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Abstract: This study investigated the influence of Brownian motion and noise effects on the dynamics
of the stochastic Poisson-Nernst-Planck system with M-truncated fractional derivative. To explore
exact analytical representations of the soliton solutions, the study employed the modified extended
direct algebraic method. The method successfully produces closed-form exact soliton solutions that
capture the stochastic behavior of the system in the presence of random perturbations. The addition
of the M-truncated fractional derivative provides a more flexible structure to describe anomalous
transport, offering an advanced mathematical representation of electro-diffusion processes. The
obtained results highlight the combined role of noise, fractional dynamics, and stochastic fluctuations
in shaping the system’s evolution, thereby deepening the theoretical understanding of nonlinear
stochastic transport models and opening potential avenues for applications in complex biological and
physical systems. Moreover, the study presented graphical demonstrations that illustrate the effect of
noise and the fractional order of derivation in 3D, 2D, and contour surfaces.
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1. Introduction

In applied sciences and mathematical physics, nonlinear evolution equations (NLSEEs) are crucial
instruments. These equations explain the nonlinear changes in physical quantities like energy, particles,
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waves, or charges over time and space. In contrast to linear equations, this complex phenomena,
including soliton waves, shocks, dispersion, turbulence, and chaotic dynamics, can be modeled using
NLEEs. Driven by this modeling, they are therefore frequently used in many different fields, such as
quantum mechanics, fluid dynamics, optical communication, plasma, and biological transport systems.

Modeling the movement of charged particles, such as ions in a fluid or electrons in a semiconductor,
is one of the main applications of NLEEs. Particle mobility in such systems is affected by electric
fields in addition to concentration gradients. In recent decades, scientists and mathematicians have
created numerous models in recent decades that describe detailed behaviors in systems including
semiconductors, biological tissues, fluids, and plasmas. A list of such core models include the
FitzHugh–Nagumo model [1], the Landau–Lifshitz model [2], the reaction-diffusion models [3],
the (2 + 1)-dimensional KdV model [4], the Kuramoto-Sivashinsky model [5], the (n+1)-dimensional
generalized Kadomtsev–Petviashvili model [6], the perturbed Gerdjikov-Ivanov model [7], and the
generalized Korteweg-de Vries equations [8]. The classical Nernst-Planck equation was first proposed
by Walther Nernst in 1888 to describe ion diffusion. Max Planck later included electric field
effects, which resulted in the modern form of the Nernst-Planck equation currently in use. When
it is coupled with the Poisson equation, the Poisson-Nernst-Planck (PNP) system is created, which
connects the electric field and charge density. Furthermore, ion channels in biological membranes,
semiconductor devices, electrochemical systems, and nanofluidic devices have all been described using
this concept. They employ the Poisson-Nernst-Planck (PNP) system, a well-known nonlinear model, to
mathematically characterize this linked behavior. This model consists of two components: the Poisson
equation, which specifies how the charge distribution generates the electric potential, and the Nernst-
Planck equations, which describe ion transport. A couple of nonlinear partial differential equations
is the resultant PNP system. In domains such as biology, electrochemistry, and semiconductors, it is
among the most potent models for explaining electro-diffusive transport.

As technology developed, scientists discovered that random fluctuations are frequently present in
real-world systems because of internal interactions, external changes, or thermal noise. In order to
account for these impacts, stochastic variations of the PNP system were created. These models are
known as stochastic Poisson-Nernst-Planck (SPNP) systems [9] and they incorporated noise or random
variables to allow for uncertainty. These are particularly helpful in biological systems, where random
behaviors significantly affect system performance, such as neuron signaling and nanoelectronics.

To find exact soliton solutions of nonlinear systems like the PNP model, many analytical techniques
have been developed. These include the Hirota Bilinear technique [10], the Lie symmetry method [11],
Painlevé analysis [12], the tanh-coth method [13], the sine–cosine method [14], the extended
sinh-Gordon equation expansion method [15], the G′

G -expansion approach [16], the exp-function
method [17], the modified simple equation method [18], the Riccati equation mapping method [19],
and the trial equation method [20].

While many PDEs have been successfully solved using these techniques, stochastic or highly
nonlinear systems frequently present challenges. Noticing the concern, the present work focuses on
finding soliton solutions that play a significant role in the field of applied sciences, where various
applications exist [21, 22]. In order to enhance the soliton solution process, academics have suggested
extended and modified algebraic approaches. The modified extended direct algebraic (MEDA) method
is one such effective strategy. Additionally, the traditional direct algebraic method has been enhanced
by this approach. Because of its adaptable solution structure, it can handle complex wave profiles,
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such as solitary waves, periodic waves, and even solutions for rational functions. Its main advantages
include the MEDA’s simplicity, algebraic structure, and effective handling of both linear and nonlinear
components.

