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1. Introduction

Fractional calculus extends the classical notions of differentiation and integration to non-integer
orders and has become an effective tool for describing systems with memory, hereditary effects, and
multi-scale dynamics. During the past decades, fractional-order models have been successfully applied
in viscoelasticity, anomalous diffusion and transport, control theory, signal and image processing,
mathematical biology, and finance, among many other fields. In these applications, fractional
derivatives provide a more flexible description of long-range temporal and spatial interactions than their
integer-order counterparts, and they often lead to models that fit experimental data more accurately.

Within this broad context, a large body of work has been devoted to the qualitative and quantitative
analysis of fractional differential equations. For Caputo-type systems, recent contributions include
the development of fractional Taylor formulas and power-series representations, refined existence and
uniqueness results, stability analysis, and applications to complex dynamical behaviors and control
problems. For example, Nuca et al. discuss fractional Taylor formulas in the Caputo setting, where the
coeflicients of the polynomial expansion are expressed in terms of fractional derivatives and Gamma-
function weights [1]. Calatayud et al. present fixed-point results, a Cauchy—Kovalevskaya theorem
for fractional power series, and Gronwall- and Nagumo-type uniqueness criteria; using Mikusinski
operational calculus, they obtain global power-series representations and closed-form solutions for
certain linear equations, together with refined bounds and stability properties [2]. Murillo-Arcila et
al. analyze the dynamical behavior of the Caputo complex fractional derivative and prove that the
associated operator is Devaney chaotic in the Mittag—Lefller Caputo space [3].

In the broader context of fractional calculus, several important fractional series, such as Mittag—
Leffler-type expansions and a-exponential series, have been developed. Ortigueira et al. introduce
a generalized power-series representation f(r) = >, an% and applied it to the inversion of
transfer functions in fractional-order signal processing [4]. This viewpoint further motivates our
focus on power-type solutions and suggests that the matrix-based framework developed in this paper
could, in future work, be extended to more general fractional series of this form. A number of
works highlight the modeling strength of Caputo and Caputo-type derivatives in concrete applications.
Omri et al. study stabilization for W-Caputo fractional homogeneous polynomial systems and design
stabilizing feedback laws via Lyapunov functions [5]. Bendrici et al. consider a nonlocal boundary-
value problem for nonlinear fractional differential equations driven by a W-Caputo operator and
establish existence and Ulam—Hyers stability using Monch’s fixed-point theorem and measures of
noncompactness [6]. AlAhmad develops an approach for solving nonlinear Caputo—Fabrizio fractional
differential equations by exploiting exactness properties and integrating factors [7]. Ma et al. propose
the m-p-Laplace transform and apply it to stability analysis of Caputo—Katugampola systems [8].
Larhrissi et al. introduce constrained fractional controllability for Caputo-type systems with Riemann—
Liouville output derivatives and characterise optimal controls that keep the fractional derivative of
the final state within prescribed bounds [9]. Das et al. formulate fractional optimal control problems
governed by Caputo systems in Hilbert spaces, derive a Pontryagin maximum principle and Hamilton—
Jacobi—Bellman equations, and show that the value function is a viscosity solution [10].

Further lines of research address stability, data-driven modeling, and boundary-value/inverse
problems for Caputo-type and related fractional systems. An et al. investigate the asymptotic stability
of impulsive fuzzy fractional dynamic systems described by Caputo derivatives in the short-memory
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sense, and they design linear feedback controllers based on Lyapunov’s direct method and direct
evaluation techniques involving Laplace transforms, Mittag—Lefller functions, and Gronwall-Bellman
inequalities [11]. Yang et al. study data-driven modeling of discrete fractional chaotic systems by
constructing a sparse identification framework, using iterative thresholding, and matrix perturbation
theory to jointly determine the structure of the sparse matrix, the vector field, and the fractional orders,
and to verify the approach on discrete fractional Lorenz and Chua systems [12]. Vu proves existence
and uniqueness of mean-square solutions for Caputo fractional random boundary-value problems
using fixed-point theorems, and introduces Ulam-Hyers and generalized Ulam-Hyers stability
concepts, supported by illustrative examples [13]. Durdiev et al. consider initial-boundary value
and inverse problems for a fourth-order equation with Caputo fractional derivatives; by expanding in
eigenfunctions, they obtain a Fourier-series representation of the direct problem, and then establish
existence and uniqueness for the inverse problems via integral-equation methods [14]. Fan et al.
analyze a new system of fractional differential equations with integral boundary conditions, involving
Caputo derivatives, integer-order derivatives, and Riemann integral boundary values; they obtain
existence and uniqueness results via fixed-point theorems for increasing ¢-(h, e)-concave operators and
construct iterative schemes for approximating the unique solution [15]. Thai and Tuan systematically
treat the asymptotic behavior of several classes of higher-order fractional differential equations
with multiple terms by using properties of Caputo fractional differentiable functions, comparison
principles, and spectral analysis based on integral representations of fundamental solutions [16]. Phung
et al. study solvability issues for multi-term Caputo and Riemann-Liouville fractional oscillatory
integro-differential equations [17]. Bouguetof et al. consider stochastic differential equations with
fractional integrals driven by Riemann-Liouville multifractional Brownian motion and standard
Brownian motion, derive approximate numerical solutions, and validate the results on a colon cancer
chemotherapy effect model [18].

Alongside Caputo-type derivatives, the Griinwald-Letnikov (GL) derivative and its variants
play a central role in discrete-time modeling and numerical approximation. Tenreiro Machado
proposes a conceptual experiment that couples a bouncing ball model with the GL formulation,
relating the restitution coeflicient to GL coefficients [19]. Li and Wang examine numerical
stability of time-fractional delay differential equations using GL approximations for the Caputo
derivative, analysing stability regions and Mittag—Lefller stability [20]. Zuffi et al. study a near-
field acoustic levitation system and investigate the influence of fractional orders on response profiles
by approximating temporal and spatial fractional derivatives via Caputo and GL formulas [21].
Pawluszewicz investigates observability of discrete-time polynomial control systems described by
GL h-type difference operators [22]. Gabriel et al. introduce non-square-integrable power-type
signals, define their fractional derivatives, and analyse almost periodic signals and stationary stochastic
processes together with associated correlations and generalized harmonic analysis [23]. Ashurov and
Mukhiddinova consider systems of fractional-order partial differential equations and prove existence
and uniqueness of classical solutions for initial-boundary value problems under suitable Lipschitz and
growth conditions [24]. Al-Musalhi employs transmutation relations to solve fractional equations with
variable coefficients involving general transmuted operators; by appropriate choices, a variety of known
fractional operators, including weighted, tempered, and Hadamard-type derivatives, can be reduced
to Caputo-type equations whose solutions are expressed via Riemann—Liouville integrals [25]. In
particular, Hadamard-type derivatives are naturally suited to scale-invariant (multiplicative) systems.
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These developments demonstrate both the modeling flexibility and the analytical richness of
fractional differential equations. At the same time, they raise structural questions about the solution
space of fractional systems with variable coefficients, especially those admitting polynomial or power-
type solutions, which can serve as local approximations, benchmark solutions, or building blocks for
spectral and Galerkin-type numerical schemes. In the integer-order setting, there has been sustained
interest in characterizing polynomial particular solutions of linear homogeneous differential equations
with variable polynomial coefficients via matrix-theoretic conditions.

More concretely, Hu and Li et al. [26] considered the second-order linear homogeneous differential
equation with quadratic polynomial coefficients

P(x)y"(x) + Q(x)y'(x) + R(x)y(x) = 0,
where
P(x) = apx* +ayx+ay, QX)) = anx* +anx +ay, RX)=anx® +azx+ axy,
and all g;; € R are fixed real constants. Assuming a polynomial particular solution of degree m € N,
Y(xX) = ApX™ + Ay X"+ Ayx + A,

with unknown real coefficients A, .. ., A,,, substitution into the equation leads to a homogeneous linear
algebraic system for the vector of coefficients (A,,...,A)". In this process, they constructed the
matrix T',,, a coefficient-related matrix tailored to the second-order equation structure, whose properties
directly support the verification of the aforementioned sufficient conditions and lay a matrix-theoretic
foundation for determining polynomial particular solutions of second-order systems:

may, + asp asn 0 - 0
(m?* —m)ay, + may; + ax
(m?* — m)a,; + mayy T,
T, = (m* — m)ay,
0

ax +as; axy
T, =|ay +az az|,
ano aso

where T,, is an (m + 2) X (m + 1) real matrix, and the equation T,,(A,,...,Ap)" = 0 encodes
the algebraic constraints on the coefficients of polynomial-type solutions. In particular, nontrivial
polynomial solutions exist precisely when the rank of T, satisfies suitable conditions.

Subsequently, building on the work of Hu et al. [26], Li and Jiang et al. [27] studied polynomial-
type solutions of third-order linear homogeneous differential equations with quadratic polynomial
coeflicients

P(x)y” (%) + Q(x)y" (x) + R(x)y'(x) + S (x)y(x) = 0,
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where
P(x) = apx>+ay x+a, O(x) = A X +ar x+ay, R(X) = apx>+azx+ay, S(x) = apx*+ayx+ds,
and a;; € R are real constants. For an mth-degree polynomial solution

y(x) = KpX™ + Ko X"+ -+ Ky x + K,

with unknown real coefficients Ky, ..., K, repeated differentiation of x* yields the falling-factorial
factors
AP i=mm—1)---(m—-p+1), peN, A =1,

Collecting the coefficients of like powers of x leads again to a homogeneous linear system for
(K, ...,Kp)", whose coefficient matrix is denoted by G,,. The row-column relationships of G,
characterize the coupling between the equation coefficients and the structure of its solutions, enabling
explicit derivation of polynomial particular solutions:

masy + dg aqn 0 - 0
Arznazz + masz; + ay
A?na]z + A?naz] + masg
Aday + Az ax G,
Alay ’
0

Go=f“y

a4o

where G,, is an (m + 2) X (m + 1) real matrix. As in the second-order case, the rank of G,, provides
necessary and sufficient conditions for the existence of nontrivial polynomial solutions of prescribed
degree.

It is worth noting that although fourth-order variable-coefficient homogeneous differential equations
are generally more complex than second- or third-order ones, they are unavoidable in certain
applications. E et al. [28] further studied the solutions of fourth-order and nth-order linear
homogeneous differential equations with polynomial coefficients and constructed a family of matrices
F,, for these higher-order systems. In their setting, the fourth-order equation

Py (x) + OQ(x)y" (x) + R(x)y” (x) + S (x)y'(x) + T(x)y(x) = 0

has polynomial coefficients of degree n, which can be written compactly as

P(x) kl,n kip-1 - k1,1 ki X!
O(x) kyp kopr -0 koy koo x!
R(x) | = ks k3p1r -+ kag ksol| ¢ |,
S(x) kap kap-r -0 kay kap X
T(x) ksp ksp-1 -0 ksi kspo)| 1
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where k;; e R (@ = 1,...,5, j = 0,...,n) are constant coefficients of the polynomials multiplying

y L,y Y, y,y, respectively. For a polynomial solution of degree m,

y(x) = KpX™ + Ko X"+ -+ Ky x + K,

substitution into the equation and collection of coefficients of x"*",...,x° again produce a

homogeneous linear system for (K, ..., Ky)'. The associated coefficient matrix is denoted by F,,, and
the falling factorials A}, appear from repeated differentiation of x* as before. By means of sufficient
conditions for the existence of solutions to such equations, they established a direct connection between
the rank of F,, and the existence of polynomial particular solutions—specifically, the rank of F,,
reflects the linear independence of coeflicient constraints in higher-order equations, which in turn
determines whether polynomial particular solutions can exist:

mk4,n + k5,n_1 k5’n 0 - 0]
Aik?y,n + mky 1 + ks
Alkyy + Al ks o1 + mka s + ks 3
Apkiy + A ko1 + A ks o + mka s + ks g F,
Apkipot + A koo + Ab ks ps + mky s + ks s

A;‘nkl,4 + Azlkzg + A3nk3,2 + mk4,1 + k5’0

F, = ,
" Aikl’:; + Azsz,Z + A%lkg,l + mk4,0
Afnkl’g + A’3nk2,1 + Aik&o
Affnkl,l + AikZ,O
Atk
0
0
k4,n + kS,n kS,n
kapo1 +ksp1 ks,
F, = : o
kg + ks ks,
kao kso
where F,, is an (m + n) X (m + 1) real matrix assembling the coeflicients of the linear system for
(K, - .., Ko)". Appropriate rank conditions on F,, are then equivalent to the existence of higher-order

polynomial particular solutions.

The above works show that for integer-order systems, and to some extent for Riemann—Liouville
fractional systems, matrix-based rank conditions provide a powerful and concise way to characterize
the existence and structure of polynomial solutions. However, for linear CFDESs and GLFDESs
with variable polynomial coefficients, the relationship between the rank of appropriately constructed
coeflicient matrices and the existence, uniqueness, and multiplicity of power solutions has not been
systematically investigated. In modeling practice, Caputo and GL derivatives play a central role:
Caputo-type operators are widely used in the formulation of fractional initial-value problems, while
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GL derivatives offer a natural link to finite-difference schemes and discrete-time implementations.
Consequently, it is natural to develop a unified framework that treats both operators in parallel, so
that the structural properties of power-type solutions can be analysed consistently in continuous-
time modelling and in discrete-time or numerical implementations. Moreover, both operators are
closely related to the Riemann-Liouville derivative, which allows us to derive explicit algebraic
representations of the operator terms used in this paper. Although many other fractional operators—
such as W-Caputo, tempered, and Hadamard-type derivatives—have been proposed and shown to be
effective in specific applications [6-8, 25], their kernels typically lead to non-polynomial or more
intricate nonlocal structures (in particular, Hadamard-type derivatives are especially suited to scale-
invariant systems), which fall outside the matrix-based framework considered here.

Although fractional-order homogeneous differential equations with variable coefficients are
generally more complex than their integer-order counterparts, they offer greater universality and
flexibility for modelling memory and hereditary effects. In this paper, we focus on Caputo fractional
differential equation systems (CFDESs) and Griinwald-Letnikov fractional differential equation
systems (GLFDESs) with variable polynomial coefficients, and we study the existence and structure
of their power-type solutions by combining fractional calculus with matrix theory. We derive explicit
expansion formulas for each operator term, construct coefficient matrices that encode both the system
coeflicients and the unknown coefficients of power solutions, and establish necessary and sufficient
rank conditions for the existence of mth-order power solutions. We also obtain equivalent conditions
for the uniqueness of the order of such solutions and for the existence of arbitrarily many linearly
independent power solutions of distinct orders. These results provide a unified framework for analysing
power-type solutions of Caputo and Griinwald-Letnikov systems with variable polynomial coefficients
and extend the matrix-based structural theory of polynomial solutions from integer-order equations to
two of the most widely used fractional derivatives in applications.

Compared with the above studies, which mainly address existence, stability, controllability, or
data-driven identification for specific Caputo- or GL-type models, the present work emphasises the
structural relation between power-type solutions and the rank of coefficient matrices in variable-
coefficient fractional systems. In the integer-order setting, Hu et al., Li et al., and E et al. established
matrix-based criteria for polynomial particular solutions of second-, third-, and higher-order equations
with polynomial coeflicients by analysing the rank of the associated matrices T,, G,,, and F,, [26—28].
Building on this line of research, we extend the matrix—solution correspondence to Caputo and
Griinwald—Letnikov fractional systems. Under suitable low-rank or sparse assumptions on the
coeflicient matrices, we show that the existence, uniqueness of the degree, and multiplicity of power
solutions can be completely characterised by explicit rank conditions, thereby generalising the integer-
order results to a broad class of fractional systems with nonlocal kernels.

We also clarify the scope of the present work. The results obtained here are derived at the
level of differential operators and power-type solutions and do not rely on any specific choice or
interpretation of initial conditions. In particular, our rank conditions characterise when a given Caputo
or Griinwald—Letnikov system admits power-type solutions, independently of how initial data are
prescribed. There is an extensive discussion in the fractional-calculus literature about the physical
meaning and correctness of certain initial conditions associated with Caputo-type operators; a detailed
study of how our structural criteria interact with these issues for concrete initial-value problems is
beyond the scope of this paper and will be addressed in future work.
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The rest of this paper is organised as follows. Section 2 deals with CFDESs, recalling the
relevant fractional operators, deriving the expansion formulas, and establishing the corresponding
matrix constructions and rank conditions. Section 3 develops the analogous framework for GLFDESs.
Section 4 presents numerical validations and discusses the implications, limitations, and possible
extensions of the results.

2. Existence of solutions to Caputo fractional differential systems (CFDESs)

To analyze the existence of solutions for CFDESs, we briefly recall the classical Riemann—Liouville
fractional integral and derivative and the Caputo fractional derivative, which will be used throughout
the paper. These standard definitions are included here only to fix notation; more detailed discussions
can be found in the monographs and survey articles on fractional calculus and in the references cited
in Section 1.

Definition 1. For a function f(t) and a positive real number p > 0, the Riemann-Liouville fractional
integral of order p from the lower limit a to t is defined as:

RLDP £(1) = %p) f (t - f(d,

where I'(+) denotes the Gamma function.

Definition 2. For a function f(t) and a real number p satisfying n — 1 < p < n (where n € N*), the
Riemann-Liouville fractional derivative of order p from a to t is given by:

(" f@

RLDp = —— _J 7
a Dif® Tn—pydr ), (t—oprin""

Definition 3. For a function f(t) and a real number @ withn — 1 < a@ < n (n € N* ), the Caputo
fractional derivative of order a from O to t is defined as:

ARG

C na _
oD f0) = I'nh-a)J, (t—1)0 7! B

Definitions 1-3 coincide with the usual Riemann-Liouville fractional integral/derivative and the
Caputo fractional derivative in the fractional calculus literature; they are recalled here for completeness
and do not constitute new results.

We consider a class of linear CFDESs with specific structures, focusing on the existence of power-
form solutions. The system is formulated as follows:

A,D%y+ A, 1Dy +---+ A D%y + AgD%y = 0,
A=TX, (1-1)
y=K,x"+ Ky X" '+ -+ Kix

where: oy = a+kfork=0,1,--- ,n(a > 0and a ¢ N* ), where the coeflicients of the differential
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equation are

A, [ty tier o0t hp | X°
Ay hsy Ihs1 0 Iy ho |[x7!
Al tn,s tn,s—l e tn,l tn,O
Ag Tortys Dnets—1 0 Distn Giwio] \ 1
y denotes the power-form solution to be determined, with K, K, 1, ---,K; as undetermined

coefficients, and 0 < s < n < m.
Here we use the shorthand notation

A = (AnaAn—b--',Al’AO)T’ T = (ti,j)lﬁiﬁn+l, OSJ'SS’ X = (XS9XS_19---’X5 I)Ta

where each A; = Ai(x) is a polynomial in x of degree at most s, 7 is an (n + 1) X (s + 1) real
coeflicient matrix, and X collects the monomials in x. Thus, the compact relation A = TX is equivalent,
componentwise, to

Ak(x):ZtkH,jxj’ k=0,1,...,n,
7=0

that is, each coefficient A;(x) of the differential operator in (1-1) is a polynomial in x with coeflicients
given by the entries of 7. The unknown function is sought in the power form

Y(x) = KpX™ + Ky X"

+ -+ Kjx,
where the constant matrices K; are to be determined.

In this paper we focus on systems whose derivative orders are of the form a + k (k = 0, 1,...,n),
rather than allowing a completely arbitrary sequence {a,}. This choice is motivated by two reasons.
First, when the orders increase by integers, the action of the Caputo and Griinwald-Letnikov operators
on power functions x**/ again produces powers with integer shifts and simple gamma factors, which
lead to explicit and tractable matrix representations of the operator terms. Second, the equidistant
structure @ + k allows a direct extension of existing matrix-based results for integer-order systems
and Riemann—Liouville fractional systems to the Caputo and Griinwald—Letnikov setting. Treating
the fully general case of non-equidistant orders {a;} would require more involved bookkeeping of the
exponents and gamma factors, and is therefore left for future work.

To establish the existence conditions for power solutions of system 1-1, we derive the following
core theorems, focusing on the relationship between the rank of coefficient matrices and the existence
of solutions.

Lemma 1. Let A be an n X m matrix, and let X be an m-dimensional column vector. There then exists
a non-zero solution X* # 0 to the system of homogeneous linear equations AX = 0, and the sufficient
and necessary condition that its first component is not zero is:

rank(A) = rank(A),
where A is the submatrix of A minus the first column.
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Proof. Sufficiency: If rank(A) = rank(A), there exists a non-trivial solution X* # 0.
Since rank(A) is the maximum number of linearly independent columns in A.
Given that
rank(A) = rank(A),

the first column a; of A can be linearly represented by the columns of A. Otherwise, rank(A) =
rank(A) + 1.
Leta; = cra; + czaz + - -+ + ¢,,a,, then:

(=Da; +crar + -+ + cpa,, = 0.
Let X* =(=1cyc3 -+ ¢,)', substituting into AX:
AX* =(-Da; +ca, + -+ + cpa, = 0.

Obviously, X* is a solution to AX = 0, and the first component x] = —1 # 0, so X* is a non-trivial
solution.
Necessity: If there exists a non trivial solution X* with x] # 0, then rank(A) = rank(A).

Let X* = (x] xj --- x: )T be a non trivial solution to AX = 0 with xj # 0, then:

AX" =xja; + Xar + -+ + x4, = 0.

Since x7 # 0, we have:
1

5« *
x2 X
ap=——ay — -+ — —AQay.
1 = 42  Am
X

X
That is, the first column a; of A can be linearly represented by the last m — 1 columns, so the
maximum number of linearly independent columns in A is the same as that in A.
Hence,
rank(A) = rank(A).

This completes the proof.
Proof completed (PC).
O

Theorem 1. Fora > 0andn—1 < a <n(n € N* ), the Riemann-Liouville fractional derivative of a
function f(x) can be expressed in terms of its Caputo fractional derivative as:

_ a)k—a

-—a+1)

n—1
DL = DLW+ Y e Y
k=0

Remark 1. This relation is classical in fractional calculus. Therefore, we recall it here without proof.

Theorem 2. In the CFDESs, the general term formula of the operator term Ay, gDZk is:

o TG+1) -
A, ED%y = Kitye1—t i etk =0,1,---,n).
kali Y l_:zk:‘l; ARG L= (@ + k) ( ")
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Proof. For the power function f(x) = x”, according to the definition of the CFD:

L'(p+D)  p-a
X p>a-—1
SDkap — {F([J+l—a) ?

0, p<oz—1.

Giveny = K,,x" + K,,_1x" ' + --- + K, x, apply OD"" (ax = @ + k) to each term K;x' of y:
Wheni > a +k, OCD;"k(Kixi) =K;- %x’ %,
Wheni < a+k, SDI(Kix') =0

Thus, the CFD of y can be expressed as:

I'G+1 ,
Z K;- G+ 1 — X"
I'G+1-—ay)

i=a+k

Combine 0 < s < n < m to screen out non zero differential terms, and multiply A; = Zj:o Trvl, jxf

by ¢D;"y:
TG+1) .
Zt"“fx] [Z K ririan” ]

i=a+k

I'G+1) i
§ E tivy i Ki» ——————— | X/
[ el TG+1- ak)]x

A, §DMy

Jj=0 i=a+k
o rG+1) i
- Z ZK"l”+“k’fr(i+ 1 - (a+k))X+] o,
i=k+1 j=0

This proves the general term formula.
PC.
]

Theorem 3. The necessary and sufficient condition for the existence of an m-th order power solution
in the CFDESs (1-1) is:
twsrs =0, rank(C,) = rank(C,,),

where C,, is an (m + s) X (m — n + 1) matrix, with the specific form as follows:
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C(m+1)

| Zj’slt”

Z/ S— 2t(n D+s— J/F(r11+l —(a+j—s+2))

s T(m+1)
Z j=0 ln—s+1)yts—jj [(m+1-(a+j))

ZS . N T(m+1)
j=0 ts+1=J i Tm+1-(a+j+n—s))

- I'(m+1)
S=LJ T(m+1-(a+ j+n—s+1))

-1
Yot

0 T(n+1)
2j=0 M-j.i Toms @)

0

0
T(n+1)

Zj s— Zt(” D+s— JJT(+1- —(a+j—s+2))

C(n+1)
Z, 0 lin—s+1)+s- ]]F(n+(1 (a)+]))

ZJ 0 lin—s+1)+s— JJT(n+1=(a+1))

s T(+1)
2 j=0 Is+1-j.i For T @s )

Z I'(n+1)

Jj= OtS JJF(n+1 —(a+j+n—s+1))

0 I'(n+1)
Zj:O ts—j,j I'(n+1-(a+n))

[ Z]slt’l

Zj =2 Ln=1)+s- FIT(s+1=(a+j—s+2))

I'(s+1)

I(s+1)
Z, ot(n s+1)+s- um# (;4+]))

Z/ ()t(n SS= I T(s+1-(a+j+1))

0 T'(s+1)
2j=0 Ln-s+ D) T3

+1—(a+s))
r s ')
Z] s—1 Ints- JJF(Z (a/+1L—Y+1))

r'2
Z] ()t(n s+1)+s— JJF(Z ((H]))
2

Z, 0 ln-s)+5—j.i Ta=(@ jx1))

T'(m) )
+5= ) J T(m+1— (a(+] ]3)+1)) In+1,s T(m—a) 0 - 0

T(n) 7
Z, 1 Ints— I T(+1—(a+ —leSl)) t”“vsf(n—a) 0 - 0
+

+5=JJ T(s+1- (a(+, 13)+1)) t”*']’sl“(s—a)

Zj s=2 Lin-1)+s- JJF(Z (@+j—5+2)

I'(s) 1

Cs—l
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Proof. See Appendix A.

Theorem 4. When t, ; # 0, the following conditions are equivalent:

1. The order of the power solution of the CFDESs (1-1) is unique;
2. m= —l’”tl—"‘" + a € [n,+00) N Z, and rank(C,,) = m — n, where C,, is the submatrix obtained by
removing the first row of C,,.

Note: When m = n =0, Ky = 0 or the system is equivalent to Ay = 0.
Proof. See Appendix B.

Theorem 5. When t,_, ; # 0, the following conditions are equivalent:

1. The CFDESs (1-1) has two distinct-order power special solutions;
2. Lnls = lns = Invls-1 = 0, and
c(x) = Zj':s—Z Fn=1)+5—}, J#:]j)—sm) has two distinct positive roots my, my (my, # my),
while satisfying rank(C,,,) = rank(C,,_,) and rank(C,,,) = rank(C,,,_1), where C,, is an (m + s) X

(m —n+ 1) matrix.

Proof. Let m; < m, without loss of generality. From Theorems 3 and 4, the prerequisites for the
CFDESs (1-1) to have two distinct-order power special solutions are:

L. thi1s =ty = thr15-1 = 0, otherwise, two power solutions of different orders cannot exist;

2. Rank(C,,,) = rank(C,,,_;), rank(C,,,) = rank(C,,,_1).

Hence, .11 = 0. Substitute #,,1 = t,; = t,+15-1 = 0 into the matrix rank condition and simplify
to get:

Obviously, for C,, = (¢;j), we have ¢;; =0, ¢;;y =0fori =n,n+1,...,m, and

rank(C,,, ;) = rank(C,,,), rank(C,,,_;) = rank(C,,,).

Then from rank(C,,,) = rank(C,, ), rank(C,,,) = rank(C,,,), we get:

rank(C,,,) = rank(C,, 1),

rank(C,,,) = rank(C,,-1),

I'(m; + 1) I'(m; + 1) I'(m; + 1)
n2s 1 <~ thias1— < thsor <
I'mi—1-a) I'(m; — ) I'mi+1-a)
That is, c(m) = 0 and c(m,) = 0. Since c(x) is a quadratic function, m, and m, are two distinct positive

roots of ¢(x), which proves that condition 1 is equivalent to condition 2.
PC.

=0 (G=12).

Corollary 1. When t,,_ ; # 0, the following conditions are equivalent:

1. The CFDESs (1-1) has two linearly independent special solutions;
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2. ivlys = Ins = Ing1 521 = 0,
c(x) = Zj'=s—2 fin—1)+s— j,.,ﬁfj)_sﬂ» has two distinct positive roots my,m, (m; # my);
rank(C,,,) = rank(C,,-1) and rank(C,,,) = rank(C,,,_,), where C,, is an (m + s) X (m —n + 1)

matrix.
Theorem 6. When t,,_,., s # 0, the following conditions are equivalent:

1. The CFDESs (1-1) has p distinct-order power special solutions;
2. Ln—p+lyes—jiz = 0 (z = max{s — p,0}),

tn+l,s = tn,s = Ipt1,5-1 = 0’ tn+s—j,j = 0, (] =5—- 1’ S)

fn-tys-jj = 0,(j=s5—-2,5—1,5)

ln-p2yes—jj =0 =s=p+ 1, ,9)
— 22 I'(x+1)
Cp(x) — Zj:z] t(n—p)+s—j,zlm
2 =min{s +n—p, s},
and rank(C,,,_p+1) = rank(C,,), (i = 1--- p),
where C,, is an (m + s) X (im — n + 1) matrix.

has p positive roots my,m; - - - m,, where z; = max{s—p, 0},

Proof. Letm; <myp < --- <m,,

Tpis—jj = 0, (] =s—1, S)
t(n—1)+s—j,j = 09 (.] =5- 2’ s — 1a S)

t(n—p+2)+s—j,j:O (j:S—p+l,...,S).

For C,, = (r;j), we have ¢, ; = 0, that is

tn—p+)+s—jz = 0, 2z =max{s — p,0}.

Obviously, for C,, = (r;;), we have ¢;; = 0, ¢;jy =0fori=n,n+1,...,m.
And

rank(Cy,—ps1) = rank(C,,.), (i =1---p),

from which we get:
rank(C,,) = rank(C,,), (i=1---p),

it T(m; + 1) 0
= =PRI (4 ] = (a + j—s+p)
i’ C(m; + 1) 0
- PSRk L —(@+ - s+ p)
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where z; = max{s — p,0}, 2 = min{s + n — p, s},

) i ) T(x+1)

c,(x) = )5 ,

P - CPSTRTG +  — (@ + j— s+ p))

my,my--- ,m, are exactly the p distinct positive roots of c¢,(x)., which satisfy the differential equation
when substituted. This proves that condition 1 is equivalent to condition 2.

PC.

Corollary 2. When t,_,,1 s # 0, the following conditions are equivalent:

1. The CFDESs (1-1) has p linearly independent special solutions;
2. n—p+ly+s—jiz = 0 (z = max{s — p,0}),

Livlys = tns = Intl,5-1 = 0, Tpis—jj = 0, (] =s5s—-1,9)

t(n—1)+s—j,j = Oa (.] =5- 2’ s = la S)

t(n—p+2)+s—j,j = O(] =s—p+ 1,---, s)

_ 22 I'(x+1)
Cp(X) = XLy, tompyts-jias Tt arjs7p)

Z, = min{s +n — p, s},
and rank(C,,_p+1) = rank(C,,), (i = 1--- p),
where C,, is an (m + s) X (m — n + 1) matrix.

has p positive roots my,m; - - - m,, where z; = max{s—p, 0},

3. Solutions under the Griinwald-Letnikov fractional derivative (GLFD)

The limit definition of the integer-order derivative reads

1 © n
(n) 1 _1\n—k _
S = }llgg o ;:0( 1) (k)f(t kh),

where (Z) denotes the binomial coefficient and % is the step size.

Definition 4. Let f be a real-valued function defined on (—oco,b), and let « > 0. The left-sided
Griinwald-Letnikov fractional derivative of order a at a point x € (—o0, b) is defined by

GL a e ] N K&
SLD F(x) = lim - ;<—1> ( k)f(x ~ Ih)

whenever the limit exists. In this paper we are mainly interested in the behavior of such derivatives
near x = 0; restricting the sum to those terms with x — kh in the domain of f is understood, where(‘,f) =

a(a—=1)-(a—k+1) a\ _
ekl g (0) <
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Consider the following GLFDESs, and explore the existence of its power solutions:

B,Dy+ B,_ D'y +---+ BiD"y+ ByD*y =0, o=a+k(k=0,1,---,n)
B=TX 2-1)
y=Tux" + Ty X" '+ + Tix+ T

where ¢y = a+kfork =0,1,--- ,n(a > 0and @ ¢ N* ), where the coeflicients of the differential
equation are:

B, [ 11 Hs1 0 Ny to | x°
B, Iy hs1 - I ho ||x!
B] Z‘n,s tn,s—l e tn,l tn,O X
BO ,tn+1,s tn+1,s—1 e tn+1,1 Z‘n+1,0_ 1
y denotes the power-form solution to be determined, with 7,,,7,,1,---,Ty as undetermined

coefficients and 0 < s < n < m.
For the Griinwald-Letnikov fractional differential system (2-1), we use the analogous shorthand
notation

B = (Bn, Bn—l,--'9Bl9BO)T’ T = (ti,j)ISiSI’Hl, 0<j<s» X = (-xS, xS—l’” ey Xy l)T,

where each B, = Bi(x) is a polynomial in x of degree at most s, 7" is an (n + 1) X (s + 1) real
coeflicient matrix, and X collects the monomials in x. Thus, the compact relation B = TX is equivalent,
componentwise, to

B =ty k=0,1,...m,
Jj=0

that is, each coefficient Bi(x) of the Griinwald—Letnikov fractional differential operator in (2-1) is a
polynomial in x with coeflicients given by the entries of 7. As in the Caputo case, the unknown
function is sought in the power form

Y(x) = KpX™ + Ko X"+ -+ K x,

where the constant matrices K; are to be determined.

Theorem 7. For any positive integer m and fractional order «, we have:
Z(—l)k(Z)k’” = (=1"a(@— 1) (@ —m +1).
=0

Proof. Prove by mathematical induction: Assume the formula holds when n = m, i.e.:
Z(—l)k(‘Z)km = (=1"a(@— 1) (@ —m + 1).
=0
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When n = m + 1: Consider the (m + 1)-th order finite difference A™"! £(0) of function f(k) = k™.
According to the properties of finite differences, it is related to the generalized binomial coefficients.
Using the Stirling number expansion of power functions:

= Z S (n, DKL,
i=0

where ki = k(k—1)--- (k—i+1) is the "falling factorial”. Substitute it into the left-hand side summation:

S 1)( ) —i(—l)k(‘,’j)ism,az&.
k=0 i=0

k=0

Exchange the order of summation, and use the product property of generalized binomial coefficients
and falling factorials ( )k’ = (" ’)oz—

i
1 K'= > S t 1 .
Z( )( ) Z (nz)aZ( )( l.)
Let j = k — i (then (”I_’) = 0 when j < 0), and simplify the inner summation:
Z<—1>"(Z } f) = (1) Z(—l)f(“ - ’) = (=D -1
k=0 —! =0 J
Wheni < a, (1-1)%" = 0; only wheni = n,a” = a(a@—1)--- (@—n+1) and S (n,n) = 1. Therefore:
Z(—l)k(“)k" = (-D'a(@=1)---(@-n+1).
=0 k
This proves the lemma.

Theorem 8. In the GLFDESs, the operator term admits the following general formula:

Iré+1 -
GLDky‘ZZTtn Je D e = 0,1, ),

1k
fara e Y+ 1 - (@ + k)

where a; = a + k. Assume m > —1 and m > ay — 1. Here I'(-) denotes the Gamma function.

Proof. We first consider the GLFD of a power function.
Definition of the GLFD:

§-Dyf(x) = lim — Z( 1 ( ) F(x — kh).
Substitute f(x) = x™:
h—0* h?

SLDox” = lim iZ( 1)( )(x—kh)m.
k=0
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Apply the binomial theorem and exchange the order of summation:

(x = khy" = (’:)xm—"(—kh)",

n=0

GLa_-mm_n—nn—aw_ka/n
¢ wa_/}ir&;(n)( 1" b ;( 1 (k)k

Coeflicient identity:
@ n n I'a+1)
,;:0(_1) (k)k” =(-D'a(e-1)---(@a=n+1)=(-1) —( " )

Tim+ 1)

U
sing (1) = o DR 1)
W% — oo, one obtains via analytic continuation the closed form for the GLFD of a power:

and noting that as & — 0*: If n > @, then /"% — 0; if n < @, then

GL pyo o _ I'(m+1) .
I'm+1-a

m-a

Linearity and substitution of the target function: Lety = >, Tix', @, = @ + k, then

TG+ 1) -
GL na i—(a+k)
Dty = E T; X .
0 X i 1—(
i=k+1 i+1 ( k))

Multiply by the polynomial operator By: Let By = 3%t 414, x/, then

TG+1) > rG+1) -

GL @ l ((Y+k) i+j—(a+k)
D ky Tnvl—k, x Ii————x Titpii- k, X .
Z i ':/m T+ 1—(a+k) ;1,21 1= (@ + k)

Replacing the lower limit O by a general a only changes the subscript of the GL operator, yielding the
stated formula under m > —1 and m > o — 1.

PC.

Theorem 9. The necessary and sufficient condition for the existence of an m-th order power solution
in the GLFDESs (2-1) is:

Ihy1,s = 0, rank(ém) = rank(Gm),
where G, is an (m + s) X (m — n + 1) matrix, with the specific form as follows:
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I'(m+1)

s T'(m)
Z] sS— ltn+s j]WC—]]A)—H)) tn O

+LsTn—a)

Z/ s— 2t(n D+s— J/F(r11+l —(a+j—s+2))

s C(m+1)
2 j=0 ln—s+1)+s-j.j L(m+1—(a+j))

ZS . N T(m+1)
j=0 ts+1=J i Tm+1-(a+j+n—s))

T(m+1)
22j=0 s T T (as fon=svT)

0 Tn+1)
2j=0 M-j.i Toms @)

0

0
T(n+1)

I'(n)
T s "
+

+1.5 T(n-a)
Zj s— Zt(” D+s—JjT(n+1- —(a+j—s+2))

[(n+1)
Z, 0 lin—s+1)+s- ]]F(n+(1 (u;—]))

ZJ 0 lin—s+1)+s— JJT(n+1=(a+1))

s I(n+1)
Z j= _0 Ls+1- j/'r(n+% (a;r)]m 5))

Z P n+
j=0"s— JJF(n+1 —(a+j+n—s+1))

0 T(n+1)
2j=0 ts— i Fonr =Gy
T(s+1) I'(s) 7
Zj s— 1tn+s jJF(s+1 (a?—] 1y)+1)) t”+1a5F(s—a)
Zj 5=2 Lin=Ty+s— I T(s+1=(a+ j—s+2))
G. = I(s+1) G, |
s Rl D)

Z, ot(n s+1)+s— Jll"(s-(i—l ()a+]))

p 0 Hnmsyrs— ij

0 I(s+1)
2 =0 Lin=s+1)-jj T(s+1—(a+s))

s re
Z] s— 1tn+s LITQ2= (‘H'IL_H'I))

Z] s— Zt(" D+s— ]JF(Z (a+j—s+2))

G] =
'

Z] 0 lin—s+1)+s- JJr(z (a+1))
'

Z, 0 ln-s)+5-}.i Ta=(@ jx1y)
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Proof. The argument is completely analogous to that of Theorem 3 for the Caputo case: One replaces
the Caputo derivatives with the Griinwald-Letnikov ones and uses the corresponding expansion
formulas. We therefore omit the details. O

Theorem 10. When 1, ; # 0O, the following conditions are equivalent:

1. The order of the power solution of the GLFDES (2-1) is unique;
bilsl | o € [n, +00) N Z, and rank(G,,) = m — n, where G,, is the submatrix obtained by
removing the first row of Gy.

2.m=—

Note: Whenm = n =0, Ty = 0 or the system is equivalent to By = 0.

Proof. The argument is completely analogous to that of Theorem 4 for the Caputo case: One replaces
the Caputo derivatives with the Griinwald—Letnikov ones and uses the corresponding expansion
formulas. We therefore omit the details.

O

Theorem 11. When t,_, ; # 0, the following conditions are equivalent:

1. The GLFDESs (2-1) has two distinct-order power special solutions;
2. Livls = Ins = Inr1,5-1 = 0,

g(x) = Z, 52 Hn=1)+5— ”#ﬁ)vﬂ» has two distinct positive roots my,m, (m; # my),
while satisfying rank(G,,,) = rank(G,,,-,) and rank(G,,,) = rank(G,-,), where G, is an (m + s) X

(m —n+ 1) matrix.

Proof. The argument is completely analogous to that of Theorem 5 for the Caputo case: One replaces
the Caputo derivatives with the Griinwald-Letnikov ones and uses the corresponding expansion
formulas. We therefore omit the details.

O

Corollary 3. When t,_; ; # 0, the following conditions are equivalent:

1. The GLFDESs (2-1) has two linearly independent special solutions;
2. ivtys = Ins = In1 521 = 0,

[(x+1 _ ..
glx) = Zj s=2 Ln=1)+5-j, /W:])H—Z)) has two distinct positive roots my,m, (m; # my);

rank(G,,) = rank(G,-,) and rank(G,,,) = rank(G,,,—1), where G,, is an (m + s) X (m —n + 1)
matrix.

Theorem 12. When t,_,., ; # O, the following conditions are equivalent:

1. The GLFDESs (2-1) has p distinct-order power special solutions,
2. t-psyrs—jz = 0 (z = max{s — p,0}),

tn+l,s = tn,s =Ipt1,5-1 = 0’ tn+s—j,j = 0, (] =5— 1’ S)
Ln-1)+s—jj = 0,(j=s-2,5-1,5)

ln-p2yes—jj = 0 =s=p+ 1, ,9)
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, T(x+1 ..
gp(x) = Zj?:m Hn—p)+s—jiz —r(x+1—8z:j)—s+p)) has p positive roots my,my - - - m,,, where z; = max{s—p, 0},

Z, = min{s +n — p, s}
and rank(G,,—+1) = rank(G,,), (i =1+-- p),
where G, is an (m + 5) X (m — n + 1) matrix.

Proof. The argument is completely analogous to that of Theorem 6 for the Caputo case: One replaces
the Caputo derivatives with the Griinwald-Letnikov ones and uses the corresponding expansion
formulas. We therefore omit the details.

O

Corollary 4. When t,_,,1 s # 0, the following conditions are equivalent:

1. The GLFDESs (2-1) has p linearly independent special solutions;
2. tp—priyrs—jz = 0 (z = max{s — p,0}),

Iiy1s = tn,s = ln+1,5-1 = 0, tn+s—j,j = O’ (] =5—- 1, S)

tn-tyrs—jj = 0,(j=5—-2,5-1,5)
fnp+2y4s—j = 0(j=s—p+1,---,5)

_ V22 . I'(x+1)
gp(x) = j=z Ln-py+s—ja TGt 1—(a+j—s+p))

Zp = min{s +n — p, s}
and rank(G,—p+1) = rank(G,,), (i =1--- p),
where G, is an (m + s) X (m — n + 1) matrix.

has p positive roots my,my - - - m,, where z; = max{s—p, 0},

4. Numerical validation

In this section we present two numerical examples that illustrate the theoretical results for CFDESs
and GLFDESs. In both cases we choose systems that admit explicit power-type solutions and verify,
on a finite grid, that the operator terms cancel out so that the residual L[y](x) remains numerically
negligible.

4.1. Example 1

To substantiate the theoretical results, we consider the Caputo operator system. From the rank
conditions, the system admits two linearly independent polynomial solutions yy, y,. For each candidate
vi(x), we evaluate the corresponding Caputo operator terms and verify that the resulting expression
indeed satisfies the governing differential system, thereby confirming the validity of the derived rank
solution correspondence.

We first consider a three-term Caputo fractional differential equation :

355 D% y(x) — 20 x DY y(x) + 4 x> S D y(x) = 0. (4-1)
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For monomials x” with p > u — 1, the Caputo derivative admits the known closed form
I'p+1
(()? D’; xP = (p ) XPH.
Fp+1-p
Using (4-2) with p = 3,4 and u € {0.5, 1.5, 2.5}, a direct substitution shows that

LIx’](x) =355D%x* —20x D x* + 4 x* D>’ x° = 0,

(4-2)

and
LIx*(x) =355D% x* —20xSDx* + 4 > SD>°x* = 0.

Hence any linear combination of x* and x* is an exact solution of (4-1). In particular, we obtain two
linearly independent polynomial solutions

yi(x) = x° +2x*, ya(x) = 3x° — x*. (4-3)

To complement the theoretical result, we perform a numerical validation on (0, 100] by evaluating,
for each y;(x), the three operator terms

356D%i(x),  —20xG D yi(x), 42D y(x),
and plotting their sum
LIyil(x) = 35 DY yi(x) = 20 x5 D, yi(x) + 4 x* § DY yi(x)

as the residual curve, together with y;(x) for scale reference. The residuals remain numerically close
to zero on (0, 100], which illustrates the term-by-term cancellation predicted by the theory and verifies
that the polynomials in (4-3) indeed solve the Caputo system (4-1).

4.2. Example 2

We next consider the Griinwald—Letnikov (GL) counterpart of the above system, using the
same coeflicients and the same polynomial solutions, but replacing the Caputo derivatives with GL
derivatives:

355 DYy (x) — 20 x § DL y(x) + 4 x* § D3 y(x) = 0. (4-4)
For monomials x” and u € {0.5, 1.5, 2.5}, the GL derivative admits the same closed-form expression as
in the Caputo case:
I'p+1) -
SEDHXP = ——— P p>u—1. (4-5)
‘ T(p+1-p
In particular, we again have
yi(x) = x* +2x4, ya(x) = 3x° — x* (4-6)

as two linearly independent polynomial solutions of the GL system (4-4).
The numerical validation is performed in the same manner as for the Caputo system: For each y;(x)
in (4-6), we evaluate the three GL operator terms

355D yi(x), —20x$EDyi(x), 4 x*§EDYyi(x),

plot their sum L[y;](x) as the residual, and overlay y;(x) for scale reference. The residual curves remain
close to zero on (0, 100], confirming the exact cancellation among the GL terms and numerically
verifying that the polynomials (4-5) are indeed solutions of the system (4-4).
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4.3. Comparison between the Caputo and GL numerical validations

By construction, the Caputo system (4-1) and the GL system (4-4) share the same polynomial
operator coefficients and the same power-type solutions. In the present examples, both the Caputo and
GL derivatives acting on monomials are evaluated via the closed-form Gamma-function formulas (4-2)
and (4-5), rather than by discrete finite-difference approximations. As a consequence, the per-
term responses and residual curves in Figures 1 and 2 exhibit the same cancellation pattern and are
numerically almost indistinguishable. This agreement provides a concrete illustration of the structural
parallelism between the Caputo and GL based formulations.

Y, system terms, residual, and y )

1P y, system terms, residual, and y . 10° |
A 35CD0.5y
ol ——20m0D1'5;y
e = 422C D25y
O Tt I | | -Residual
0.5F 1 - -
> B 35C D05y | > y(z)
——20x¢ D'y N R e R SRR
L5r 4a2°p2sy | N | | T T
2 |- -Residual
- S 5t
250 | y(x) | | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
x x

Figure 1. Per-term responses, residual, and solution overlays for the Caputo system (4-1).
For each candidate y;(x) in (4-3), the three colored curves represent the operator terms
355 D%7yi(x), —20x DY yi(x), and 4x* {D%%y;(x). The pink dashed curve is the residual
L[y;](x), and the black dashed curve is y;(x).

¢ Y, system terms, residual, and Y,

y. system terms, residual, and y
x10° 71 1 %10 ‘ |
‘ T T T GL 105
o 3554 D%y
ol ——20:BGLD1'51
0.5
_________ 4$2GLD2'5y
0 s -Residual
0.5+ 4
> 35GLD0.5y > --y(z)
AT ——20$GLD1'5 |
L b Q= e s s e emaSs S oo T
15 422CL D25y, --
2t .
- -Residual
25+ St
- y(@) | | | |
0 20 40 60 80 100 0 20 40 60 30 100
T T

Figure 2. Per-term responses, residual, and solution overlays for the Griinwald-Letnikov
system (4-4). For each candidate y;(x) in (4-6), the three colored curves represent the operator
terms 35 {ED%7y;(x), —20x§ D} y,(x), and 4x* §*D*y,(x). The pink dashed curve is the
residual L[y;](x), and the black dashed curve is y;(x).
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5. Discussion and conclusions

In this work, we utilize the lemmas regarding the necessary and sufficient conditions for the
existence of solutions to differential equations and the properties of fractional differential equations,
along with matrix theory, to characterize the coupling relationship between variable coeflicients and
fractional derivatives. We investigate the connection between the existence of power solutions (of
dimension m) and n-dimensional fractional differential equation systems with variable coefficients
based on CFD and GLFD. Compared with previous studies, this work is the first to extend conclusions
to CFDESs and GLFDESs, and expands the number of linearly independent solutions that can be
determined to an arbitrary count. The main results are as follows:

1. The general term formula for the operator term of the CFDESs (1-1) is derived:

m

Z Z IGi+1) i
A CD(xk — Kitn iy i+ ((z+k)’ k = 0, 1’ <o n).
fa i=k+1 j=0 " k”l"(i +1-(a+ k))x ( "

2. The relationship between the general term formulas of the operator terms for the CFDESs and the
Riemann-Liouville fractional differential systems is proven:

n—1
(x —a)k@
SEDf(x) = SDYf() + ) ————
; I'k—a+1)

A0}

3. The necessary and sufficient conditions for the existence of an m-degree power solution in the
CFDESs (1-1) are proven:

thr1s =0, rank (C‘m) =rank (C,,).

4. The necessary and sufficient conditions for the CFDESs (1-1) to have only one power solution
and two distinct-degree power solutions are proven.

5. The necessary and sufficient conditions for the CFDESs (1-1) to have any p distinct-degree power
solutions are proven: When #,_,., # 0,

ln-p+yts—jz = 0 (z=max{s - p, oD,

Inil,s = Ins = Inv15-1 = 0, bprs—jj = 0 (] =s—1,9),

tn-1)45-jj =0 (J=s5-2,5-1,9),

ln-psyrs—jj =0 (G=s=—p+1,--,9),
the function .
: [(x+1)
h,(x) = Lonepyrs—i :
»() ; PRIk L= (a+ j— 5+ p))
has p positive roots m;, my, - - - ,m,, and

rank (Cm,._pﬂ) =rank (C,,) (i=1,---,p),

where C,, is an (m + s5) X (m — n + 1) matrix.
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6. The general term formula for the operator term of the GLFDESs (2-1) is derived:

I'G+1 :
GLDk y= Z Z Tl (l ) xl+j—((l+k)’ (k = O, 1’ e ’n)'

n+1-k,j
S = I'G+1-(a+k)

7. The necessary and sufficient conditions for the existence of an m-degree power solution in the
GLFDESs (2-1) are proven:

ti+1s =0, rank (Gm) =rank (G,,),

where G,, is an (m + s) X (m — n + 1) matrix.

8. The necessary and sufficient conditions for the GLFDESs (2-1) to have only one power solution
and two distinct-degree power solutions are proven.

9. The necessary and sufficient conditions for the GLFDESs (2-1) to have any p distinct-degree
power solutions are proven: When 7,_,, ; # 0,

ln-p+yts—jz = 0 (z=max{s - p, oD,

Tnvlys = Ins = Invls-1 = 0, Lnys—jj = 0 (J =s—1,9),

tn-tys-jj =0 (J=s5s-2,5-1,9),

ln-psyrs—jj =0 (J=s—p+1,---,9),
the function .
: T(x+1)
h,(x) = fn-p)+s—
r() ; PP+ L= (@ + j— s+ p))
has p positive roots m;, my, - - - ,m,, and

rank (Gm,-—p+l) = rank (Gm,) (l =1, P),

where G,, is an (m + s) X (m — n + 1) matrix.
10. The differences and connections in the existence of solutions between the Riemann—Liouville
fractional differential system and the CFDESs/GLFDESs are compared.

These results not only expand the category of solvable differential equation systems but also
establish a connection between the rank of coefficient matrices and the existence of solutions under
different fractional differential definitions. Compared with previous studies on Riemann-Liouville
fractional differential systems, this paper builds a bridge between matrix theory and fractional calculus
under the frameworks of Caputo and Griinwald-Letnikov fractional differential equation systems. It
provides a new way of thinking for investigating the existence of solutions to fractional differential
equation systems and offers a systematic and unified analytical framework for the study of fractional
differential equation systems.

From an applied viewpoint, the Caputo and Griinwald—Letnikov fractional systems studied in this
paper cover, after suitable linearization or separation of variables, a variety of linear subsystems arising
in viscoelasticity, anomalous diffusion, electric circuits, and discrete-time control. In such settings,
power-type solutions describe the leading-order temporal or spatial profiles of the system response and
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can be used as local approximations, benchmark solutions for validating numerical schemes, or basic
modes in spectral and Galerkin-type methods. The rank conditions obtained in this paper therefore
provide simple algebraic criteria to decide whether a given fractional model admits such modes, which
is useful for model design, stability analysis, and parameter identification in real-world applications.

From the viewpoint of novelty, the main contributions of this paper can be summarized as follows.
First, we extend the matrix-based characterization of polynomial solutions, which was previously
available mainly for integer-order fractional systems [26-28], to Caputo and Griinwald—Letnikov
fractional differential systems with variable polynomial coefficients. Second, by explicitly constructing
the coefficient matrices C,,, Cy, Cy for CFDESs and G,,, G, G, for GLFDESs, we derive necessary
and sufficient rank conditions not only for the existence of an m-th order power solution, but also
for the uniqueness of its order and for the existence of two or arbitrary p distinct-degree power
solutions. Third, we treat Caputo and Griinwald—Letnikov systems in a unified framework and compare
the corresponding rank conditions and solution structures, thereby clarifying the similarities and
differences between these two widely used fractional derivatives. To the best of our knowledge, such
a systematic structural analysis for Caputo/GL fractional differential systems with variable coefficients
has not been reported in the existing literature. Fourth, to complement the theoretical developments,
Section 4 presents two numerical validation examples—one for a Caputo system and one for the
corresponding Griinwald—Letnikov system—and shows that the per-term responses and residual curves
obtained from the Gamma-function-based formulas exhibit the expected cancellation patterns and
are numerically almost indistinguishable, thereby confirming the operator expansions and power-type
solutions derived in the paper.

Despite these advances, the present analysis has several limitations. It is restricted to linear
fractional differential systems with a specific algebraic structure and to power-type solutions.
Nonlinear extensions, nonhomogeneous forcing terms, and other classes of solutions (such as general
series, periodic, or fractal-type solutions) are not treated, which limits the range of systems to which
the current results directly apply. Moreover, the rank conditions are obtained under low-rank or
sparse assumptions on the coefficient matrices; whether similar explicit criteria can be established
for higher-rank or dense matrices remains an open question. Even with the basic numerical validations
in Section 4, the paper still primarily provides a structural and theoretical framework: We do not yet
undertake systematic numerical simulations, benchmark case studies, or sensitivity and uncertainty
analyses. In particular, for more complicated systems, the numerical computation of power solutions,
the influence of parameter variations, and the impact of noise and model uncertainties on the solvability
conditions remain to be explored, leaving a gap between the present theory and comprehensive real-
world applications.

Although the Caputo and Griinwald—Letnikov derivatives are closely related through their common
Riemann-Liouville foundation, our analysis shows that the resulting coefficient matrices involve
different Gamma factors and discretization structures. From a modeling perspective, Caputo-
based systems are more directly connected with classical initial-value formulations, while GL-based
systems are better suited for finite-difference and discrete-time realizations. A systematic numerical
comparison of the two frameworks—in which the same polynomial-coefficient system is treated
under both derivatives, and the corresponding power-type solutions and numerical approximations
are contrasted—would further clarify these differences. Designing and implementing such numerical
experiments, beyond the basic validation examples of Section 4, is an important direction for future
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work. Several directions for future research arise from these observations. First, we plan to investigate
the existence and uniqueness of power, generalized series, and numerical solutions for Caputo/GL
fractional differential systems with nonlinear terms and nonhomogeneous right-hand sides, thereby
formulating and analyzing more general models beyond the current linear setting. Inspired by
generalized power-series representations of fractional systems, it is natural to extend our analysis from
pure power solutions of the form x*** to finite or infinite series

[Se]

anpx
J@ £ T(ay + 1)

with suitably chosen exponents «,; such an extension could reduce the number of Gamma
factors appearing in computations and reveal richer families of particular solutions. Developing a
corresponding matrix-based rank theory for these generalized series is an interesting topic for future
work. Second, we will study fractional differential systems whose coefficient matrices have more
general structures and derive flexible rank-type conditions—possibly using tools from matrix analysis,
probability, and perturbation theory—to assess the existence and multiplicity of solutions in higher-
rank and dense cases. Third, we aim to design efficient numerical algorithms to compute power and
other special solutions, to perform parameter-sensitivity and uncertainty analyses, and to validate the
theoretical criteria through simulations in representative application scenarios.

In addition, we will apply the theoretical conclusions to specific practical problems: For example,
using the Caputo fractional differential system to analyze the stress—strain relationship of viscoelastic
materials, and using the GL fractional differential system for anomaly detection in signal processing
and image processing, to verify the effectiveness of the theoretical conclusions in practice. We will
consider uncertainty factors in practical problems, introduce methods such as robust control, stochastic
analysis, and fuzzy mathematics, and study the stability and robustness of solutions to fractional
differential systems in uncertain environments. Combining the needs of practical applications, we will
study the application of fractional differential systems in emerging fields—such as using fractional
differential systems to construct memory units for deep learning models, analyzing fractional dynamic
behaviors in quantum systems, and establishing fractional prediction models for financial market
fluctuations—to promote the interdisciplinary development of fractional calculus theory.

We emphasize that the results in this paper are derived at the level of differential operators and
power-type solutions, and do not rely on any specific choice or interpretation of initial conditions.
In particular, our rank conditions characterize when a given Caputo or Griinwald-Letnikov system
admits power-type solutions, independently of how initial data are prescribed. There is an extensive
discussion in the fractional-calculus literature about the physical meaning and correctness of certain
initial conditions associated with Caputo-type operators. A careful study of how our structural criteria
interact with these issues for concrete initial-value problems is beyond the scope of this work and will
be considered in future research.
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Appendix A: Proof of Theorem 3

Substitute y = K,,x" + K,,_;x"! + - -+ + K;x into the CFDESs (1-1), and expand to get:

A,D%y + A, D" 'y + -+ A\ D"y + AyDy

K,
Ky
F(m + 1) m+s—a m+s—(a+1) +s—(a+2) l-a —«a ".1
= mtn+l,smx +(X x" XX )Cm :
K>
K

where C,, is an (m + §) X m matrix.

_ Cm+1) T'(m) 1
Z, s—1 tn+s I/r(m+1 (a(+j 1s)+1)) t'“'l’sl"(m—a) 0 e 0

Z] s— 2t(n D+s— JJF(m+1 —(a+j—s+2))

s T'(m+1)
Zj:O t(n—s+1)+5—/,jm

s T(n+1)
20j=0 L1, T —(ar =)

T(m+1)
ZJ:O L5 )i TonvI—(a+ jHn—s+1))

0 T(m+1)
Z j=0 li-jj T(m+1—(a+n))

C(n+1) L(n) ]

j= 1tn+* —JJT(+1- (a+ —s+1)) t"”»"r(n—a) 0 0

S

Z] 5=z Ln=1)+s- JJF(n+1 (a+] 5+2))

s T(n+1)

Zj 0 lin—s+1)+s- JJT(n+1- (a+}))

Z p F(n+1)
j=0 =5+ D+5=j.J T(n+1-(a+1))

Cn = . ’

s I'(n+1)
Zj =0 ls+1- —JJ Tn+1- ((yil—)]+n s))

Z t n+
Jj=0*s— J/F(n+1 —(a+j+n—s+1))

0 T'(n+1)
Zj:O ts—j,j I'(n+1—-(a+n))
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r T'(s+1) I'(s) 7
Z] s—1 Ints— JJT(s+1— (a-(l—J 1s)+1)) t’“'l’sl"(s—a)

2] s— 2t(” D+s— J]F(s+1 —(a+j-s5+2))

3 s I(s+1)
Cs = Z] Ot(n s+1)+s- jjl"(s+1 (a+j))

l‘ I(s+D)
J =0 lin-s)+s- JIT(s+1=(a+j+1))

CS—l

T'(s+1)
Z] 0 ln=s+1)=j.i TG 1=(at)

5 ()
ZJ s=1 Ins— JiT@2- ((HIL_HU)

Zj s=2 Lin-1)+s5- JJF(Z (@+j—5+2)

r'(2)
Z] 0 lin—s+1)+s- ur(z ((z+]))
')

21 0 Ln=s)+5- i T (@ j7 1)

It follows from the lemma that, for the equation to hold, the following conditions must be satisfied:

1. The highest-order term coefficient #,,,; s = O;

2. The matrix equation (x’"”‘(““) x‘“) Cn = 0 has a solution, which is equivalent to

K,
the rank of the augmented matrix C,, being equal to the rank of the coefficient matrix C,,, i.e
rank(C,,) = rank(C,,).

In conclusion, the system (1-1) has an m-th order power solution if and only if #,,;;, = 0 and
rank(C,,) = rank(C,,).
PC.
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Appendix B: Proof of Theorem 4

From Theorem 3, the necessary and sufficient condition for the CFDESs (1-1) to have an m-th order
power solution is t,,1; = 0 and rank(C,,) = rank(C,,), where C,, is an (m + s) X m matrix:

- s T'(m+1) I'(m) ]
Djes—t ot Famri-@rjry sty 0 0 0
s D(m+1)
> t i T (o i)
j=s=2 H=D+5= i T(m+1—(a+j—5+2))
s C(m+1)
2z =0 Ln=s+1)+s-j.j C(m+1—(a+)))
s T(m+1)
2 j=0 Ls+1-jj T(n+1—(a+j+n—s))
Cm = . C
. m—1
Z s—1 fo o I'(m+1)
J=0 "S=JLJ T(m+1—(a+ j+n—s+1))
0 [(m+1)
2z j=0 l-jj T(m+1—(a+n))
0
| 0

Analyzing rank(C,,) = rank(C,,), we get:

N

Z’ - C(m+1) 0o
THNEm+ 1 —(a+ j-s+ 1)

Jj=s—-1

Substitute 7, ; # 0 and simplify:

I'm+1) I'm+1) Tntl,s-1
s this- 1 —F— < = m = +
“T'(m— @) T Im+1-a) fns

I'(m+1) I'(m+1)
nsmr Tl
I'(m-a) I'm+1-a
=t Lm+ DIm+1-a)+ t,41 - I(m+ DI(m—a) =0,

=0, Tm-a)#0,Im+1—-a)#0,I'(m+1) #0)

=St lm+1—-—a)+t - (m—a) =0,

tn+1,s—1

=>m = — +a €[n,+00)NZ.

n,s

It is also required that m € [n,+c0) N Z. In addition, the diagonal elements of C,, must satisfy

Sheot Invse Ty # 0 (€ [n,m — 110 Z), otherwise rank(C,,) # rank(C,).

At this point, the rank of C_m is m — n, which proves that condition 1 is equivalent to condition 2.
PC.
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