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Abstract: In this study, we focus on the Padmakar-Ivan (PI) index, a molecular descriptor that
quantifies the structural characteristics of chemical networks on the basis of their vertex distances.
The main objective of this work is to develop efficient approaches for computing the PI index,
particularly for graph powers and complex network structures. We begin by formulating an algorithm
for computing the PI index of general graphs and extend it to the kth power of a graph using a distance-
based framework. Furthermore, we introduce a novel clique cut method that establishes a theoretical
foundation for analyzing and computing the PI index in intricate silicate and silicon-based frameworks.
The proposed techniques significantly simplify and generalize existing computational procedures.
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1. Introduction

In this article, we focus exclusively on simple connected graphs, emphasizing their significance
in the realm of chemistry, particularly in the representation of chemical structures. Graph theory
plays a crucial role in theoretical chemistry, where molecular structure descriptors, commonly referred
to as topological indices, are employed to depict various characteristics of chemical compounds.
These indices encompass physical, chemical, pharmacological, toxicological, biological, and other
properties [1].
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A topological index, essentially a real number associated with a graph, serves as a structural
invariant. Over time, numerous topological indices have been introduced, and several of them have
been utilized for modeling the various properties of chemical, pharmaceutical, and other molecular
substances. The application of topological indices in the field of chemistry can be traced back to 1947,
marked by the introduction of the Wiener index by the chemist Harold Wiener. Wiener utilized this
index to explore the physical properties of a class of alkanes referred to as paraffins [2].

The Padmakar-Ivan (PI) index of a graph was first introduced by Padmakar Khadikar and colleagues
in 2000 [3], and its applications in the field of chemistry were further investigated in subsequent
studies [4]. In 2008, Khalifeh and others expanded upon this index by defining its vertex version,
which involves equidistant vertices of an edge [5]. The PI index for a graph G is defined as follows:

PI (G) =
∑

e=(x,y)∈E(G)

(
nx(e) + ny(e)

)
.

In this context, nx(e) denotes the number of vertices in the graph G that have a distance to the vertex x
that is strictly shorter than their distance to the vertex y.

To enhance the variety of bipartite graphs, in [6], the authors introduced the weighted PI index. It
is given by

PIw(G) =
∑

e=(x,y)∈E(G)

[
dG(x) + dG(y)

] (
nx(e) + ny(e)

)
,

where dG(x) is the degree of vertex x. Numerous studies have been conducted to establish bounds for
topological indices, highlighting the importance of developing algorithms for exploring sets of these
indices.

The computation of the PI index has been explored across various categories of molecular graphs
in [7, 8]. In-depth discussions on determining the extremal values and characterizing the extremal
graphs are extensively covered in [9]. The weighted PI index, applied to product graphs, has been
computed as detailed in [10].

Remarkably, the investigations conducted by Manju and Somasundaram in [11] offer precise values
for the PI and weighted PI indices within powers of some classes of graphs. Their work, detailed
in [12], provides the determination of the PI index for bicyclic graphs, alongside an exploration of
various classes of perfect graphs, as presented in [13]. More recently, they introduced a new method
for computing the vertex PI index in [14], with applications to special classes of graphs, demonstrating
improved computational efficiency and broader applicability.

In [15], the authors established the bounds on the Wiener index of the kth power of a graph G, while
in [16], the authors obtained the bounds on the hyper-Wiener index of the kth power of a graph G. Ivan
Gutman and his co-authors conducted a study on the Harary index for the same graph in [17].

Building upon these insights, this paper first introduces an algorithm for calculating the PI index of
a graph. The algorithms proposed in Section 2 provide a straightforward method for computing the PI
index of the kth power of a graph.

Among various topological indices, the PI index has been widely used to analyze different chemical
networks; however, existing methods for its computation often become complex when applied to
networks with overlapping cliques or repeated structural units.

Despite several studies on silicate networks, the computation of the PI index for such structures
remains challenging due to their repetitive tetrahedral connectivity and the difficulty in identifying

AIMS Mathematics Volume 10, Issue 12, 29686–29702.



29688

equidistant vertices. To address this gap, Section 3 introduces a new method for computing the PI index
based on the contribution of cliques, offering a simpler and more general approach. This method is
then applied to silicate networks to demonstrate its computational efficiency and chemical significance.

2. Algorithm for the PI index of graphs

Here, we introduce a computational algorithm for determining the PI index of a graph. For an
edge e, equidistant vertices denote the vertices that share the same shortest distance to the end vertices
of e. The count of such vertices of an edge e is represented as NG(e). nx (e) + ny (e) = |V(G)| − NG (e).

Consequently, the PI index of a graph can be calculated as

PI(G) =
∑

e∈E(G)

[|V(G)| − NG(e)] .

Let G be a graph with x1, x2, . . . , xn as the vertices. D, the distance matrix for the graph G, is an
n × n symmetric matrix, denoted as [di j], di j = d(xi, x j), represents the shortest distance between the
vertices xi and x j in the graph G.

Algorithm 1 PI index of a graph
1: Input: Distance matrix D = [di j] of a graph G of order n.
2: Output: PI index of G.
3: PI(G) = 0
4: m = 0
5: Γ = 0
6: for i = 1 to n do
7: for j = i + 1 to n do
8: γi j = 0
9: if di j == 1 then

10: m = m + 1
11: for r = 1 to n do
12: if dir == d jr then
13: γi j = γi j + 1
14: end if
15: end for
16: Γ = Γ + γi j

17: end if
18: end for
19: end for
20: PI(G) = n ∗ m − Γ

In this context, we introduce Algorithm 1, which is designed to calculate the PI index of a graph by
utilizing the distance matrix of that graph as its input. The key objective in calculating the PI index is
to identify the number of equidistant vertices associated with each edge. To achieve this, when dealing
with an edge e connecting the vertices xi and x j, we examine the two rows in the distance matrix that
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correspond to these vertices. Our approach involves tallying the number of matching positions within
these rows, and we denote it by γi j, a concept that forms the foundation of the ensuing algorithm’s
development.

2.1. Computing the PI index for the power of a graph

The kth power Gk of a graph G is a distinct graph with an identical set of vertices. In Gk, two vertices
are joined by an edge if the distance between them in the original graph G is at most k. An illustrative
example is provided in Figure 1.

Figure 1. Second power of a graph.

In this section, we present a procedure for computing the distance matrix of the power of a graph G.
Leveraging the algorithm designed for the PI index, we can then compute the PI index of the kth power
of the graph. Although obtaining Dk from D is straightforward, we provide a concise pseudocode to
ensure reproducibility of the computational procedure (see Algorithm 2).

Algorithm 2 Distance matrix of kth power of a graph G.
1: Input: Distance matrix D = [di j] of G
2: Output: Distance matrix Dk = [dk

i j] of Gk

3: for i = 1 to n do
4: for j = 1 to n do
5: if i = j then
6: dk

i j ← 0
7: else if di j ≤ k then
8: dk

i j ← 1
9: else

10: dk
i j ← ⌈

di j

k ⌉

11: end if
12: end for
13: end for
14: return Dk

Example 2.1. Consider the third power of a graph P8.
The entries in D = [di j] represent the shortest distances between the vertices of P8. Input the

following:
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D =



0 1 2 3 4 5 6 7
1 0 1 2 3 4 5 6
2 1 0 1 2 3 4 5
3 2 1 0 1 2 3 4
4 3 2 1 0 1 2 3
5 4 3 2 1 0 1 2
6 5 4 3 2 1 0 1
7 6 5 4 3 2 1 0


.

From Algorithm 2, we obtain the distance matrix of P3
8,

D3 =



0 1 1 1 2 2 2 3
1 0 1 1 1 2 2 2
1 1 0 1 1 1 2 2
1 1 1 0 1 1 1 2
2 1 1 1 0 1 1 1
2 2 1 1 1 0 1 1
2 2 2 1 1 1 0 1
3 2 2 2 1 1 1 0


.

In Algorithm 1, for i = 1 and j = 2, we have di j = 1, m = 1, and γ12 = 4. By proceeding similarly
for all pairs of vertices, we finally obtain

PI(G) = 8 × 18 − 62 = 144 − 62 = 82.

Through the application of Algorithm 2, the computation of various other topological indices for
the kth power of graphs becomes feasible. This methodology allows for the precise determination
of indices such as the Wiener index, hyper-Wiener index, Harary index, and Sombor index for the
power of a graph (for the definitions and additional details of these indices, the readers may refer
to [1, 2, 15, 16, 18–20]).

We recall that an edge e = (x, y) of a graph G is said to be an equidistant edge for a vertex u ∈ V(G)
if d(u, x) = d(u, y). Edge e is at a distance r for a vertex u means that d(u, x) = d(u, y) = r. The set of
all equidistant edges of u is DG(u) = {e = (x, y) ∈ E(G) : d(u, x) = d(u, y)},NG(u) = |DG(u)|. It is easy
to see that

∑
e∈E(G)

NG(e) =
∑

u∈V(G)
NG(u).

Lemma 2.1. [13] Let G be a graph with n vertices and m edges. Then PI(G) = mn −
∑

u∈V(G)
NG(u).

Suppose that Kλ is a clique with λ vertices in G. Label the vertices of this clique as v1, v2, . . . , vλ.
For any vertex u in G that is not part of Kλ, the distance from u to the clique Kλ is defined as d(Kλ, u) =
min{d(u, vi) : vi ∈ Kλ}; that is, the shortest distance from u to any vertex in the clique. This minimum
distance is usually achieved by one or more vertices of the clique.

Each vertex u in G \ Kλ divides the vertices of the clique Kλ into two sets, X and Y , according to
their distances from u (see Figure 2). Specifically, the following hold.

• X consists of the vertices in Kλ that are at the minimum distance from u, i.e., d(X, u) = d(Kλ, u).
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• Y contains the remaining vertices in Kλ, each at a distance one more than the minimum, i.e.,
d(Y, u) = d(Kλ, u) + 1.

Figure 2. Representation of vertex u partitioned into sets X and Y .

This partition has an important implication.
The vertex u is equidistant to all edges within Kλ whose endpoints are both in X or both in Y .
However, u is not equidistant to the edges which have one end in X and the other end in Y .

NKλ(u) =
|X|(|X| − 1)

2
+

(λ − |X|)(λ − |X| − 1)
2

=
λ(λ − 1)

2
− |X|(λ − |X|). (2.1)

Now, |X| = j can take values from j ∈ {1, 2, ..., λ − 1}. Here, j , λ, since if j = λ, the clique would
have a size λ + 1, which is not possible.

Let Γ j denote the vertices in G \ Kλ for which the minimum distance to the clique Kλ is attained
with exactly j vertices of Kλ and |Γ j| = γ j, as seen in Figure 3.

Figure 3. Illustration of the sets Γ j relative to the clique Kλ.

Before presenting the main result in Section 3, we establish the following theorem, which shows
how the clique Kλ contributes to the PI index of a graph G. This theorem also forms a key step in
proving the main result for silicate networks, where cliques serve as the fundamental structural units.

Theorem 2.1. Let Kλ be a clique in a graph G with n vertices; we then have
∑

e∈Kλ
(|V(G)| − NG(e)) =

λ(λ − 1) +
λ−1∑
j=1
γ j j(λ − j).

Proof. Let v denote the vertex of the clique Kλ (there are λ such vertices) and u ∈ G \Kλ; there are n−λ
such vertices outside the clique. Then, from Eq (2.1), NKλ(u) = λ(λ−1)

2 − |X|(λ− |X|), NKλ(v) = (λ−1)(λ−2)
2 .
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Now, by Lemma 2.1,∑
e∈E(Kλ)

NG(e) =
∑

a∈V(G)

NE(Kλ)(a)

=
∑
v∈Kλ

NE(Kλ)(v) +
∑

u∈G\Kλ

NE(Kλ)(u)

=
λ(λ − 1)(λ − 2)

2
+

(
λ(λ − 1)

2

)
(n − λ) −

λ−1∑
j=1

jγ j(λ − j)

=
λ(λ − 1)(λ − 2)

2
+
λ(λ − 1)(n − λ)

2
−

λ−1∑
j=1

jγ j(λ − j)

=
λ(λ − 1)

2
((λ − 2) + (n − λ)) −

λ−1∑
j=1

jγ j(λ − j)

=
λ(λ − 1)

2
(n − 2) −

λ−1∑
j=1

jγ j(λ − j).

Therefore, ∑
e∈E(Kk)

(|V(G)| − NG(e)) =
∑

e∈E(Kk)

|V(G)| −
∑

e∈E(Kk)

NG(e))

=
∑

e∈E(Kk)

n −
λ(λ − 1)

2
(n − 2) +

λ−1∑
j=1

jγ j(λ − j))

= n
λ(λ − 1)

2
−
λ(λ − 1)

2
(n − 2) +

λ−1∑
j=1

jγ j(λ − j)

=
λ(λ − 1)

2
(n − n + 2) +

λ−1∑
j=1

jγ j(λ − j)

= λ(λ − 1) +
λ−1∑
j=1

jγ j(λ − j).

We can reduce Theorem 2.1 for K4 as follows:∑
e∈K4

(|V(G)| − NG(e)) = 12 +
3∑

j=1

jγ j(4 − j). (2.2)

This quantity is referred to as the contribution of the clique K4 to the PI index of the original graph and
is denoted by PI(K4)G.

3. Silicon networks

Silicates are the fundamental building blocks of common rock-forming minerals and represent the
largest, most complex, and intriguing group of minerals. Silicates are formed by fusing metal oxides or
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metal carbonates with sand, and nearly all silicates contain SiO4. A silicate sheet consists of a ring of
tetrahedra connected by shared oxygen vertices, forming a two-dimensional structure where the silicon
atoms are the vertices and bonds are represented as edges in a graphical model. A SiO4 tetrahedron
is illustrated in Figure 4. A silicate network of dimension n, denoted as S Ln, represents a network
where n is the number of hexagons between the center and the boundary of the structure. The number
of vertices in S Ln is 15n2 + 3n, and the number of edges is 36n2.

Figure 4. Silicate network of dimension 3.

The basic unit of silicates is the SiO4 tetrahedron, which is a complete graph K4.

Our goal is to compute the PI index of an n-dimensional silicate network using Theorem 2.1. We
will achieve this by calculating the contribution of each K4 in the graph G and then adding these
individual contributions. Before we dive into the solution, there are a few important points to discuss.

3.1. Equator

Figure 4 represents S l3,which has three layers. The line X1, passing through the hexagon in Layer 1,
divides the entire structure into two equal halves: the upper part, denoted N, and the lower part,
denoted S . We refer to the line X1 as the equator. All the shaded tetrahedra in Figure 4 are in Layer 1.

3.2. Clique cuts

Draw lines through the oxygen nodes of the tetrahedron T (the shaded tetrahedron) as illustrated in
Figure 5. These lines partition the structure into six fragments: three in the upper part, denoted N1,N2,
and N3, and three in the lower part, denoted S 1, S 2, and S 3. These partitioning lines are referred to as
the clique cuts of the tetrahedral unit.
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Figure 5. Clique cut.

For any vertex u within and on the boundary of the region N1, the minimum distance to the
tetrahedron T, d(u,T ) is always found at a specific vertex p ∈ T . Similarly, for any vertex in the region
N3 and S 2 (including its boundary), the minimum distance to T is reached at the vertices r and q,
respectively. Similarly for any vertex u in the region N2, the minimum distance to the tetrahedron
T, d(u,T ) is always found at two vertices p, r ∈ T . In general, we can say the following.

• If the boundary of a region (potentially formed by a clique cut) includes a vertex vT that is also in
T , then the vertices within that region are closest to this common vertex vT (among all vertices in
T ).
• Similarly, if a region’s boundary does not share any vertex with T , then the vertices in that region

are typically closest to two vertices of T .

A schematic diagram (Figure 6) has been included to visually represent the clique cut partitioning
process for various values of T k

r , which clarifies how cliques contribute to the calculation of the PI
index.

Figure 6. Schematic representation of the clique cut partitioning process for T 1
2 and T 2

2 .
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As in the previous section, let Γ j denote the set of vertices in G \T for which the minimum distance
to the clique T is reached at exactly j vertices of T . In this case, we have Γ1 = N1 ∪ N3 ∪ S 2,

Γ2 = N2 ∪ S 1 ∪ S 3,Γ3 = ϕ, and Γ4 = ϕ.
By Eq (2.2), we have

PI(K4)G =
∑
e∈K4

(|V(G)| − NG(e))

= 12 +
3∑

j=1

jγ j(4 − j)

= 12 + γ1(4 − 1) + 2γ2(4 − 2) + 3γ3(4 − 3)
= 12 + 3γ1 + 4γ2

= 12 + 3(γ1 + γ2) + γ2.

PI(K4)G = 12 + 3(|V(G)| − 4) + γ2. (3.1)

3.3. Bases of S Ln

In the structure S Ln, each layer is formed by tetrahedral units arranged symmetrically around a
central hexagon. The kth layer of the structure contains 12k − 6 tetrahedral units. For example, S L3

consists of three circular layers.
As shown in Figure 7, S Ln exhibits six lines of symmetry, dividing it into 12 equal portions. To

describe the vertical position of the tetrahedra relative to the equator, we define stacks (because of
symmetry, we consider only the portion on the left). Tetrahedra situated directly above the equator
constitute Stack 1, with subsequent stacks placed sequentially above it. The tetrahedra in the rth stack
of the kth layer is denoted T k

r .

Figure 7. Lines of symmetry.
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In Layer 1, there are six tetrahedra, all of which are symmetric. We designate the tetrahedron in the
first layer and first stack as T 1

1 . Layer 2 comprises 18 tetrahedral units. Of these, only two are non-
symmetric: T 2

1 ,T
2
2 . All other tetrahedra in Layer 2 are symmetric to either T 2

1 or T 2
2 . In each layer k,

there are k distinct types of tetrahedra, labeled as T k
1 ,T

k
2 , . . . ,T

k
k .

For instance, in Layer 3, there are three non-symmetric tetrahedra, marked in Figure 7 as 1, 2, and 3.
All symmetric tetrahedra contribute an equal quantity to the PI index of the graph G.

We define the bases of S Ln as the union of all the non-symmetric tetrahedra across all
layers, that is, T 1

1 ,∪
2
k=1T 2

k ,∪
3
k=1T 3

k , ...,∪
n
k=1T n

k . This collection can be equivalently rearranged as
∪n

k=2T k
1 ,∪

n
k=3T k

2 , ...,∪
n
k=nT k

n−1,∪
n
r=1T r

r . We denote this set as β = {β1, β2, ..., βn−1, βn}, βi = ∪
n
k=i+1T k

i ,

for i = 1, 2, ..., n − 1, βn = ∪
n
r=1T r

r .

The bases of S L3 are marked in Figure 8, PI(β1)G =
∑

e∈E(β1)
(|V(G)|−NG(e)), PI(S Ln) = 12

n−1∑
i=1

PI(βi)+

6PI(βn).
Note that the choice of bases is not unique, as any non-symmetric collection of tetrahedra can serve

as a base. Here, we adopt the set above as the representative base.

Figure 8. Bases of S l3.

Theorem 2.1 provides an elegant method to computePI(S Ln) using clique cuts. In this computation,
we use nk

r to denote the total number of vertices in the three fragments N2, S 1, and S 3, corresponding to
the clique T k

r , when r is even. For an odd r, the same notation nk
r is used to represent the total number

of vertices in the fragments N1,N3, and S 2 associated with the clique T k
r .

Theorem 3.1. For a silicate network of dimension n, PI(S Ln) = n(315n3 + 4n2 + 18n − 1).

Proof. Let G be a silicate network S Ln.
By Eq (3.1), PI(T k

r ) = 3(15n2 + 3n) + nk
r .

The calculation proceeds by first finding nk
r for each T k

r .
Case 1. n is even.
Case 1.1. r is odd.

For different values of r and k, the calculated values of nk
r are tabulated in Table 1.
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Table 1. Number of vertices in different regions corresponding to T k
r , r ≤ k ≤ n, r ∈ [1, n−1],

r is odd.