Several researchers have applied the MEDA to different types of equations with success. For
example, Waqar et al. [23] used the MEDA to find diverse wave solutions for the (2 + 1)-dimensional
Zoomeron equation, Ashraf et al. [24] used the MEDA to find traveling wave solutions of the
Hirota–Ramani equation, Qawaqneh et al. [25] discovered exact solitons to the fractional KP-MEW
equation, and Amer et al. [26] used the MEDA to examine exact solutions to the Shynaray-IIA
equation. Shahzad et al. [27] used the Meda to find the explicit solitary wave structures for the
fractional-order Sobolev-type equations.

This study is aimed at establishing exact analytical soliton solutions of the 1D stochastic Poisson-
Nernst-Planck system using the modified extended direct algebraic method. Using the MEDA method
the study develops several exact solutions, such as soliton solutions, periodic wave profiles, and rational
function solutions. This paper presents a novel analytical approach to stochastic PDEs and advances the
mathematical description of ionic transport in noisy systems. The results demonstrate the effectiveness
and simplicity of the MEDA method in solving complex nonlinear stochastic models. It might also be
used as a guide for upcoming research in biology, engineering, and physics that uses different stochastic
models.
• M-truncated derivative
Definition 1.1. The truncated Mittag–Leffler function is defined as follows:

iEβ(g(z)) =
i∑

m=0

g(z)m

Γ(βm + 1)
, (1.1)

where g ∈ C and β > 0.
Definition 1.2. Let v : [0,∞) → R be a function. The M-truncated derivative of v of order α, where
α ∈ (0, 1) with respect to z, is defined as

D(α,β)
(M,z)v(z) = lim

h→0

v(z + iEβ(hz−β)) − v(z)
h

, β, z > 0, (1.2)

where iEβ(.) is the truncated Mittag-Leffler function.
• Brownian motion
Brownian motion shows the random walk of the particles in various fields where particles are in motion.
It is defined as:
Definition 1.3. The stochastic procedure Kt, t ≥ 0, holds for the following:

(1) Kt = 0,
(2) Kt is continuous and has independent increments,
(3) Kt-Ks has a Gaussian distribution,

it is called Brownian motion.
Lemma 1.1. E(eδKt) = e

1
2 δ

2t for δ ∈ R, δ > 0.
Key contributions of our work

• We formulate a stochastic PNP system that incorporates noise effects and M-truncated fractional
derivatives to more accurately represent anomalous electro-diffusion and stochastic perturbations.
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• We employ the modified extended direct algebraic method to derive new exact closed-form soliton
solutions that capture the nonlinear stochastic dynamics of the system.
• We analyze the interplay between fractional dynamics, Brownian motion, and stochastic

fluctuations, demonstrating their combined impact on the system’s evolution.
• We provide a detailed graphical investigation, including 2D plots, 3D surfaces, and contour

illustrations, to demonstrate the effects of noise intensity and fractional-order parameters on the
solution profiles.

These additions clearly identify the research gap and outline the specific contributions of the present
study.

This paper is organized as follows: Section 2 presents the wave transformation, Section 3 describes
the scheme and its application, Section 4 discusses the fractional and noise effects on the graphs, and
Section 5 concludes the study.

2. Governing model

In this section, we consider the steady state of a one-dimensional model of the PNP system, and
we use the assumption that ion concentration would be constant across the channel section; it takes the
following form:

∂n1

∂t
+
∂J1
∂t
= 0, with J1 = −g1(

∂n1

∂x
+

zF
RT

n1
∂u
∂x

), (2.1)

∂n1

∂t
+
∂J2
∂t
= 0, with J2 = −g2(

∂n1

∂x
+

zF
RT

n1
∂u
∂x

), (2.2)

and
∂2u
∂x2 = −

zF
ϵα

(N1 − N2). (2.3)

Given that the channel has a few angstroms of diameter and that the surrounding membrane is thought
to be planar, the channel can be considered to be cylindrical. So, we assumed that N1 and N2 are
fluxes and n1 and n2 are ionic concentrations that are assumed as constants. Here, R represents the
universal gas constant, T is taken as the absolute temperature, F = eNα denotes Faraday’s constant,
Z denotes the charge’s valence, u denotes the electric potential, x denotes the position membrane,
and ϵα denotes the dielectric constant in the ionic solution. D is the diffusion coefficient of the ionic
species. The electromigration is represented by the first term on the right side of the equation, while
the solvent convection is shown by the second term. The above-mentioned fourth-order PNP system
can be expressed in the simplest form as follows:

QΨxt − QdΨxxx − PQΨxΨxx = 0. (2.4)

Here, we assume that P = ϵα
zF , Q = Fz

RT
. The stochastic PNP system is considered in the following

form:
QΨxt − QdΨxxx − PQΨxΨxx − µB(t)Ψx = 0. (2.5)

Now, we use the M-truncated fractional derivative definition for the time variable and get the time-
fractional 1D stochastic Poisson-Nernst-Planck (TFSPNP) model such as:

QDαt (Dx) − QdDxxx − PQDxDxx − µB(t)Dx = 0, (2.6)

where α is between 0 < α < 1.
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3. Wave transformation

To derive the wave equation for the stochastic PKP equation, we use the transformation

Ψ(x, t) = Ψ(η)eµB(t)− 1
2 (µ)2t, η = vx +

cΓ(β + 1)
α

tα. (3.1)

Here, Ψ(η) is a real function, while c is the speed of the wave, and v is the amplitude of the wave.
We take the derivative of Eq (2.6), and we get

Ψx = vΨ′eµB(t)− 1
2 (µ)2t,Ψxx = v2Ψ′′eµB(t)− 1

2 (µ)2t,

Ψxxx = v2Ψ′′′eµB(t)− 1
2 (µ)2t,Ψxt = [cvΨ′′ + µvΨ′B(t)]eµB(t)− 1

2 (µ)2t.

By substituting these derivatives along with Eq (3.1) into Eq (2.6), we get

Ψ′′ − Qdv3Ψ′′′ − PdΨ′Ψ′′eµB(t)− 1
2 (µ)2t = 0. (3.2)

Now, by taking expectation E(.) [28], on both sides of Eq (3.2), we get:

Ψ′′ − Qdv3Ψ′′′ − PΨ′Ψ′′Ee(µB(t))e−
1
2 (µ)2t = 0. (3.3)

B(t) is the time noise, and then Ee(µB(t)) = e
1
2 (µ)2t in Eq (3.3) turns into:

Ψ′′ − Qdv3Ψ′′′ − PdΨ′Ψ′′ = 0. (3.4)

Now, by integrating Eq (3.4), we have

Ψ′ − Qdv3Ψ′′ −
Pd
2

(Ψ′)2 = C. (3.5)

Here we take the integrating constant zero.

Ψ′ − Qdv3Ψ′′ −
Pd
2

(Ψ′)2 = 0. (3.6)

Let Ψ′ = R, and Eq (3.6) takes the following form:

Qdv3
R
′ +
Pd
2

(R)2 − R = 0. (3.7)

4. Modified extended direct algebraic method and its application

Some of the main steps are given as:
Step 1: Assuming a non-linear PDE:

H(R,R2,R2
Rx,Rxx,Rxt, ...) = 0. (4.1)

Here R = R(x, t) denotes a wave function. We assume the following transformation:

R(x, t) = Q(η), η = x + c t. (4.2)
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Putting Eq (4.2) into Eq (4.1) yields

G(Q,Q2
Q
′

,Q
′′

, ...) = 0. (4.3)

Step 2: Suppose the results of Eq (4.3) are shown as

Q(η) =
m∑

i=0

wiζ
i(η). (4.4)

Here wi(i = 0, 1, 2, 3, ...,m) are unknown. Function ζ(η) fulfills the given equation.

ζ
′

(η) = log(A)
(
r1 + r2ζ(η) + r3ζ(η)2

)
. (4.5)

Here r1, r2, and r3 are constants and A , 0, 1. Consider the solutions of Eq (4.5) in the following cases:
Case 1: when Ω = r2

2 − 4r1r3 < 0 and r3 , 0:

ζ(η) = −
r2

2r3
+

√
−Ω tanP(1

2

√
−Ωη)

2r3
, (4.6)

ζ(η) = −
r2

2r3
−

√
−Ω cotP(1

2

√
−Ωη)

2r3
, (4.7)

ζ(η) = −
r2

2r3
+

√
−Ω(tanP(

√
−Ωη) ± (

√
ων secP(

√
−Ωη)))

2r3
, (4.8)

ζ(η) = −
r2

2r3
−

√
−Ω(cotP(

√
−Ωη) ± (

√
ων cscP(

√
−Ωη)))

2r3
, (4.9)

ζ(η) = −
r2

2r3
+

√
−Ω(tanP(1

4

√
−Ωη) − ( cotP( 1

4

√
−Ωη)))

2r3
. (4.10)

Case 2: when Ω = r2
2 − 4r1r3 > 0 and r3 , 0:

ζ(η) = −
r2

2r3
−

√
Ω tanhP(1

2

√
Ωη)

2r3
, (4.11)

ζ(η) = −
r2

2r3
−

√
Ω cothP(1

2

√
Ωη)

2r3
, (4.12)

ζ(η) = −
r2

2r3
−

√
Ω(tanhP(

√
Ωη) ± (

√
ων sechP(

√
Ωη)))

2r3
, (4.13)

ζ(η) = −
r2

2r3
−

√
Ω(cothP(

√
Ωη) ± (

√
ων cschP(

√
Ωη)))

2r3
, (4.14)

ζ(η) = −
r2

2r3
−

√
Ω(tanhP( 1

4

√
Ωη) − ( cothP( 1

4

√
Ωη)))

2r3
. (4.15)
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Case 3: when r1r3 > 0 and r2 = 0:

ζ(η) =
√

r1

r3
tanP(

√
r1r3η), (4.16)

ζ(η) = −
√

r1

r3
cotP(

√
r1r3η), (4.17)

ζ(η) =
√

r1

r3
(tanP(2

√
r1r3η) ± (

√
ων secP(2

√
r1r3η))), (4.18)

ζ(η) = −
√

r1

r3
(cotP(2

√
r1r3η) ± (

√
ων cscP(2

√
r1r3η))), (4.19)

ζ(η) =
1
2

√
r1

r3
(tanP(

1
2
√

r1r3η) − cotP(
1
2
√

r1r3η)). (4.20)

Case 4: when r1r3 < 0 and r2 = 0:

ζ(η) = −
√
−

r1

r3
tanhP(

√
−r1r3η), (4.21)

ζ(η) = −
√
−

r1

r3
cothP(

√
−r1r3η), (4.22)

ζ(η) = −
√
−

r1

r3
(tanhP(

√
−r1r32η) ± (ι

√
ωνsechP(

√
−r1r32η))), (4.23)

ζ(η) = −
√
−

r1

r3
(cothP(

√
−r1r32η) ± (

√
ωνcschP(

√
−r1r32η))), (4.24)

ζ(η) = −
1
2

√
−

r1

r3
(tanhP(

1
2
√
−r1r3η) + cothP(

1
2
√
−r1r3η)). (4.25)

Case 5: when r3 = r1 and r2 = 0:
ζ(η) = tanP(r1η), (4.26)

ζ(η) = − cotP(r1η), (4.27)

ζ(η) = tanP(r12η) ± (
√
ων secP(r12η), (4.28)

ζ(η) = − cotP(r12η) ± (
√
ων cscP(r12η), (4.29)

ζ(η) =
1
2

tanP(
1
2

r1η) −
1
2

cotP(
1
2

r1η). (4.30)

Case 6: when r3 = −r1 and r2 = 0:
ζ(η) = − tanhP(r1η), (4.31)

ζ(η) = − cothP(r1η), (4.32)

ζ(η) = − tanhP(r12η) ± (ι
√
ωνsechP(r12η), (4.33)

ζ(η) = − cothP(r12η) ± (
√
ωνcschP(r12η), (4.34)
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ζ(η) = −
1
2

tanhP(
1
2

r1η) −
1
2

cothP(
1
2

r1η). (4.35)

Case 7: when r2
2 − 4r1r3 = 0:

ζ(η) = −2
r1(r2η log(A) + 2)

r2
2η log(A)

. (4.36)

Case 8: when r2 = δ, r1 = δm (m , 0), and r3 = 0:

ζ(η) = Aδη − m. (4.37)

Case 9: when r2, r3 = 0:
ζ(η) = r1 η log(A). (4.38)

Case 10: when r1, r2 = 0:

ζ(η) = −
1

r3 η log(A)
. (4.39)

Case 11: when r1 = 0 and r2, r3 , 0:

ζ(η) = −
µr2

r3(coshP(r2η) − sinhP(r2η) + µ)
, (4.40)

ζ(η) = −
r2(coshP(r2η) + sinhP(r2η))

r3(coshP(r2η) + sinhP(r2η) + ν)
. (4.41)

Case 12: when r2 = δ r3 = mδ (m , 0), and r1 = 0:

ζ(η) =
µ Aδη

µ − m ν Aδη
. (4.42)

Here µ and ν are positive constants.
Step 3: Putting Eqs (4.4) and (4.5) into Eq (4.3) and collecting the coefficients equating to zero of each
power of ζ yields the algebraic system of equations. To get unknown values, solve the system.
Step 4: Putting Eq (4.4) into Eq (4.3) yields the solutions to Eq (4.1).

4.1. Application

To determine m = 1 from Eq (3.7), Eq (4.4) becomes:

Q(η) = w0 + w1ζ(η). (4.43)

Putting Eq (4.43) with Eq (4.5) in Eq (3.7), we get this set of solutions after some computations with
the help of software:
Set 1:

w1 =

(
r2 −

√
r2

2 − 4r1r3

)
w0

2r1
,P =

r2√
r2

2−4r1r3
+ 1

dw0
, v = −

1
6
√

d2Q2
(
r2

2 − 4r1r3

)
log2(A)

.

Set 2:
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w1 →

w0

(
r2

√(
r2

2 − 4r1r3

)
+

(
r2

2 − 4r1r3

))
2r1

√(
r2

2 − 4r1r3

) ,P→

1 − r2√
(r2

2−4r1r3)
dw0

, v→ −
3√
−1

6
√

d2Q2
(
r2

2 − 4r1r3

)
log2(A)

.

Set 3:

w1 →

w0

(
r2

√(
r2

2 − 4r1r3

)
+

(
r2

2 − 4r1r3

))
2r1

√(
r2

2 − 4r1r3

) ,P →

1 − r2√
(r2

2−4r1r3)
dw0

, v →
(−1)2/3

6
√

d2Q2
(
r2

2 − 4r1r3

)
log2(A)

.

Here we take set 1 and generate different solutions as follows:
Case 1: when Ω = r2

2 − 4r1r3 < 0 and r3 , 0:

Ψ(x, t) =
w0(r2

(
η
√

r2
2 − 4r1r3 − 2 log

(
cos

(
η
√
−Ω

2

)))
+ 2

√
r2

2 − 4r1r3 log
(
cos

(
η
√
−Ω

2

))
− ηr2

2 + 4ηr1r3)

4r1r3
eµB(t)− 1

2 (µ)2t,

(4.44)

Ψ(x, t) =
w0(r2

(
η
√

r2
2 − 4r1r3 − 2 log

(
sin

(
η
√
−Ω

2

)))
+ 2

√
r2

2 − 4r1r3 log
(
sin

(
η
√
−Ω

2

))
− ηr2

2 + 4ηr1r3)

4r1r3
eµB(t)− 1

2 (µ)2t, (4.45)

Ψ(x, t) =
1

4r1r3
(w0(r2

2√ων tanh−1
tan

η√−Ω2

 − log
(
cos

(
η
√
−Ω

))
+ η

√
r2

2 − 4r1r3


+

√
r2

2 − 4r1r3

log
(
cos

(
η
√
−Ω

))
− 2
√
ων tanh−1

tan
η√−Ω2

 − ηr2
2 + 4ηr1r3))eµB(t)− 1

2 (µ)2t, (4.46)

Ψ(x, t) =
1

4r1r3
(w0(r2

−√ων log
tan

η√−Ω2

 − log
(
sin

(
η
√
−Ω

))
+ η

√
r2

2 − 4r1r3


+

√
r2

2 − 4r1r3

√ων log
tan

η√−Ω2

 + log
(
sin

(
η
√
−Ω

)) − ηr2
2 + 4ηr1r3))eµB(t)− 1

2 (µ)2t, (4.47)

Ψ(x, t) =
1

4r1r3
(w0(r2(−4 log(sin(

η
√
−Ω

4
)) − 4 log(cos(

η
√
−Ω

4
)) + η

√
r2

2 − 4r1r3)

+ 4(
√

r2
2 − 4r1r3(log(sin(

η
√
−Ω

4
)) + log(cos(

η
√
−Ω

4
))) + ηr1r3) − ηr2

2))eµB(t)− 1
2 (µ)2t, (4.48)

where η = vx + cΓ(β+1)
α

tα.
Case 2: when Ω = r2

2 − 4r1r3 > 0 and r3 , 0:

Ψ(x, t) =
w0(r2

(
η
√

r2
2 − 4r1r3 − 2 log

(
cosh

(
η
√
Ω

2

)))
+ 2

√
r2

2 − 4r1r3 log
(
cosh

(
η
√
Ω

2

))
− ηr2

2 + 4ηr1r3)

4r1r3
eµB(t)− 1

2 (µ)2t,

(4.49)

Ψ(x, t) =
w0(r2

(
η
√

r2
2 − 4r1r3 − 2 log

(
sinh

(
η
√
Ω

2

)))
+ 2

√
r2

2 − 4r1r3 log
(
sinh

(
η
√
Ω

2

))
− ηr2

2 + 4ηr1r3)

4r1r3
eµB(t)− 1

2 (µ)2t, (4.50)
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Ψ(x, t) =
1

4r1r3
(w0(r2(−2

√
ων tan−1(tanh(

η
√
Ω

2
)) − log(cosh(η

√
Ω)) + η

√
r2

2 − 4r1r3)

+

√
r2

2 − 4r1r3(2
√
ων tan−1(tanh(

η
√
Ω

2
)) + log(cosh(η

√
Ω))) − ηr2

2 + 4ηr1r3))eµB(t)− 1
2 (µ)2t, (4.51)

Ψ(x, t) =
1

4r1r3
(w0(r2(−(

√
ων + 1) log(sinh(

η
√
Ω

2
)) + (

√
ων − 1) log(cosh(

η
√
Ω

2
)) + η

√
r2

2 − 4r1r3)

+

√
r2

2 − 4r1r3((
√
ων + 1) log(sinh(

η
√
Ω

2
)) − (

√
ων − 1) log(cosh(

η
√
Ω

2
))) − ηr2

2 + 4ηr1r3))eµB(t)− 1
2 (µ)2t, (4.52)

Ψ(x, t) =
1

4r1r3
(w0(r2(4 log(sinh(

η
√
Ω

4
)) − 4 log(cosh(

η
√
Ω

4
)) + η

√
r2

2 − 4r1r3)

+ 4(
√

r2
2 − 4r1r3(log(cosh(

η
√
Ω

4
)) − log(sinh(

η
√
Ω

4
))) + ηr1r3) − ηr2

2))eµB(t)− 1
2 (µ)2t, (4.53)

where η = vx + cΓ(β+1)
α

tα.
Case 3: when r1r3 > 0 and r2 = 0:

Ψ(x, t) = w0

η +
√
−r2

1r2
3

(
r1
r3

)
3/2 log

(
cos

(
η
√

r1r3

))
r3

1

 eµB(t)− 1
2 (µ)2t, (4.54)

Ψ(x, t) = w0

η +
√
−r2

1r2
3

(
r1
r3

)
3/2 log

(
sin

(
η
√

r1r3

))
r3

1

 eµB(t)− 1
2 (µ)2t, (4.55)

Ψ(x, t) =
1

2(r1r3)3/2 (r3w0(
√

r1

r3

√
−r1r3((

√
ων + 1) log(sin(η

√
r1r3) + cos(η

√
r1r3))

− (
√
ων − 1) log(cos(η

√
r1r3) − sin(η

√
r1r3))) + 2η

√
r1r3r1))eµB(t)− 1

2 (µ)2t, (4.56)

Ψ(x, t) =
1

4(r1r3)3/2 (r3w0(
√

r1

r3

√
−r1r3((

√
ων + 1) log(2 sin2(η

√
r1r3))

− (
√
ων − 1) log(cos(2η

√
r1r3) + 1)) + 4η

√
r1r3r1))eµB(t)− 1

2 (µ)2t, (4.57)

Ψ(x, t) = w0

η +
√
−r2

1r2
3

(
r1
r3

)
3/2 log

(
sin

(
η
√

r1r3

))
r3

1

 eµB(t)− 1
2 (µ)2t, (4.58)

where η = vx + cΓ(β+1)
α

tα.
Case 4: when r1r3 < 0 and r2 = 0:

Ψ(x, t) = w0

η +
√
−

r1
r3

log
(
cosh

(
η
√
−r1r3

))
r1

 eµB(t)− 1
2 (µ)2t, (4.59)
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Ψ(x, t) = w0

η +
√
−

r1
r3

log
(
sinh

(
η
√
−r1r3

))
r1

 eµB(t)− 1
2 (µ)2t, (4.60)

Ψ(x, t) =
1

2r1r3(
√
ων − i sinh(2η

√
−r1r3) + i

√
−

r1
r3

cosh(2η
√
−r1r3))

(w0(r3(2η
√
ων

√
−

r1

r3

√
−r1r3

− 2iων tan−1(tanh(η
√
−r1r3)) −

√
ων log(cosh(2η

√
−r1r3)) + 2ηr1(

√
ων − i sinh(2η

√
−r1r3)

+ i
√
−

r1

r3
cosh(2η

√
−r1r3)) + 2

√
ων

√
−

r1

r3
cosh(2η

√
−r1r3) tan−1(tanh(η

√
−r1r3))

+ sinh(2η
√
−r1r3)(−2

√
ων tan−1(tanh(η

√
−r1r3)) − 2iη

√
−

r1

r3

√
−r1r3 + i log(cosh(2η

√
−r1r3)))

− i
√
−

r1

r3
cosh(2η

√
−r1r3) log(cosh(2η

√
−r1r3))) − 2iηr1

√
−r1r3 cosh(2η

√
−r1r3)))eµB(t)− 1

2 (µ)2t, (4.61)

Ψ(x, t) =
1

2r1
(w0(
√
ων log(sinh(η

√
−r1r3)) + (−(

√
ων − 1)) log(cosh(η

√
−r1r3))

+ 2η
√
−

r1

r3

√
−r1r3 + 2ηr1 + log(sinh(η

√
−r1r3))))eµB(t)− 1

2 (µ)2t, (4.62)

Ψ(x, t) =
w0

(
ηr1 +

√
−

r1
r3

(
log

(
sinh

(
1
2η
√
−r1r3

))
+ log

(
cosh

(
1
2η
√
−r1r3

))))
r1

eµB(t)− 1
2 (µ)2t (4.63)

where η = vx + cΓ(β+1)
α

tα.
Case 5: when r3 = r1 and r2 = 0:

Ψ(x, t) = w0

η − log (cos (ηr1))√
−r2

1

 eµB(t)− 1
2 (µ)2t, (4.64)

Ψ(x, t) = w0

η +
√
−r2

1 log (sin (ηr1))

r2
1

 eµB(t)− 1
2 (µ)2t, (4.65)

Ψ(x, t) = w0

η +
(
−
√
ων − 1

)
log (cos (ηr1) − sin (ηr1))

2
√
−r2

1

+

(√
ων − 1

)
log (sin (ηr1) + cos (ηr1))

2
√
−r2

1

 eµB(t)− 1
2 (µ)2t, (4.66)

Ψ(x, t) =
w0

(
−

(√ων−1)
√
−r2

1 log(1−cos(2ηr1))
4r1

−
(−√ων−1)

√
−r2

1 log(cos(2ηr1)+1)
4r1

+ ηr1

)
r1

eµB(t)− 1
2 (µ)2t, (4.67)

Ψ(x, t) = w0

η +
√
−r2

1 log (sin (ηr1))

r2
1

 eµB(t)− 1
2 (µ)2t, (4.68)
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where η = vx + cΓ(β+1)
α

tα.
Case 6: when r3 = −r1 and r2 = 0:

Ψ(x, t) = w0

η + log (cosh (ηr1))√
r2

1

 eµB(t)− 1
2 (µ)2t, (4.69)

Ψ(x, t) = w0

η + log (sinh (ηr1))√
r2

1

 eµB(t)− 1
2 (µ)2t, (4.70)

Ψ(x, t) =
w0

(
2ηr2

1 +

√
r2

1

(
log (cosh (2ηr1)) − 2i

√
ων tan−1 (tanh (ηr1))

))
2r2

1

eµB(t)− 1
2 (µ)2t, (4.71)

Ψ(x, t) =
w0

(
(1−
√
ων)
√

r2
1 log(sinh(ηr1))

2r1
+

(√ων+1)
√

r2
1 log(cosh(ηr1))

2r1
+ ηr1

)
r1

eµB(t)− 1
2 (µ)2t, (4.72)

Ψ(x, t) =
w0

(
ηr2

1 +

√
r2

1

(
log

(
sinh

(
ηr1
2

))
+ log

(
cosh

(
ηr1
2

))))
r2

1

eµB(t)− 1
2 (µ)2t, (4.73)

where η = vx + cΓ(β+1)
α

tα.
Case 7: when r2

2 − 4r1r3 = 0:

Ψ(x, t) = −
2w0 log(η)
r2 log(A)

eµB(t)− 1
2 (µ)2t, (4.74)

where η = vx + cΓ(β+1)
α

tα.
Case 8: when r2 = δ, r1 = δm (m , 0), and r3 = 0:

Ψ(x, t) =
1
2
w0

−
(
δ −
√
δ2

)
η

δ
+ 2η +

(
δ −
√
δ2

)
Aδη

δ2m log(A)

 eµB(t)− 1
2 (µ)2t, (4.75)

where η = vx + cΓ(β+1)
α

tα.

5. Interpretation of fractional and noise effects on the soliton solutions

In this section, the effect of noise and fractional order on the obtained soliton solutions shows kink
and periodic behaviors through the following graphs by using the suitable values of the parameters of
the solutions. Figure 1 shows 3D, 2D, and contour plots in (a) with µ = 0 and in (b) with µ = 0.1 at
fixed values of t = 0, 1, 2 and a fractional order of α = 1 usually to compare different parameter effects
µ = 0, 0.1, and in (c) and (d) with a fractional order of α = 0.5 at fixed values of t = 0, 1, 2 usually to
compare different parameter effects µ = 0, 0.1 along other parameters σ = 2 with r1, r2, r3,w0, v, c, β =
1, 2, 0.9, 2,−1, 1, 1, x ∈ [-2,2], t ∈ [-1,1].
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(a)

(b)

(c)

(d)

Figure 1. Kink behavior in 3D, 2D, and contour plots in (a) with µ = 0, and in (b) with
µ = 0.1, and in (c) and (d) with a fractional order of α = 0.5 for the solution to Eq (4.44).

Figure 2 shows 3D, 2D, and contour plots in (a) with µ = 0 and in (b) with µ = 0.5 at fixed values of
t = 0, 1, 2 and a fractional order of α = 1 usually to compare different parameter effects µ = 0, 0.5, and
in (c) and (d) with a fractional order of α = 0.5 at fixed values of t = 0, 1, 2 usually to compare different

AIMS Mathematics Volume 10, Issue 12, 29765–29783.



29778

parameter effects µ = 0, 0.1 along other parameters σ = 2 with r1, r2, r3,w0, v, c, β = 1, 4, 0.9, 2, 1, 1, 1,
x ∈ [-5,5], t ∈ [-1,1].

(a)

(b)

(c)

(d)

Figure 2. Periodic behavior in 3D, 2D, and contour plots in (a) with µ = 0, and in (b) with
µ = 0.5, and in (c) and (d) with a fractional order of α = 0.5 for the solution to Eq (4.45).

Figure 3 shows 3D, 2D, and contour plots in (a) with µ = 0 and in (b) with µ = 0.1 at fixed values of
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t = 0, 1, 2 and a fractional order of α = 1 usually to compare different parameter effects µ = 0, 0.1, and
in (c) and (d) with a fractional order of α = 0.5 at fixed values of t = 0, 1, 2 usually to compare different
parameter effects µ = 0, 0.1 along other parameters σ = 2 with r1, r2, r3,w0, v, c, β = 1, 4, 0.9, 1, 1, 1, 1,
x ∈ [-8,8], t ∈ [-1,1].

(a)

(b)

(c)

(d)

Figure 3. Kink behavior in 3D, 2D, and contour plots in (a) with µ = 0, and in (b) with
µ = 0.1, and in (c) and (d) with a fractional order of α = 0.5 for the solution to Eq (4.49).
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6. Conclusions

In this work, we derived exact soliton solutions of the stochastic Poisson–Nernst–Planck system by
incorporating Brownian motion and M-truncated fractional derivatives using the modified extended
direct algebraic method. Our results reveal that stochastic noise and fractional-order effects
significantly alter electro-diffusion behavior, giving rise to richer transport structures such as kink-type
and periodic soliton patterns. These findings demonstrate the capability of the MEDAM to effectively
handle nonlinear stochastic systems involving fractional operators. Moreover, the study broadens the
analytical foundation for modeling stochastic electro-diffusion processes across biological, chemical,
and physical settings. The method is limited to problems that admit compatible algebraic structures,
and it may not efficiently capture highly irregular stochastic behaviors. Moreover, the method yields
exact solutions only for specific parameter regimes, which restricts its applicability to more complex
or strongly nonlinear stochastic systems. In the end, we graphically demonstrated the effect of noise
and the fractional order of derivation in 3D, 2D, and contour surfaces.
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Appendix

To justify the identity E
[
eµB(t)

]
= e

1
2µ

2t used in Eq (3.3), we note that for a standard Brownian
motion B(t), the marginal distribution at each fixed time t is Gaussian with mean 0 and variance t, i.e.,
B(t) ∼ N(0, t). The moment generating function of a normal random variable X ∼ N(m, σ2) is given
by

E[esX] = exp
(
sm + 1

2 s2σ2
)
.

By taking m = 0, σ2 = t, and s = µ, we immediately obtain

E
[
eµB(t)

]
= exp

(
1
2µ

2t
)
,

which is the formula used in our derivation. For completeness, we have included the explicit integral
derivation based on completing the square:

E
[
eµB(t)

]
=

1
√

2πt

∫ ∞

−∞

eµx e−x2/(2t) dx =
1
√

2πt

∫ ∞

−∞

exp
(
−

1
2t

(
x2 − 2µtx

))
dx.

Completing the square,
x2 − 2µtx = (x − µt)2 − µ2t2,

so
E
[
eµB(t)

]
= e

1
2µ

2t ·
1
√

2πt

∫ ∞

−∞

e−(x−µt)2/(2t) dx.

The remaining integral equals 1 because it is the density of a normal distribution with variance t.
Therefore,

E
[
eµB(t)

]
= e

1
2µ

2t.
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