Research article Special Issues

On the "good" Lie brackets related to a polynomial system

  • Published: 17 December 2025
  • MSC : 93B05, 93C10, 93C15

  • Small-time local controllability (STLC) at a point $ x_0 $ is a fundamental property of control systems, and is intimately connected to the local structure of their reachable sets. This study built upon the notion of a tangent vector field to the reachable set of a control system, a concept introduced by Hermes in [7], based on an idea of Krener (cf. [18]). The importance of this concept stemed from the fact that the set $ E^+(x_0) $, consisting of all tangent vector fields to the reachable set at $ x_0 $, formed a convex cone. If the zero vector lay in the interior of this cone, the system is STLC at $ x_0 $. A long-standing open question concerns the precise characterization of the set $ E^+(x_0) $. In this paper, we studied the Lie algebra generated by the drift term—a vector field homogeneous of degree two—and the constant vector fields of a polynomial control system. By applying the classical Campbell–Baker–Hausdorff formula from Lie group theory, along with symmetries inherent to the control system, we derived new elements of the set $ E^+(x_0) $. Our results showed that certain "bad" Lie brackets (in the sense of Sussmann) do not obstruct the STLC property. As a corollary, we provided a sufficient condition for STLC.

    Citation: Mikhail Ivanov Krastanov, Margarita Nikolaeva Nikolova. On the 'good' Lie brackets related to a polynomial system[J]. AIMS Mathematics, 2025, 10(12): 29703-29731. doi: 10.3934/math.20251306

    Related Papers:

  • Small-time local controllability (STLC) at a point $ x_0 $ is a fundamental property of control systems, and is intimately connected to the local structure of their reachable sets. This study built upon the notion of a tangent vector field to the reachable set of a control system, a concept introduced by Hermes in [7], based on an idea of Krener (cf. [18]). The importance of this concept stemed from the fact that the set $ E^+(x_0) $, consisting of all tangent vector fields to the reachable set at $ x_0 $, formed a convex cone. If the zero vector lay in the interior of this cone, the system is STLC at $ x_0 $. A long-standing open question concerns the precise characterization of the set $ E^+(x_0) $. In this paper, we studied the Lie algebra generated by the drift term—a vector field homogeneous of degree two—and the constant vector fields of a polynomial control system. By applying the classical Campbell–Baker–Hausdorff formula from Lie group theory, along with symmetries inherent to the control system, we derived new elements of the set $ E^+(x_0) $. Our results showed that certain "bad" Lie brackets (in the sense of Sussmann) do not obstruct the STLC property. As a corollary, we provided a sufficient condition for STLC.



    加载中


    [1] A. A. Agračev, R. V. Gamkrelidze, The exponential representation of flows and the chronological calculus, Math. USSR Sb., 107 (1978), 467–532. https://doi.org/10.1070/SM1979v035n06ABEH001623 doi: 10.1070/SM1979v035n06ABEH001623
    [2] C. Aguilar, Local controllability of control-affine systems with quadractic drift and constant control-input vector fields, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), 2012, 1877–1882. https://doi.org/10.1109/CDC.2012.6425807
    [3] A. Bacciotti, G. Stefani, On the relationship between global and local controllability, Math. Syst. Theory 16 (1983), 79–91. https://doi.org/10.1007/BF01744571
    [4] P. Brunovský, Local controllability of odd systems, Math. Control Theory, 1 (1976), 39–45. https://doi.org/10.4064/-1-1-39-45 doi: 10.4064/-1-1-39-45
    [5] F. H. Clarke, P. R. Wolenski, Control of systems to sets and their interiors, J. Optim. Theory Appl., 88 (1996), 3–23. https://doi.org/10.1007/BF02192020 doi: 10.1007/BF02192020
    [6] M. Costantini, P. Soravia, On the optimal second order decrease rate for nonlinear and symmetric control systems, AIMS Math., 9 (2024), 28232–28255. https://doi.org/10.3934/math.20241369 doi: 10.3934/math.20241369
    [7] H. Hermes, Lie algebras of vector fields and local approximation of attainable sets, SIAM J. Control Optim., 16 (1978), 715–727. https://doi.org/10.1137/0316047 doi: 10.1137/0316047
    [8] V. Jurdjevic, I. Kupka, Polynomial control systems, Math. Ann., 272 (1985), 361–368. https://doi.org/10.1007/BF01455564
    [9] M. Kawski, A necessary condition for local controllability, Contemp. Math., 68 (1987), 143–155.
    [10] M. Krastanov, High-order control variations and small-time local controllability, Serdica J. Comput., 4 (2010), 85–92. https://doi.org/10.55630/sjc.2010.4.85-92 doi: 10.55630/sjc.2010.4.85-92
    [11] M. I. Krastanov, A necessary condition for small time local controllability, J. Dyn. Control Syst., 4 (1998), 425–456. https://doi.org/10.1023/A:1022840601009 doi: 10.1023/A:1022840601009
    [12] M. Krastanov, A sufficient condition for small-time local controllability, SIAM J. Control Optim., 48 (2009), 2296–2322. https://doi.org/10.1137/070707117 doi: 10.1137/070707117
    [13] M. I. Krastanov, M. N. Nikolova, A necessary condition for small-time local controllability, Automatica, 124 (2021), 109258. https://doi.org/10.1016/j.automatica.2020.109258 doi: 10.1016/j.automatica.2020.109258
    [14] M. I. Krastanov, M. N. Nikolova, A sufficient condition for small-time local controllability of a polynomial control system, C. R. Acad. Bulg. Sci., 73 (2020), 1638–1649. https://doi.org/10.7546/CRABS.2020.12.02 doi: 10.7546/CRABS.2020.12.02
    [15] M. I. Krastanov, M. N. Nikolova, On the small-time local controllability, Syst. Control Lett., 177 (2023), 105535. https://doi.org/10.1016/j.sysconle.2023.105535 doi: 10.1016/j.sysconle.2023.105535
    [16] M. Krastanov, M. Quincampoix, Local small time controllability and attainability of a set for nonlinear control system, ESAIM: COCV, 6 (2001), 499–516. https://doi.org/10.1051/cocv:2001120 doi: 10.1051/cocv:2001120
    [17] M. Krastanov, V. Veliov, On the controllability of switching linear systems, Automatica, 41 (2005), 663–668. https://doi.org/10.1016/j.automatica.2004.10.017 doi: 10.1016/j.automatica.2004.10.017
    [18] A. J. Krener, The high order maximal principle and its applications to singular extremals, SIAM J. Control Optim., 15 (1977), 256–293. https://doi.org/10.1137/0315019 doi: 10.1137/0315019
    [19] H. Kunita, On the controllability of nonlinear systems with applications to polynomial systems, Appl. Math. Optim., 5 (1979), 89–99. https://doi.org/10.1007/BF01442547 doi: 10.1007/BF01442547
    [20] A. Marigonda, Second order conditions for the controllability of nonlinear systems with drift, Commun. Pure Appl. Anal., 5 (2006), 861–885. https://doi.org/10.3934/cpaa.2006.5.861 doi: 10.3934/cpaa.2006.5.861
    [21] Q. Meng, H. Yang, B. Jiang, Small-time local controllability of switched nonlinear systems, IEEE Trans. Autom. Control, 66 (2021), 5422–5428. https://doi.org/10.1109/TAC.2020.3044898 doi: 10.1109/TAC.2020.3044898
    [22] J. Niu, S. Xiang, Small-time local controllability of a KdV system for all critical lengths, arXiv, 2025. https://doi.org/10.48550/arXiv.2501.13640
    [23] P. Soravia, Hölder continuity of the minimum-time function for $C^1$-manifold targets, J. Optim. Theory Appl., 75 (1992), 401–421. https://doi.org/10.1007/BF00941476 doi: 10.1007/BF00941476
    [24] P. Soravia, A Hamiltonian approach to small time local attainability of manifolds for nonlinear control systems, Appl. Math. Optim., 88 (2023), 1. https://doi.org/10.1007/s00245-023-09973-5 doi: 10.1007/s00245-023-09973-5
    [25] G. Stefani, On the minimum time map, Ann. Mat. Pura Appl., 127 (1981), 383–394. https://doi.org/10.1007/BF01811731
    [26] G. Stefani, On the local controllability of a scalar-input control system, In: C. Birnes, A. Lindquist, Theory and applications of nonlinear control systems, North-Holland, Amsterdam, 1986,167–179.
    [27] H. J. Sussmann, A sufficient condition for local controllability, SIAM J. Control Optim., 16 (1978), 790–802. https://doi.org/10.1137/0316054 doi: 10.1137/0316054
    [28] H. J. Sussmann, Lie brackets and local controllability: a sufficient condition for scalar-input systems, SIAM J. Control Optim., 21 (1983), 686–713. https://doi.org/10.1137/0321042 doi: 10.1137/0321042
    [29] H. J. Sussmann, A general theorem on local controllability, SIAM J. Control Optim., 25 (1987), 158–193. https://doi.org/10.1137/0325011 doi: 10.1137/0325011
    [30] V. M. Veliov, M. I. Krastanov, Controllability of piecewise linear systems, Syst. Control Lett., 7 (1986), 335–341. https://doi.org/10.1016/0167-6911(86)90050-2 doi: 10.1016/0167-6911(86)90050-2
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(318) PDF downloads(38) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog