We introduce a deterministic, policy-targeted Bellman value-iteration framework for computing the optimal exercise boundary of perpetual American put options. Our method replaces path sampling in the Bellman operator with Gauss–Hermite quadrature and employs shape-preserving interpolation for off-grid evaluations, eliminating sampling noise and reducing computational cost. Under the Black–Scholes (BS) model, our approach recovers the analytic boundary with a mean absolute percentage error below 1.5% in approximately 19–56 seconds. The resulting policy values, evaluated via Monte Carlo simulation, deviate from the analytic benchmark by less than 0.07%. For the Heston model, where no closed-form solution exists, our method produces boundaries that differ from a high-resolution finite-difference benchmark by 1–5%. Despite these boundary deviations, the expected payoffs from the policies are remarkably close, with relative policy value gaps well below 0.2%. Notably, our method computes the boundary in about 127–180 seconds, a significant speedup compared to the 2,103–3,119 seconds required by the finite-difference method. This work presents a practical and robust alternative for optimal stopping problems, offering a compelling balance of speed and accuracy, particularly when partial differential equation (PDE) solvers are cumbersome or Monte Carlo simulation is prohibitively expensive.
Citation: Eungpyo Kim, Jaegi Jeon. Deterministic value iteration for perpetual American put options[J]. AIMS Mathematics, 2025, 10(12): 29784-29814. doi: 10.3934/math.20251309
We introduce a deterministic, policy-targeted Bellman value-iteration framework for computing the optimal exercise boundary of perpetual American put options. Our method replaces path sampling in the Bellman operator with Gauss–Hermite quadrature and employs shape-preserving interpolation for off-grid evaluations, eliminating sampling noise and reducing computational cost. Under the Black–Scholes (BS) model, our approach recovers the analytic boundary with a mean absolute percentage error below 1.5% in approximately 19–56 seconds. The resulting policy values, evaluated via Monte Carlo simulation, deviate from the analytic benchmark by less than 0.07%. For the Heston model, where no closed-form solution exists, our method produces boundaries that differ from a high-resolution finite-difference benchmark by 1–5%. Despite these boundary deviations, the expected payoffs from the policies are remarkably close, with relative policy value gaps well below 0.2%. Notably, our method computes the boundary in about 127–180 seconds, a significant speedup compared to the 2,103–3,119 seconds required by the finite-difference method. This work presents a practical and robust alternative for optimal stopping problems, offering a compelling balance of speed and accuracy, particularly when partial differential equation (PDE) solvers are cumbersome or Monte Carlo simulation is prohibitively expensive.
| [1] |
F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
|
| [2] |
R. C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci., 4 (1973), 141–183. https://doi.org/10.2307/3003143 doi: 10.2307/3003143
|
| [3] |
M. J. Brennan, E. S. Schwartz, The valuation of American put options, J. Financ., 32 (1977), 449–462. https://doi.org/10.2307/2326779 doi: 10.2307/2326779
|
| [4] |
I. J. Kim, The analytic valuation of American options, Rev. Financ. Stud., 3 (1990), 547–572. https://doi.org/10.1093/rfs/3.4.547 doi: 10.1093/rfs/3.4.547
|
| [5] | H. P. McKean Jr, A free boundary problem for the heat equation arising from a problem in mathematical economics, Indust. Manag. Rev., 6 (1965), 32–39. |
| [6] |
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
|
| [7] | S. Foulon, ADI finite difference schemes for option pricing in the heston model with correlation, Int. J. Numer. Anal. Mod., 7 (2010), 303–320. |
| [8] |
F. A. Longstaff, E. S. Schwartz, Valuing American options by simulation: A simple least-squares approach, Rev. Financ. Stud., 14 (2001), 113–147. https://doi.org/10.1093/rfs/14.1.113 doi: 10.1093/rfs/14.1.113
|
| [9] |
J. N. Tsitsiklis, B. Van Roy, Regression methods for pricing complex American-style options, IEEE T. Neural Networ., 12 (2001), 694–703. https://doi.org/10.1109/72.935083 doi: 10.1109/72.935083