Region Number of vertices
S 1

n−k
2 (4 + 5(n − k − 1)) + 5 (n−k)(r−1)

2

S 3
n+ r−1

2
2 (4 + 5(n + r−3

2 )) + r−1
4 (6 + 10n + 5(r−3)

2 ) + 5(n + r−1
2 )(k − r)

N2
n−k

2 (4 + 5(n − k − 1)) + 5(n − k)(k − r+1
2 )

Each entry in Tables 1 and 2 represents the number of vertices in a specific region corresponding
to the tetrahedral unit T k

r , r ≤ k ≤ n, r ∈ [1, n − 1], where r is odd. These values are computed
by systematically counting the vertices in each stack and layer, taking symmetry into account. The
correctness follows from the combinatorial structure of S Ln, where each layer contains 12k − 6
tetrahedra, and the network is divided into 12 symmetric portions.

nk
r =

(
n − k

2
(4 + 5(n − k − 1)) + 5

(n − k)(r − 1)
2

)
+

n + r−1
2

2
(4 + 5(n +

r − 3
2

)) +
r − 1

4
(6 + 10n +

5(r − 3)
2

) + 5(n +
r − 1

2
)(k − r)


+

(
n − k

2
(4 + 5(n − k − 1)) + 5(n − k)(k −

r + 1
2

)
)

=
30n2 − 46n − 5r2 + 14k + 10kr + 5

4
.

To sum up the expression over k, r + 1 ≤ k ≤ n
n∑

k=r+1

nk
r =

n∑
k=r+1

30n2 − 46n − 5r2 + 14k + 10kr + 5
4

=
(n − r)(30n2 − 39n + 12r + 5rn + 12)

4
.

We then take the sum of the expression on r, with the condition that r is an odd number between 1
and n. ∑

r∈[1,n−1],risodd

n∑
k=r+1

nk
r =

n(95n3 − 105n2 + 46n + 24)
48

.

Moreover, nr
r =

30n2−46n+5r2+14r+5
4 . We then take the sum of the expression on r, with the condition that

r is an odd number between 1 and n.∑
r∈[1,n−1],risodd

nr
r =

n(95n2 − 117n + 10)
24

.

Case 1.2. r is even.
For different values of r and k, the calculated values of nk

r are tabulated in Table 2.

nk
r =

(
n − k

2
(4 + 5(n − k − 1))

)
+

(
n − r

2

2
(4 + 5(n −

r
2
− 1)) + 5(k − 1)(n −

r
2

)
)
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+

(
n − k + r

2

2
(4 + 5(n − k +

r
2
− 1)) + 5(k − 1)(n − k +

r
2

)
)

=
30n2 + 5r2 − 46n + 24k − 10rk

4
.

Table 2. Number of vertices in different regions corresponding to T k
r , r ≤ k ≤ n, r ∈ [2, n], r

is even.

Region Number of vertices
N1

n−k
2 (4 + 5(n − k − 1))

N3
n− r

2
2 (4 + 5(n − r

2 − 1)) + 5(k − 1)(n − r
2 )

S 2
n−k+ r

2
2 (4 + 5(n − k + r

2 − 1)) + 5(k − 1)(n − k + r
2 )

To sum up the expression over k, r + 1 ≤ k ≤ n,

n∑
k=r+1

nk
r =

n∑
k=r+1

30n2 + 5r2 − 46n + 24k − 10rk
4

=
(n − r)(30n2 − 34n + 7r − 5rn + 12)

4
.

We then take the sum of the expression on r, with the condition that r is an even number between 1
and n. ∑

r∈[2,n],riseven

n∑
k=r+1

nk
r =

5n(n − 2)(17n2 − 21n + 10)
48

.

Moreover, nr
r =

30n2−46n−5r2+24r
4 .

We then take the sum of the expression on r, with the condition that r is an even number between 1
and n. ∑

r∈[2,n],riseven

nr
r =

n(85n2 − 117n + 62)
24

.

We now have

PI(G) = 12
n−1∑
i=1

PI(βi)G + 6PI(βn)G

= 3 × 6n2 × (15n2 + 3n) + 12
(
n(95n3 − 105n2 + 46n + 24)

48

)
+ 6

(
n(95n2 − 117n + 10)

24

)
+12

(
5n(n − 2)(17n2 − 21n + 10)

48

)
+ 6

(
n(85n2 − 117n + 62)

24

)
= 3 × 6n2(15n2 + 3n) + n(45n3 − 50n2 + 18n − 1)
= n(315n3 + 4n2 + 18n − 1).
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Case 2. n is odd.
Case 2.1. r is odd. ∑

r∈[1,n],risodd

n∑
k=r+1

nk
r =

(n2 − 1)(95n2 − 105n + 36)
48

.

Moreover,

nr
r =

30n2 − 46n + 5r2 + 14r + 5
4

.

We then take the sum of the expression on r, with the condition that r is an odd number between 1
and n. ∑

r∈[1,n],risodd

nr
r =

(n + 1)(95n2 − 107n + 36)
24

.

Case 2.2. r is even.
We take the sum of the expression on r, with the condition that r is an even number between 1 and n.∑

r∈[2,n−1],riseven

n∑
k=r+1

nk
r =

(n − 1)(85n3 − 190n2 + 145n − 36)
48

.

Moreover,
∑

r∈[2,n]riseven

nr
r =

(n−1)(85n2−107n+36)
24 .

We now have

PI(G) = 12
n−1∑
i=1

PI(βi)G + 6PI(βn)G

= 3 × 6n2 × (15n2 + 3n) + 12
(
(n2 − 1)(95n2 − 105n + 36)

48

)
+ 6

(
(n + 1)(95n2 − 107n + 36)

24

)
+12

(
(n − 1)(85n3 − 190n2 + 145n − 36)

48

)
+ 6

(
(n − 1)(85n2 − 107n + 36)

24

)
= 3 × 6n2(15n2 + 3n) + n(45n3 − 50n2 + 18n − 1)
= n(315n3 + 4n2 + 18n − 1).

We now illustrate the concepts used in Theorem 3.1 through the following example. Here, we find
the PI index of S L2 using the theorem above.

Example 3.1. For n = 2, the structure contains two layers and two stacks. The base tetrahedra are
listed below.

Bases: {β1, β2}, where β1 = {T 2
1 }, β2 = {T 1

1 ,T
2
2 }.

The number of vertices in each region corresponding to each base tetrahedron is given in Table 3.

Table 3. Number of vertices in different regions corresponding to T k
r .

T 1
1 T 2

1 T 2
2

Region Number of vertices Region Number of vertices Region Number of vertices
S 1 2 S 1 0 N1 0
S 3 9 S 3 19 N3 7
N2 2 N2 0 S 2 7
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For T 1
1 ,

n1
1 = 2 + 9 + 2 = 13.

For T 2
1 ,

n2
1 = 0 + 19 + 0 = 19.

For T 2
2 ,

n2
2 = 0 + 7 + 7 = 14.

We now have

PI(β1) = 3(15 ∗ 4 + 3 ∗ 2) + 19 = 217, P(β2) = 2 ∗ 3(15 ∗ 4 + 3 ∗ 2) + 13 + 14 = 423,

PI(S L2) = 12PI(β1) + 6PI(β1) = 5142.

This is given by the formula

PI(S L2) = 2(315 × 23 + 4 × 22 + 18 × 2 − 1) = 5142.

4. Conclusions

In this paper, we proposed efficient algorithms for computing the PI index of graphs. The first
algorithm determines the PI index of general graphs, while the second enhances the computation of
the PI index for the kth power of a graph using a distance-based framework. We also introduced a
novel clique cut method that provides a theoretical foundation for computing the PI index in complex
structures such as silicate and silicon-based networks.

The proposed methods significantly simplify existing computational procedures and offer new
structural insights into molecular networks. Beyond silicate frameworks, these approaches can be
effectively applied to analyze other large-scale chemical networks and graph-based models where
distance plays a key role.

The novelty of this work lies in the development of an integrated algorithmic and theoretical
framework for computing the PI index, extending its applicability to higher graph powers and complex
network systems. Future research may focus on optimizing these algorithms for large datasets and
extending the clique cut method to other distance-based topological indices.
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