi, Mohammed Ahmed Alomair. Soliton solutions of the time-fractional Poisson-Nernst-Planck system with stochastic analysis and their application[J]. AIMS Mathematics, 2025, 10(12): 29765-29783. doi: 10.3934/math.20251308
This study investigated the influence of Brownian motion and noise effects on the dynamics of the stochastic Poisson-Nernst-Planck system with M-truncated fractional derivative. To explore exact analytical representations of the soliton solutions, the study employed the modified extended direct algebraic method. The method successfully produces closed-form exact soliton solutions that capture the stochastic behavior of the system in the presence of random perturbations. The addition of the M-truncated fractional derivative provides a more flexible structure to describe anomalous transport, offering an advanced mathematical representation of electro-diffusion processes. The obtained results highlight the combined role of noise, fractional dynamics, and stochastic fluctuations in shaping the system's evolution, thereby deepening the theoretical understanding of nonlinear stochastic transport models and opening potential avenues for applications in complex biological and physical systems. Moreover, the study presented graphical demonstrations that illustrate the effect of noise and the fractional order of derivation in 3D, 2D, and contour surfaces.
| [1] | M. A. Elfouly, M. A. Sohaly, M. E. Fares, FitzHugh–Nagumo model in neutral delay differential equation representation, Res. Sq., 2024, Preprint. https://doi.org/10.21203/rs.3.rs-5048513/v1 |
| [2] |
A. De Laire, Recent results for the Landau–Lifshitz equation, SeMA, 79 (2022), 253–295. https://doi.org/10.1007/s40324-021-00254-1 doi: 10.1007/s40324-021-00254-1
|
| [3] |
A. N. Landge, B. M. Jordan, X. Diego, P. Müller, Pattern formation mechanisms of self-organizing reaction–diffusion systems, Dev. Biol., 460 (2020), 2–11. https://doi.org/10.1016/j.ydbio.2019.10.031 doi: 10.1016/j.ydbio.2019.10.031
|
| [4] |
S. Khuri, New approach for soliton solutions for the (2+1)-dimensional KdV equation describing shallow water wave, Int. J. Numer. Methods Heat Fluid Flow, 33 (2023), 965–973. https://doi.org/10.1108/HFF-08-2022-0498 doi: 10.1108/HFF-08-2022-0498
|
| [5] |
A. Bocharov, O. Y. Tsvelodub, Nonlinear steady-state traveling solutions of the Kuramoto–Sivashinsky equation coupled with the linear dissipative equation, Chaos Soliton Fract., 198 (2025), 116572. https://doi.org/10.1016/j.chaos.2025.116572 doi: 10.1016/j.chaos.2025.116572
|
| [6] |
G. Q. Xu, A. M. Wazwaz, A new (n+1)-dimensional generalized Kadomtsev–Petviashvili equation: Integrability characteristics and localized solutions, Nonlinear Dyn., 111 (2023), 9495–9507. https://doi.org/10.1007/s11071-023-08343-8 doi: 10.1007/s11071-023-08343-8
|
| [7] |
H. H. Hussein, H. M. Ahmed, S. A. Kandil, W. Alexan, Unveiling diverse solitons in the quintic perturbed Gerdjikov–Ivanov model via a modified extended mapping method, Sci. Rep., 15 (2025), 15881. https://doi.org/10.1038/s41598-025-97981-6 doi: 10.1038/s41598-025-97981-6
|
| [8] |
U. Akpan, L. Akinyemi, D. Ntiamoah, A. Houwe, S. Abbagari, Generalized stochastic Korteweg–de Vries equations, their Painlevé integrability, N-soliton and other solutions, Int. J. Geom. Methods Mod. Phys., 21 (2024), 2450128. https://doi.org/10.1142/S0219887824501287 doi: 10.1142/S0219887824501287
|
| [9] |
T. Nan, M. Z. Baber, N. Ahmed, M. S. Iqbal, U. Demirbilek, H. Rezazadeh, Effects of Brownian motion on solitary wave structures for 1D stochastic Poisson–Nernst–Planck system in electrobiochemical media, Int. J. Geom. Methods Mod. Phys., 21 (2024), 2450225. https://doi.org/10.1142/S0219887824502256 doi: 10.1142/S0219887824502256
|
| [10] |
W. Razzaq, A. Zafar, Machine learning-enhanced soliton solutions for the Lonngren-wave equation: An integration of Painlevé analysis and Hirota bilinear method, Rend. Lincei Sci. Fis. Nat., 36 (2025), 917–932. https://doi.org/10.1007/s12210-025-01354-0 doi: 10.1007/s12210-025-01354-0
|
| [11] |
S. Kumar, S. K. Dhiman, Exploring cone-shaped solitons, breather and lump-form solutions using the Lie symmetry method and unified approach to a coupled breaking soliton model, Phys. Scr., 99 (2024), 025243. https://doi.org/10.1088/1402-4896/ad1d9e doi: 10.1088/1402-4896/ad1d9e
|
| [12] |
N. A. Kudryashov, A. Biswas, Q. Zhou, Y. Yildirim, Painlevé analysis and chiral solitons from quantum Hall effect, Contemp. Math., 542 (2024), 4384–4398. https://doi.org/10.37256/cm.5420245313 doi: 10.37256/cm.5420245313
|
| [13] |
S. Naowarat, S. Saifullah, S. Ahmad, M. De la Sen, Periodic, singular and dark solitons of a generalized geophysical KdV equation by using the tanh–coth method, Symmetry, 15 (2023), 135. https://doi.org/10.3390/sym15010135 doi: 10.3390/sym15010135
|
| [14] |
S. Behera, Multiple soliton solutions of some conformable fractional nonlinear models using the sine–cosine method, Opt. Quant. Electron., 56 (2024), 1235. https://doi.org/10.1007/s11082-024-06403-w doi: 10.1007/s11082-024-06403-w
|
| [15] |
W. Razzaq, A. Zafar, A. K. Alsharidi, M. A. Alomair, New three-wave and periodic solutions for the nonlinear (2+1)-dimensional Burgers equations, Symmetry, 15 (2023), 1573. https://doi.org/10.3390/sym15081573 doi: 10.3390/sym15081573
|
| [16] |
A. K. S. Hossain, M. K. Islam, H. Akter, M. A. Akbar, Exact and soliton solutions of nonlinear evolution equations in mathematical physics using the generalized $G'/G$-expansion approach, Phys. Scr., 100 (2024), 015269. https://doi.org/10.1088/1402-4896/ad9da1 doi: 10.1088/1402-4896/ad9da1
|
| [17] |
I. Samir, H. M. Ahmed, W. Rabie, W. Abbas, O. Mostafa, Construction of optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati and new generalized methods, AIMS Mathematics, 10 (2025), 3392–3407. https://doi.org/10.3934/math.2025157 doi: 10.3934/math.2025157
|
| [18] |
A. Zafar, W. Razzaq, H. Rezazadeh, M. Eslami, The complex hyperbolic Schrödinger dynamical equation with a truncated M-fractional derivative via simplest equation method, Comput. Methods Differ. Equ., 12 (2024), 44–55. https://doi.org/10.22034/cmde.2022.40084.1747 doi: 10.22034/cmde.2022.40084.1747
|
| [19] |
M. I. Khan, J. Sabi'u, A. Khan, S. Rehman, A. Farooq, Unveiling new insights into soliton solutions and sensitivity analysis of the Shynaray-IIA equation through an improved generalized Riccati equation mapping method, Opt. Quant. Electron., 56 (2024), 1339. https://doi.org/10.1007/s11082-024-07271-0 doi: 10.1007/s11082-024-07271-0
|
| [20] |
N. Sun, Y. Wang, Exact solutions of the generalized third-order nonlinear Schrödinger equation using the trial equation method and complete discriminant system for polynomial method with applications in optical fibers, Int. J. Appl. Comput. Math., 11 (2025), 65. https://doi.org/10.1007/s40819-025-01872-3 doi: 10.1007/s40819-025-01872-3
|
| [21] |
Z. Z. Si, Z. T. Ju, L. F. Ren, X. P. Wang, B. A. Malomed, C. Q. Dai, Polarization-induced buildup and switching mechanisms for soliton molecules composed of noise-like-pulse transition states, Laser Photon. Rev., 19 (2025), 2401019. https://doi.org/10.1002/lpor.202401019 doi: 10.1002/lpor.202401019
|
| [22] |
D. S. Mou, Z. Z. Si, W. X. Qiu, C. Q. Dai, Optical soliton formation and dynamic characteristics in photonic moiré lattices, Opt. Laser Technol., 181 (2025), 111774. https://doi.org/10.1016/j.optlastec.2024.111774 doi: 10.1016/j.optlastec.2024.111774
|
| [23] |
M. Waqar, K. M. Saad, M. Abbas, M. Vivas-Cortez, W. M. Hamanah, Diverse wave solutions for the (2+1)-dimensional Zoomeron equation using the modified extended direct algebraic approach, AIMS Mathematics, 10 (2025), 12868–12887. https://doi.org/10.3934/math.2025578 doi: 10.3934/math.2025578
|
| [24] |
F. Ashraf, R. Ashraf, A. Akgül, Traveling wave solutions of the Hirota–Ramani equation by modified extended direct algebraic and new extended direct algebraic method, Int. J. Mod. Phys. B, 38 (2024), 2450329. https://doi.org/10.1142/S0217979224503296 doi: 10.1142/S0217979224503296
|
| [25] |
H. Qawaqneh, Y. Alrashedi, H. Ahmad, A. Bekir, Discovery of exact solitons to the fractional KP-MEW equation with stability analysis, Eur. Phys. J. Plus, 140 (2025), 316. https://doi.org/10.1140/epjp/s13360-025-06188-1 doi: 10.1140/epjp/s13360-025-06188-1
|
| [26] |
A. Amer, S. M. Boulaaras, A. Althobaiti, S. Althobaiti, H. U. Rehman, Soliton dynamics and numerical insights for the Shynaray-IIA equation, Int. J. Mod. Phys. B, 39 (2025), 2550203. https://doi.org/10.1142/S0217979225502030 doi: 10.1142/S0217979225502030
|
| [27] |
T. Shahzad, M. O. Ahmed, M. Z. Baber, N. Ahmed, A. Akgül, T. Abdeljawad, et al., Explicit solitary wave structures for the fractional-order Sobolev-type equations and their stability analysis, Alex. Eng. J., 92 (2024), 24–38. https://doi.org/10.1016/j.aej.2024.02.032 doi: 10.1016/j.aej.2024.02.032
|
| [28] |
M. S. Iqbal, M. Inc, Optical soliton solutions for stochastic Davey–Stewartson equation under the effect of noise, Opt. Quant. Electron., 56 (2024), 1148. https://doi.org/10.1007/s11082-024-06453-0 doi: 10.1007/s11082-024-06453-0
|