|
| [10] | P. Glasserman, Monte Carlo methods in financial engineering, Springer, 53 (2004). https://doi.org/10.1007/978-0-387-21617-1 |
| [11] |
R. M. Reesor, L. Stentoft, X. Zhu, A critical analysis of the weighted least squares Monte Carlo method for pricing American options, Financ. Res. Lett., 64 (2024), 105379. https://doi.org/10.1016/j.frl.2024.105379 doi: 10.1016/j.frl.2024.105379
|
| [12] |
M. B. Haugh, L. Kogan, Pricing American options: A duality approach, Oper. Res., 52 (2004), 258–270. https://doi.org/10.1287/opre.1030.0070 doi: 10.1287/opre.1030.0070
|
| [13] |
L. Andersen, M. Broadie, Primal-dual simulation algorithm for pricing multidimensional american options, Manag. Sci., 50 (2004), 1222–1234. https://doi.org/10.1287/mnsc.1040.0258 doi: 10.1287/mnsc.1040.0258
|
| [14] |
Y. Chen, J. W. Wan, Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions, Quant. Financ., 21 (2021), 45–67. https://doi.org/10.1080/14697688.2020.1788219 doi: 10.1080/14697688.2020.1788219
|
| [15] | T. S. Zaevski, A new approach for pricing discounted american options, Commun. Nonlinear Sci., 97 (2021), 105752. |
| [16] | T. S. Zaevski, H. Sariev, M. Savov, A fast and accurate numerical approach for pricing American-style power options, Mathematics, 13 (2025), 2031. |
| [17] |
T. Zaevski, On the ϵ-optimality of american options, China Financ. Rev. Int., 15 (2025), 688–714. https://doi.org/10.1108/CFRI-06-2024-0361 doi: 10.1108/CFRI-06-2024-0361
|
| [18] |
X. Luo, P. V. Shevchenko, Fast and simple method for pricing exotic options using Gauss-Hermite quadrature on a cubic spline interpolation, J. Financ. Eng., 1 (2014), 1450033. https://doi.org/10.1142/S2345768614500330 doi: 10.1142/S2345768614500330
|
| [19] |
L. Goudenège, A. Molent, A. Zanette, Moving average options: Machine learning and Gauss-Hermite quadrature for a double non-Markovian problem, Eur. J. Oper. Res., 303 (2022), 958–974. https://doi.org/10.1016/j.ejor.2022.03.002 doi: 10.1016/j.ejor.2022.03.002
|
| [20] |
X. C. S. Lin, D. W. C. Miao, E. E. T. Chang, Testing the closed-form spread option pricing formula based on Gauss-Hermite quadrature for a jump-diffusion model, Comput. Econ., 64 (2024), 2879–2908. https://doi.org/10.1007/s10614-023-10468-2 doi: 10.1007/s10614-023-10468-2
|
| [21] |
B. Hambly, R. Xu, H. Yang, Recent advances in reinforcement learning in finance, Math. Financ., 33 (2023), 437–503. https://doi.org/10.1111/mafi.12382 doi: 10.1111/mafi.12382
|
| [22] | R. Bellman, Dynamic programming, Science, 153 (1966), 34–37. https://doi.org/10.1126/science.153.3731.34 |
| [23] | G. Peskir, A. Shiryaev, Optimal stopping and free-boundary problems, Springer, 2006. https://doi.org/10.1007/978-3-7643-7390-0 |
| [24] |
D. Blackwell, Discounted dynamic programming, Ann. Math. Stat., 36 (1965), 226–235. https://doi.org/10.1214/aoms/1177700285 doi: 10.1214/aoms/1177700285
|
| [25] | M. L. Puterman, Markov decision processes: Discrete stochastic dynamic programming, John Wiley & Sons, 2014. |
| [26] |
J. C. Cox, J. E. Ingersoll, S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385–407. https://doi.org/10.2307/1911242 doi: 10.2307/1911242
|
| [27] | S. E. Shreve, Stochastic calculus for finance Ⅱ: Continuous-time models, Springer, 11 (2004). https://doi.org/10.1007/978-1-4757-4296-1 |
| [28] | W. H. Press, Numerical recipes 3rd edition: The art of scientific computing, Cambridge university press, 2007. |
| [29] |
R. Lord, R. Koekkoek, D. V. Dijk, A comparison of biased simulation schemes for stochastic volatility models, Quant. Financ., 10 (2010), 177–194. https://doi.org/10.1080/14697680802392496 doi: 10.1080/14697680802392496
|
| [30] |
F. N. Fritsch, R. E. Carlson, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal., 17 (1980), 238–246. https://doi.org/10.1137/0717021 doi: 10.1137/0717021
|
| [31] | H. Pham, Continuous-time stochastic control and optimization with financial applications, Springer Science & Business Media, 61 (2009). https://doi.org/10.1007/978-3-540-89500-8 |
| [32] | D. J. Duffy, Finite difference methods in financial engineering: A partial differential equation approach, John Wiley & Sons, 2013. https://doi.org/10.1002/9781118673447 |
| [33] | P. Wilmott, Paul Wilmott on quantitative finance, John Wiley & Sons, 2013. |