Research article Special Issues

Padmakar-Ivan index of power graphs with applications in silicon structures

  • Published: 17 December 2025
  • MSC : 05C09, 05C35, 05C92

  • In this study, we focus on the Padmakar-Ivan (PI) index, a molecular descriptor that quantifies the structural characteristics of chemical networks on the basis of their vertex distances. The main objective of this work is to develop efficient approaches for computing the PI index, particularly for graph powers and complex network structures. We begin by formulating an algorithm for computing the PI index of general graphs and extend it to the $ k^{\text{th}} $ power of a graph using a distance-based framework. Furthermore, we introduce a novel clique cut method that establishes a theoretical foundation for analyzing and computing the PI index in intricate silicate and silicon-based frameworks. The proposed techniques significantly simplify and generalize existing computational procedures.

    Citation: Manju S. C, Sakander Hayat, K. Somasundaram, Rashad Ismail. Padmakar-Ivan index of power graphs with applications in silicon structures[J]. AIMS Mathematics, 2025, 10(12): 29686-29702. doi: 10.3934/math.20251305

    Related Papers:

  • In this study, we focus on the Padmakar-Ivan (PI) index, a molecular descriptor that quantifies the structural characteristics of chemical networks on the basis of their vertex distances. The main objective of this work is to develop efficient approaches for computing the PI index, particularly for graph powers and complex network structures. We begin by formulating an algorithm for computing the PI index of general graphs and extend it to the $ k^{\text{th}} $ power of a graph using a distance-based framework. Furthermore, we introduce a novel clique cut method that establishes a theoretical foundation for analyzing and computing the PI index in intricate silicate and silicon-based frameworks. The proposed techniques significantly simplify and generalize existing computational procedures.



    加载中


    [1] N. Trinajstić, Chemical graph theory, 2 Eds., Boca Raton: CRC Press, 1992. https://doi.org/10.1201/9781315139111
    [2] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005
    [3] P. V. Khadikar, On a novel structural descriptor PI, Natl. Acad. Sci. Lett., 23 (2000), 113–118.
    [4] P. V. Khadikar, S. Karmarkar, V. K. Agrawal, A novel PI index and its applications to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci., 41 (2001), 934–949. https://doi.org/10.1021/ci0003092 doi: 10.1021/ci0003092
    [5] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math., 156 (2008), 1780–1789. https://doi.org/10.1016/j.dam.2007.08.041 doi: 10.1016/j.dam.2007.08.041
    [6] A. Ilić, N. Milosavljević, The weighted vertex PI index, Math. Comput. Model., 57 (2013), 623–631. https://doi.org/10.1016/j.mcm.2012.08.001 doi: 10.1016/j.mcm.2012.08.001
    [7] A. R. Ashrafi, M. Ghorbani, M. Jalali, The vertex PI and Szeged indices of an infinite family of fullerenes, J. Theor. Comput. Chem., 7 (2008), 221–231. https://doi.org/10.1142/S0219633608003757 doi: 10.1142/S0219633608003757
    [8] P. E. John, P. V. Khadikar, J. Singh, A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts, J. Math. Chem., 42 (2007), 37–45. https://doi.org/10.1007/s10910-006-9100-2 doi: 10.1007/s10910-006-9100-2
    [9] M. J. Nadjafi-Arani, G. H. Fath-Tabar, A. R. Ashrafi, Extremal graphs with respect to the vertex PI index, Appl. Math. Lett., 22 (2009), 1838–1840. https://doi.org/10.1016/j.aml.2009.07.005 doi: 10.1016/j.aml.2009.07.005
    [10] C. Gopika, J. Geetha, K. Somasundaram, Weighted PI index of tensor product and strong product of graphs, Discrete Math. Algorithms Appl., 13 (2021), 2150019. https://doi.org/10.1142/S1793830921500191 doi: 10.1142/S1793830921500191
    [11] S. C. Manju, J. Geetha, K. Somasundaram, PI and weighted PI indices for powers of paths, cycles, and their complements, J. Intel. Fuzzy Syst. Appl. Eng. Tech., 44 (2022), 1439–1452. https://doi.org/10.3233/JIFS-221436 doi: 10.3233/JIFS-221436
    [12] S. C. Manju, K. Somasundaram, PI index of bicyclic graphs, Commun. Comb. Optim., 9 (2024), 425–436. https://doi.org/10.22049/cco.2023.27817.1360 doi: 10.22049/cco.2023.27817.1360
    [13] M. S. Chithrabhanu, K. Somasundaram, Padmakar-Ivan index of some types of perfect graphs, Discrete Math. Lett., 9 (2022), 92–99. https://doi.org/10.47443/dml.2021.s215 doi: 10.47443/dml.2021.s215
    [14] S. C. Manju, K. Somasundaram, Y. L. Shang, A new method for computing the vertex PI index with applications to special classes of graphs, AKCE Int. J. Graphs Comb., 22 (2025), 117–124. https://doi.org/10.1080/09728600.2024.2424317 doi: 10.1080/09728600.2024.2424317
    [15] X. H. An, B. Wu, The Wiener index of the $k$th power of a graph, Appl. Math. Lett., 21 (2008), 436–440. https://doi.org/10.1016/j.aml.2007.03.025 doi: 10.1016/j.aml.2007.03.025
    [16] W. J. Zhang, B. Wu, X. H. An, The hyper-Wiener index of the $k$th power of a graph, Discrete Math. Algorithms Appl., 3 (2011), 17–23. https://doi.org/10.1142/S1793830911000973 doi: 10.1142/S1793830911000973
    [17] G. F. Su, L. M. Xiong, I. Gutman, Harary index of the $k$-th power of a graph, Appl. Anal. Discrete Math., 7 (2013), 94–105.
    [18] K. C. Das, M. Imran, T. Vetrík, General Sombor index of graphs and trees, J. Discrete Math. Sci. Cryptogr., 28 (2025), 101–111. http://dx.doi.org/10.47974/JDMSC-1918 doi: 10.47974/JDMSC-1918
    [19] S. Rouhani, M. Habibi, M. A. Mehrpouya, On Sombor index of extremal graphs, J. Discrete Math. Appl., 9 (2024), 335–344. https://doi.org/10.22061/jdma.2024.11328.1101 doi: 10.22061/jdma.2024.11328.1101
    [20] J. C. Hernández, J. M. Rodríguez, O. Rosario, J. M. Sigarreta, Extremal problems on the general Sombor index of a graph, AIMS Math., 7 (2022), 8330–8343. http://dx.doi.org/10.3934/math.2022464 doi: 10.3934/math.2022464
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(351) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog