Research article Special Issues

Analysis of existence and structure of solutions for Caputo and Grünwald–Letnikov fractional differential systems

  • Published: 17 December 2025
  • MSC : 26A33, 34A08, 34A30, 34K37

  • In this paper, we investigate the existence and structure of power-type solutions for Caputo fractional differential equation systems (CFDESs) and Grünwald–Letnikov fractional differential equation systems (GLFDESs). Building on the definitions of the Caputo fractional derivative (CFD) and the Grünwald–Letnikov fractional derivative (GLFD), we derive explicit expansion formulas for the fractional differential operators, construct joint coefficient-solution matrices for the considered systems, and, from these, obtain necessary and sufficient rank conditions for the existence of $ m $-th order power solutions. On this basis, we further (1) establish equivalent criteria that guarantee the uniqueness of the degree of power solutions and (2) derive rank-based conditions for the existence of two, and more generally $ p $, linearly independent power particular solutions with distinct degrees. Taken together, these results provide a unified matrix-based theoretical framework for analyzing the existence, uniqueness, and multiplicity of power-type solutions and the associated system structure of the two types of fractional differential systems. Two numerical examples are also provided to demonstrate the validity of the proposed results.

    Citation: Peng E, Weihong Zhou, Tingting Xu, Jie Cao, Yuxia Liu, Shangxi Li, Xueliang Zhou, Wei Zhou. Analysis of existence and structure of solutions for Caputo and Grünwald–Letnikov fractional differential systems[J]. AIMS Mathematics, 2025, 10(12): 29732-29764. doi: 10.3934/math.20251307

    Related Papers:

  • In this paper, we investigate the existence and structure of power-type solutions for Caputo fractional differential equation systems (CFDESs) and Grünwald–Letnikov fractional differential equation systems (GLFDESs). Building on the definitions of the Caputo fractional derivative (CFD) and the Grünwald–Letnikov fractional derivative (GLFD), we derive explicit expansion formulas for the fractional differential operators, construct joint coefficient-solution matrices for the considered systems, and, from these, obtain necessary and sufficient rank conditions for the existence of $ m $-th order power solutions. On this basis, we further (1) establish equivalent criteria that guarantee the uniqueness of the degree of power solutions and (2) derive rank-based conditions for the existence of two, and more generally $ p $, linearly independent power particular solutions with distinct degrees. Taken together, these results provide a unified matrix-based theoretical framework for analyzing the existence, uniqueness, and multiplicity of power-type solutions and the associated system structure of the two types of fractional differential systems. Two numerical examples are also provided to demonstrate the validity of the proposed results.



    加载中


    [1] R. Nuca, M. Parsani, On Taylor's formulas in fractional calculus: Overview and characterization for the Caputo derivative, Fract. Calc. Appl. Anal., 27 (2024), 2799–2821. https://doi.org/10.1007/s13540-024-00311-2 doi: 10.1007/s13540-024-00311-2
    [2] J. Calatayud, J., M. Jornet, M. C. M. A. Pinto, On partial Caputo fractional models, Comp. Appl. Math, 44 (2025), 241. https://doi.org/10.1007/s40314-025-03209-8 doi: 10.1007/s40314-025-03209-8
    [3] M. Murillo-Arcila, A. Peris, A. Vargas-Moreno, Dynamics of the Caputo fractional derivative, Fract. Calc. Appl. Anal., 28 (2025), 1717–1731. https://doi.org/10.1007/s13540-025-00430-4 doi: 10.1007/s13540-025-00430-4
    [4] M. D. Ortigueira, J. J. Trujillo, V. I. Martynyuk, F. J. V. Coito, A generalized power series and its application in the inversion of transfer functions, Signal Proc., 107 (2015), 238–245. https://doi.org/10.1016/j.sigpro.2014.04.018 doi: 10.1016/j.sigpro.2014.04.018
    [5] F. Omri, Stabilization of a class of $\Psi$-Caputo fractional homogeneous polynomial systems, Ukr. Math. J., 76 (2025), 1707–1717. https://doi.org/10.1007/s11253-025-02417-z doi: 10.1007/s11253-025-02417-z
    [6] N. Bendrici, A. Boutiara, M. Boumedien-Zidani, Existence theory for $\Psi$-Caputo fractional differential equations, J. Ukr. Math. J., 76 (2025), 1457–1471. https://doi.org/10.1007/s11253-025-02400-8 doi: 10.1007/s11253-025-02400-8
    [7] R. AlAhmad, A new approach to solve nonlinear Caputo–Fabrizo fractional differential equations, Tech. Fusion Bus. Soc., 233 (2025), 895–902. https://doi.org/10.1007/978-3-031-84628-1_76 doi: 10.1007/978-3-031-84628-1_76
    [8] L. Ma, Y. Chen, Analysis of Caputo–Katugampola fractional differential system, Eur. Phys. J. Plus, 139 (2024), 171. https://doi.org/10.1140/epjp/s13360-024-04949-y doi: 10.1140/epjp/s13360-024-04949-y
    [9] R. Larhrissi, M. Benoudi, Fractional enlarged controllability for a class of Caputo fractional time linear systems, Int. J. Dynam. Control, 13 (2025), 152. https://doi.org/10.1007/s40435-025-01654-1 doi: 10.1007/s40435-025-01654-1
    [10] S. Das, V. Tripathi, Optimal control of a class of Caputo fractional systems, J. Anal., 33 (2025), 387–408. https://doi.org/10.1007/s41478-024-00840-2 doi: 10.1007/s41478-024-00840-2
    [11] T. V. An, N. V. Hoa, N. T. Thao, Stabilization of impulsive fuzzy dynamic systems involving Caputo short-memory fractional derivative, Soft Comput., 29 (2025), 17–36. https://doi.org/10.1007/s00500-024-10353-6 doi: 10.1007/s00500-024-10353-6
    [12] G. Yang, W. Zhu, G. C. Wu, Data-driven system inference for Caputo discrete fractional chaotic systems, Nonlinear Dyn., 113 (2025), 26133–26144. https://doi.org/10.1007/s11071-025-11465-w doi: 10.1007/s11071-025-11465-w
    [13] H. Vu, On the Caputo fractional random boundary value problem, Afr. Mat., 34 (2023), 79. https://doi.org/10.1007/s13370-023-01121-0 doi: 10.1007/s13370-023-01121-0
    [14] U. D. Durdiev, A. A. Rahmonov, Inverse problem for a fourth-order differential equation with the fractional Caputo operator, Russ. Math., 68 (2024), 18–28. https://doi.org/10.3103/S1066369X24700567 doi: 10.3103/S1066369X24700567
    [15] R. Fan, N. Yan, C. Yang, Qualitative behaviour of a Caputo fractional differential system, Qual. Theor. Dyn. Syst., 22 (2023), 143. https://doi.org/10.1007/s12346-023-00836-6 doi: 10.1007/s12346-023-00836-6
    [16] H. D. Thai, H. T. Tuan, The oscillatory solutions of multi-order fractional differential equations, Fract. Calc. Appl. Anal., 28 (2025), 1282–1323. https://doi.org/10.1007/s13540-025-00403-7 doi: 10.1007/s13540-025-00403-7
    [17] T. D. Phung, D. T. Duc, V. K. Tuan, Multi-term fractional oscillation integro-differential equations, Fract. Calc. Appl. Anal., 25 (2022), 1713–1733. https://doi.org/10.1007/s13540-022-00074-8 doi: 10.1007/s13540-022-00074-8
    [18] K. Bouguetof, Z. Mezdoud, O. Kebiri, On the existence and uniqueness of the solution to multifractional stochastic delay differential equation, Fract. Calc. Appl. Anal., 27 (2024), 2284–2304. https://doi.org/10.1007/s13540-024-00314-z doi: 10.1007/s13540-024-00314-z
    [19] J. A. T. Machado, Numerical stability of Grünwald–Letnikov method for time fractional delay differential equations, Fract. Calc. Appl. Anal., 24 (2021), 1003–1014. https://doi.org/10.1515/fca-2021-0043 doi: 10.1515/fca-2021-0043
    [20] L. Li, D. Wang, Numerical stability of Grünwald–Letnikov method for time fractional delay differential equations, BIT Numer. Math., 62 (2022), 995–1027. https://doi.org/10.1007/s10543-021-00900-0 doi: 10.1007/s10543-021-00900-0
    [21] G. A. Zuffi, F. S. Lobato, A. A. Cavallini, Numerical solution and sensitivity analysis of time-space fractional near-field acoustic levitation model using Caputo and Grünwald–Letnikov derivatives, Soft Comput., 28 (2024), 8457–8470. https://doi.org/10.1007/s00500-024-09757-1 doi: 10.1007/s00500-024-09757-1
    [22] E. Pawluszewicz, Aspects of the finite step observability of fractional order discrete-time polynomial systems, In: Conference on Non-integer Order Calculus and its Applications, 559 (2019), 189–200. https://doi.org/10.1007/978-3-030-17344-9_14
    [23] G. Bengochea, M. D. Ortigueira, Fractional derivative of power type functions, Comp. Appl. Math., 41 (2022), 360. https://doi.org/10.1007/s40314-022-02081-0 doi: 10.1007/s40314-022-02081-0
    [24] R. Ashurov, O. Mukhiddinova, On systems of fractional nonlinear partial differential equations, Fract. Calc. Appl. Anal., 28 (2025), 2167–2197. https://doi.org/10.1007/s13540-025-00431-3 doi: 10.1007/s13540-025-00431-3
    [25] F. Al-Musalhi, Solving fractional differential equations with variable coefficients using transmutation relations, Comp. Appl. Math., 45 (2025), 26. https://doi.org/10.1007/s40314-025-03412-7 doi: 10.1007/s40314-025-03412-7
    [26] Y. Z. Hu, S. M. Li, Y. Luo, A study on the solution method of second-order polynomial coefficient linear differential equations, Univ. Math., 31 (2015), 1672–1454. https://doi.org/10.3969/j.issn.1672-1454.2015.03.006 doi: 10.3969/j.issn.1672-1454.2015.03.006
    [27] S. M. Li, Y. Jiang, Solution method for third-order polynomial coefficient homogeneous linear differential equations, Univ. Math., 399 (2023), 69–75. https://doi.org/10.3969/j.issn.1672-1454.2023.01.003 doi: 10.3969/j.issn.1672-1454.2023.01.003
    [28] P. E, T. T. Xu, L. H. Deng, Y. L. Shan, M. Wan, W. H. Zhou, Solutions of a class of higher order variable coefficient homogeneous differential equations, Netw. Heterog. Media, 20 (2025), 213–231. https://doi.org/10.3934/nhm.202501 doi: 10.3934/nhm.202501
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(452) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog