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Abstract: Small-time local controllability (STLC) at a point x0 is a fundamental property of control
systems, and is intimately connected to the local structure of their reachable sets. This study built upon
the notion of a tangent vector field to the reachable set of a control system, a concept introduced by
Hermes in [7], based on an idea of Krener (cf. [18]). The importance of this concept stemed from the
fact that the set E+(x0), consisting of all tangent vector fields to the reachable set at x0, formed a convex
cone. If the zero vector lay in the interior of this cone, the system is STLC at x0. A long-standing open
question concerns the precise characterization of the set E+(x0). In this paper, we studied the Lie
algebra generated by the drift term—a vector field homogeneous of degree two—and the constant
vector fields of a polynomial control system. By applying the classical Campbell–Baker–Hausdorff
formula from Lie group theory, along with symmetries inherent to the control system, we derived
new elements of the set E+(x0). Our results showed that certain “bad” Lie brackets (in the sense of
Sussmann) do not obstruct the STLC property. As a corollary, we provided a sufficient condition for
STLC.
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1. Introduction

Controllability is a fundamental property of nonlinear control systems. The relationship between
global and local controllability is explored in the work by Bacciotti and Stefani (cf. [3]) for a class of
analytic control systems defined on an analytic manifold. One can study the small-time controllability
of a control system at a given point, or the small-time attainability of a set (cf., for example, [5, 20]).
Furthermore, controllability is closely linked to the continuity properties of the minimum time function

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20251306


29704

(cf., for instance, [23, 25]), among other aspects.
Various approaches have been developed to study small-time local controllability (STLC) at a point,

leading to different results under varying assumptions. General sufficient conditions for STLC have
been established by Agrachev and Gamkrelidze [1], Sussmann [28, 29], Meng et al. [21] and others.
The first necessary condition for STLC was proven by Sussmann in [28]. This condition was later
generalized by Stefani in [26]. Kawski established in [9] a necessary condition that depends on the
“size” of a symmetric interval within which the controls take their values. In [11] this condition was
further generalized for the case of a non-symmetric interval. Additionally, a necessary condition for
Lipschitz continuous control systems was proven in [13]. Moreover, a complete answer to the open
problem on the small-time local controllability of Korteweg-de Vries system on all critical lengths is
given in [22]. Additionally, both sufficient and necessary conditions have been presented for specific
cases by Brunovský (cf. [4]), Jurdjevic and Kupka (cf. [8]), and others (cf. [17, 30]). Despite these
efforts, a significant gap remains between the existing sufficient and necessary conditions for STLC.

An attempt to bridge this gap was made by Aguilar (cf. [2]), who analyzed a class of homogeneous
control systems. The results obtained in [2] were later generalized in [14]. The present paper continues
the line of investigation initiated in [14, 15], focusing on a class of polynomial control systems. To
analyze STLC, we employ the set E+(x0) of tangent vector fields to the reachable set at a fixed point
x0.

The set E+(x0) was introduced by Hermes [7]. This concept was subsequently used in [30] for
piecewise linear control systems and in [17] for switching linear systems. It was further extended
in [16] to study the small-time attainability of a set. Other concepts of tangent vector fields can be
found in [19, 27]. By applying the classical Campbell–Baker–Hausdorff (C-B-H) formula from Lie
group theory together with certain symmetries intrinsic to the control system, we show that specific
“bad” Lie brackets (in the sense of Sussmann) belong to the set E+(x0) and therefore do not obstruct
the STLC property. As a corollary, we obtain a sufficient condition for STLC.

The structure of the paper is as follows. In Section 2, we present the differential-geometrical
framework employed in this study and state the main result, accompanied by a corollary and illustrative
examples that demonstrate the applicability of our approach. Section 3 is devoted to the proof of the
main theorem. Section 4 concludes the paper, and all technical details are collected in an Appendix.

2. Preliminaries and statement of the main result

First, we introduce some notations used throughout the exposition:

• co(S ) denotes the convex hull of the elements in the subset S of Rn,
• span(S ) refers to the linear space generated by the elements of S ,
• cone(S ) represents the cone generated by the elements of S , and
• rec(C) is the largest linear space contained within the convex closed cone C in Rn.

Let us consider the control system Σ in Rn:

ẋ(t) = f (x(t)) + u(t), u(t) ∈ U ∩ B̄, (2.1)

with x(0) = 0, where U ⊂ Rn is a closed convex cone, B̄ is the closed unit ball, and f : Rn → Rn is a
vector field with homogeneous quadratic components.
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Remark 2.1. System (2.1) represents a class of nonlinear control systems in Rn with additive but
constrained control input. Although the control enters linearly, the constraint u(t) ∈ U ∩ B̄, where
U ⊂ Rn is a closed convex cone, makes the analysis of reachability and controllability nontrivial.
In particular, the directions of admissible control actions are restricted by U, so the system cannot
in general be steered arbitrarily in Rn. Moreover, the drift term f (x) has homogeneous quadratic
components, which introduces nonlinear coupling between the state variables and leads to nontrivial
geometric properties of the attainable sets.

For each T > 0, we define the set of admissible controls:

UT :=
{
u : [0,T ]→ Rn measurable | u(t) ∈ U ∩ B̄ a.e.

}
.

An admissible trajectory is any absolutely continuous function x : [0,T ] → Rn satisfying (2.1) with
u ∈ UT .

The reachable set from x0 in time T is

R(x0,T ) :=
{
x(T ) | x is an admissible trajectory with x(0) = x0

}
.

Definition 2.2. The system Σ is STLC at the origin if 0 ∈ intR(0,T ) for every T > 0.

We make use of the Lie bracket of smooth vector fields X and Y ,

[X,Y](x) = Y ′(x)X(x) − X′(x)Y(x),

as well as the exponential map Exp(tZ)(x0), which denotes the time flow of the ODE ẋ(τ) = tZ(x(τ)),
with x(0) = x0 for τ = 1.

Given u ∈ U ∩ B̄, the vector field x 7→ f (x) + u belongs to the set S+(0) defined below.

Definition 2.3. An analytic vector field Z belongs to S+(0) if there exist a compact neighborhood Ω of
the origin, and constants K,T > 0, such that

Exp(tZ)(x) ∈ R(x,Kt) ∀x ∈ Ω, t ∈ [0,T ].

We use the notation o(tα) and O(tα) to denote families of analytic vector fields that satisfy standard
asymptotic bounds as t → 0. We write A0 for families of vector fields a(t, x), parametrized by t, such
that ‖a(t, x)‖ ≤ ctθ‖x‖ for some constants c, θ > 0. We also call a polynomial of the form

p(t) := a1tb1 + · · · + astbs ,

where ai > 0 and
0 < b1 < b2 < · · · < bs

for all i, a positive polynomial. The minimal positive number b1 is called the order of the polynomial
p, and it is denoted by ord(p).

Remark 2.4. Based on some classical results (see, e.g., Proposition 4.3 in [28] and Proposition 2.1
in [1], the analyticity of the vector fields ensures uniform convergence of the expansions on compact
sets and stability under compositions of bounded length.
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Definition 2.5. An analytic vector field Z belongs to the set E+(0) if there exist α > 0, a compact
neighborhood Ω of the origin, a time T > 0, a positive polynomial p(t), and families a(t) ∈ A0 and
o(tα) such that

Exp(tαZ + a(t) + o(tα))(x) ∈ R(x, p(t)) ∀x ∈ Ω, t ∈ [0,T ].

One can similarly define the sets E+(x0) and S+(x0), where x0 is an arbitrary equilibrium point of the
control system under consideration (cf., for example, [10, 16, 17]). The significance of the sets E+ and
S+ in analyzing the local properties of the reachable sets of a nonlinear control system is emphasized
by the following lemmas:

Lemma 2.6. If Z1, . . . ,Zk ∈ E+(x0) and 0 ∈ int co{Zi(x0)}, then Σ is STLC at x0.

Lemma 2.7. The set E+(x0) is a convex cone.

Lemma 2.8. Let A1, A2 ∈ E+(x0) with A1(x0) + A2(x0) = 0, and B ∈ S+(x0) with B(x0) = 0. Then
[B, A1], [B, A2] ∈ E+(x0).

Lemmas 2.6 and 2.7 are proved in [17]. Lemma 2.8 is a corollary of Proposition 2.4 proven in [16].
Next, we briefly outline our approach, which will be developed in detail later. First, we introduce

the following notation: For an arbitrary element u ∈ U, we denote by gu the constant vector field
defined by

gu(x) := u for all x ∈ Rn.

Let x be an arbitrary point in Rn, and let u1, u2, . . . , uk−1 and uk be arbitrary elements of U. Also
consider arbitrary positive real polynomials αi(t) and βi(t), i = 1, 2, . . . , k, for t ∈ [0, t0). In what
follows, we assume that t0 > 0 is sufficiently small; if necessary, we can decrease t0 to satisfy the
required assumptions. Without loss of generality, we assume that

βi(t)ui ∈ U ∩ B̄ for all t ∈ [0, t0) and each i = 1, 2, . . . , k.

Then the vector field f + βi(t)gui is admissible for the control system (2.1). We define

fi := f and gi := gui , for i = 1, 2, . . . , k.

Clearly, for each i = 1, 2, . . . , k, we have that

Exp (αi(t) fi + αi(t)βi(t)gi) = Exp (αi(t) ( fi + βi(t)gi)) (x) ∈ R (x, αi(t)) for all t ∈ [0, t0]. (2.2)

With the vector fields fi and gi, we associate the polynomials αi(t) and αi(t)βi(t), respectively, for each
i = 1, 2, . . . , k.

According to the C-B-H formula, there exists a Lie polynomial S(t) such that

Exp(S(t))(x) := Exp
(
α1(t)

(
f1 + β1(t)g1

))
◦ · · · ◦ Exp

(
αk(t)

(
fk + βk(t)gk

))
(x), t ∈ [0, t0).

Taking into account (2.2), we obtain that

Exp (S(t)) (x) ∈ R

x,
k∑

i=1

αi(t)

 for all t ∈ [0, t0].
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Moreover, the C-B-H formula implies that each S(t), for t ∈ [0, t0), is a Lie series composed of Lie
brackets Λ j, j = 1, 2, . . ., of the vector fields fi and gi, i = 1, 2, . . . , k, i.e.,

S(t) =

∞∑
j=1

λ j p j(t)Λ j,

where λ j ∈ R, and if

Λ j = [h j
1, [h

j
2, [. . . [h

j
s−1, h

j
s] . . . ]]] with h j

µ ∈ { fi, gi | i = 1, . . . , k},

then the corresponding polynomial p j(t) is given by

p j(t) = p j
1(t) · p j

2(t) · · · p j
s(t),

where p j
µ(t) denotes the polynomial associated with the vector field h j

µ, for µ = 1, 2, . . . , s.
Suppose that there exists a Lie bracket Λi0 such that Λi0(0) , 0, and the order of the corresponding

polynomial pi0 is strictly less than the orders of the polynomials p j associated with all other Lie brackets
Λ j that are non-vanishing at the point 0. Then, the Lie bracket Λi0 belongs to the set E+(0). This idea
is illustrated by Lemma 2.10 below.

Moreover, using this idea, we select below appropriate elements ui ∈ U, together with appropriate
positive real polynomials αi(t) and βi(t), i = 1, 2, . . . , k. We then demonstrate, in detail, how one can
construct elements of the set E+(0). Notably, some of these elements correspond to so-called “bad”
Lie brackets in the sense of Sussmann (cf. [28, 29]).

Since the polynomial vector field f is homogeneous of degree two, we have that [gu, [gu, f ]] is a
constant vector field equal to 2 f (u) for every point x ∈ Rn. For simplicity, we denote the constant
vector field g f (u) simply by f (u).

We define the following sets:

G := {gu : u ∈ U ∩ B̄}, G± := {gu : ±u ∈ U ∩ B̄}, G f := G ∪ { f }. (2.3)

Remark 2.9. Recall that f : Rn → Rn is a polynomial vector field homogeneous of degree two, and
that each element of G is a constant vector field. We denote by L the Lie algebra generated by the
elements of G f . Let Λ be a Lie bracket composed of elements from G f , involving the vector field f
exactly k times and elements of G exactly m times. Then, one can directly verify that Λ is either a
homogeneous vector field of degree k − m + 1, or identically equal to zero.

In particular, if Λ is homogeneous of degree one, then k = m; that is, Λ has even length (where the
length of a Lie bracket refers to the total number of vector field occurrences in Λ). Likewise, if Λ is
homogeneous of degree zero, then Λ has odd length.

The proof of the next lemma is given in the Appendix:

Lemma 2.10. Let C ∈ G± with f (C) = 0. Let α > 0 and βi > 0, i = 1, 2, be real numbers, and let

Exp
(
Ai(ε) + εβi Bi + O

(
εα+2βi

))
(x) ∈ R (x, qi(ε)) for all ε ∈ [0, ε0], (2.4)

and for all x belonging to a neighborhood of the origin, where:
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• Bi, i = 1, 2, are elements of L, homogeneous of degree zero, with B1 + B2 = 0,
• Ai(ε) = p0

i (ε) f +
∑ki

j=1 p j
i (ε)Λ j

i ,
• Λ

j
i are elements of L, homogeneous of degree two,

• p j
i and qi are positive real polynomials, with

min
{
ord

(
p j

i

)
j = 0, 1, . . . , ki, i = 1, 2

}
≥ α > 0,

• min {β1, β2} > α.

Then the Lie bracket [B1, [C1, f ]] belongs to the set E+(0).

Corollary 2.11. Let C ∈ G± with f (C) = 0. Let α > 0 and βi > 0, i = 1, 2, be real numbers, and let

Exp
(
Ai(ε) + εβi Bi + O

(
εα+2βi

))
(x) ∈ R (x, qi(ε)) for all ε ∈ [0, ε0], (2.5)

and for all x belonging to a neighborhood of the origin, where:

• Bi, i = 1, 2, are elements of L, homogeneous of degree zero, with B1 + B2 = 0 and f (B1) = 0,
• Ai(ε) = p0

i (ε) f +
∑ki

j=1 p j
i (ε)Λ j

i ,
• Λ

j
i are elements of L, homogeneous of degree two,

• p j
i and qi are positive real polynomials, with

min
{
ord

(
p j

i

)
j = 0, 1, . . . , ki, i = 1, 2

}
≥ α > 0,

• min {β1, β2} ≥ α.

Then the Lie bracket [B1, [C1, f ]] belongs to the set E+(0).

One of the most fruitful ideas in the geometric theory of nonlinear systems, particularly in
establishing sufficient conditions for STLC, is the use of symmetries inherent in the control system
under consideration. This is demonstrated in the proofs of the general sufficient controllability
conditions derived in [28,29]. We also emphasize that the so-called chronological calculus, developed
by Agrachev and Gamkrelidze [1], is a powerful tool for representing the flows generated by control
systems. More recently, new results concerning the properties of nonlinear systems have been
presented in [6, 24].

To analyze the reachable sets of system (2.1), we follow the approach of [29], using compositions
of admissible flows and their C-B-H representations. These compositions give rise to diffeomorphisms
whose Lie series expansions involve Lie brackets endowed with symmetry-induced invariance
properties.

The following Proposition 2.12 is proved in [29] (cf. Proposition 5.1). To formulate it, we introduce
the following notions.

Let L be a finite-dimensional nilpotent Lie algebra over R, and let GL denote the corresponding
connected, simply connected Lie group. Since the exponential map

exp : L→ GL

is a global diffeomorphism, any map A : L→ L induces a unique map Ã : GL → GL defined by

Ã(exp(z)) = exp(A(z)), z ∈ L.
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Proposition 2.12. Let L be a finite-dimensional, nilpotent Lie algebra over R, and let GL

be the corresponding connected, simply connected Lie group. Let Λ be a finite group of
pseudoautomorphisms of L, and let Λ̃ := {λ̃ : λ ∈ Λ} be the group of bijections of GL induced by
Λ. Let S be a nonempty subset of GL which is closed under multiplication. Suppose that every λ̃ ∈ Λ̃

maps S into S . Then, S contains an element s such that λ̃(s) = s for all λ ∈ Λ.

Let Λ = [X1, [X2, . . . , [Xk−1, Xk] . . . ]] be a Lie bracket of length k, where Xi ∈ G f . We define the
linear involutions:

A f = f , Agu =

−gu if gu ∈ G±,

gu otherwise,
TΛ := [Xk, [Xk−1, . . . , [X2, X1] . . . ]],

extended linearly to any sum of Lie brackets. A bracket Λ is said to be invariant under A or T if
AΛ = Λ or TΛ = Λ, respectively. The maps A, T satisfy A2 = T2 = I and commute.

Let Ξ := {I,T} and Ξ± := {I,A,T,AT}. It is known (cf. Lemma 7.1 and Corollary 7.2 in [29]) that
a Lie bracket is invariant under Ξ if and only if it is of odd length. Similarly, a Lie bracket is invariant
under Ξ± if and only if it is of odd length and each element of G± appears an even number of times or
not at all (cf. Theorem 7.3 in [29]).

Let Θ ∈ {Ξ,Ξ±}, and let S be the Lie series associated with a composition of admissible flows:

Exp(S) = Exp
(
t1( f + gu1)

)
◦ · · · ◦ Exp

(
t`( f + gu`)

)
,

where ui ∈ U ∩ B̄ and ti > 0 for i = 1, . . . , `. Then, for small T := t1 + · · · + t`, we have

Exp(S)(x) ∈ R(x,T ).

According to the C-B-H formula, the series S can be presented as

S = Σ<k
inv + Σ<k

not inv + Σ≥k,

where Σ<k
inv consists of Lie brackets of length < k that are invariant under the group Θ, Σ<k

not inv consists
of Lie brackets of length < k that are not invariant under Θ, and Σ≥k consists of brackets of length ≥ k.

As a corollary of Proposition 2.12 and under the above assumptions on S, we obtain the following
result:

Corollary 2.13. There exist a positive integer m and a time T > 0 such that, for any x in a compact
neighborhood of the origin,

Exp(S̄)(x) ∈ R(x,mT ), S̄ = m Σ<k
inv + Σ̄<k

inv + Σ̄≥k,

where Σ̄<k
inv is a finite sum of Lie brackets invariant under Θ.

Remark 2.14. If Θ = Ξ, then all invariant Lie brackets in S̄ have odd length. If Θ = Ξ±, then the
invariant Lie brackets are either constant vector fields or vector fields that are homogeneous of degree
at least two.

Remark 2.15. The proof of Proposition 2.12 (i.e., the proof of Proposition 5.1 in [29]) shows that the
number m in Corollary 2.13 depends only on k and not on the specific choice of Lie brackets.

AIMS Mathematics Volume 10, Issue 12, 29703–29731.



29710

In order to formulate our main result, we define the following sets:

Step 0:
K0 = U, M0 = rec K0;

Step 1:
K1 = co ({ f (u) : u ∈ M0} ∪ U) , M1 = rec K1;

Step 2:
K2 = co ({ f (u) : u ∈ M1} ∪ U) ;

L2 = {u ∈ M1 : − f (u) ∈ K2};

M2 = span ({[gu, [gv, f ]](0) : v ∈ M1, u ∈ L2} ∪M1) ;

Step s + 1: For s = 2, 3, . . ., we define the sets Ks+1, Ls+1, andMs+1 recursively as follows:

Ks+1 = co (K2 ∪Ms) ,

Ls+1 = {u ∈ M1 : − f (u) ∈ Ks+1},

Ms+1 = span ({[gu, [gv, f ]](0) : v ∈ M1, u ∈ Ls+1} ∪Ms) .

Finally, we set κ = min{s :Ms+1 =Ms}. Clearly, κ ≤ n.
Then the main result is the following:

Theorem 2.16. The set {gu : u ∈ Kκ} is a subset of E+(0).

Corollary 2.17. If the origin belongs to the interior of the set

{gu : u ∈ Kκ},

then the control system (2.1) is small-time locally controllable at the origin.

Proof. Taking into account Theorem 2.16, we obtain that the set

{gu : u ∈ Kκ}

is a subset of E+(0). Applying Lemma 2.6, we complete the proof. �

As a corollary of Theorem 2.16, we obtain the main result in [14]:

Corollary 2.18. If the origin belongs to the interior of the set

{gu : u ∈ K2},

then the control system (2.1) is small-time locally controllable at the origin.

AIMS Mathematics Volume 10, Issue 12, 29703–29731.
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To clarify the relation of Theorem 2.16 to the main result in [15], we define the sets

N1 = {u ∈ M0 : − f (u) ∈ K1};

M̃1 = span ({[gu, [gv, f ]](0) : v ∈ M0, u ∈ N1} ∪M0) .

For s = 1, 2, 3, . . ., we define the sets K̃s+1, Ns+1, and M̃s+1 recursively as follows:

K̃s+1 = cone
(
K1 ∪ M̃s

)
,

Ns+1 = {u ∈ M0 : − f (u) ∈ K̃s+1},

M̃s+1 = span
(
{[gu, [gv, f ]](0) : v ∈ M0, u ∈ Ns+1} ∪ M̃s

)
.

One can directly verify the following inclusions:

K̃s ⊆ Ks, M̃s ⊆ Ms, s = 2, 3, . . . ,

where the sets Ks andMs (for s = 2, 3, . . .) are defined prior to the statement of Theorem 2.16.
As a corollary of Theorem 2.16, we also recover the main result of [15].

Corollary 2.19. Let
M̃κ+1 = M̃κ.

If the origin belongs to the interior of the set

{gu : u ∈ K̃κ},

then the control system (2.1) is small-time locally controllable at the origin.

Next, we present illustrative examples showing the applicability of the obtained results. The STLC
property of the control system in the first example does not follow directly from Theorem 2.16.
However, by applying ideas from the proofs of Lemma 2.10, Corollary 2.11, and Theorem 2.16, one
can prove its small-time controllability at the origin.

Example 2.20. Let us consider the following control system Σ1:

ẋ1(t) = u1(t), x1(0) = 0, u1(t) ∈ [−1, 1],
ẋ2(t) = u2(t), x2(0) = 0, u2(t) ∈ [−1, 1],
ẋ3(t) = u3(t), x3(0) = 0, u3(t) ∈ [−1, 1],
ẋ4(t) = u4(t), x4(0) = 0, u4(t) ∈ [−1, 1],
ẋ5(t) = x2

1(t) − x2
2(t), x5(0) = 0,

ẋ6(t) = x3(t)x5(t), x6(0) = 0,
ẋ7(t) = x4(t)x6(t), x7(0) = 0.

We define:
x := (x1, x2, x3, x4, x5, x6, x7)T ,

f (x) := (0, 0, 0, 0, x2
1 − x2

2, x3x5, x4x6)T ,

g1(x) := (±1, 0, 0, 0, 0, 0, 0)T ,

g2(x) := (0,±1, 0, 0, 0, 0, 0)T ,

g3(x) := (0, 0,±1, 0, 0, 0, 0)T ,

g4(x) := (0, 0, 0,±1, 0, 0, 0)T .

AIMS Mathematics Volume 10, Issue 12, 29703–29731.
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One can directly verify that:

K0 =M0 = {x ∈ R7 : x5 = x6 = x7 = 0},

K1 =M1 = {x ∈ R7 : x6 = 0, x7 = 0},

K2 = {x ∈ R7 : x7 = 0},

L2 =M1, M2 = K2 = K3 = L3 =M3.

Thus, by applying Theorem 2.16, we cannot conclude anything regarding the STLC of the system
Σ1 at the origin.

On the other hand, one can directly verify (using the identity (A.9) from the proof of Theorem 2.16)
that there exists positive integer m and real numbers ci, i=1,2, such that

Exp
(
4mεγ f +

2mε3γ

3
f (gi) + ciε

5γΛi + Oi(ε7γ)
)

(x) ∈ R(x, 4mεγ), x ∈ Ω0, ε ∈ (0, ε0),

where Λi is a sum of Lie brackets of f and gi, i = 1, 2, of length five, that are invariant with respect to
Ξ±, and hence, Λi is sum of Lie brackets each of them is homogeneous of degree at least two. In this
example, and taking into account Corollary 2.13, one can verify that the term Oi(ε7γ) is a sum of Lie
brackets of f and gi, i = 1, 2, where each addend is homogeneous of degree at least two. Moreover,
f (g1) + f (g2) = 0 and f ( f (g1)) = 0. By applying Lemma 2.10 with α = γ > 0, β1 = β2 := 3γ > α,
B1 = f (g1), B2 = f (g2) and C = g3, we obtain that

hi := [ f (gi), [g3, f ]], i = 1, 2,

belong to the set E+(0). Next, one can prove (following the approach proposed in [12]) that

[hi, [g4, f ]], i = 1, 2,

also belong to the set E+(0). Applying Lemma 2.6, we conclude that the system Σ1 is small-time locally
controllable at the origin. Let us note that the main results presented in [14, 15] are not applicable to
this example.

Again, we cannot decide, using Theorem 2.16, whether the control system in the next example is
small-time local controllable at the origin. However, a direct calculation now shows that this system is
not STLC:

Example 2.21. Let us consider the following control system Σ2:

ẋ1(t) = u1(t), x1(0) = 0, u1(t) ∈ [−1, 1],
ẋ2(t) = u2(t), x2(0) = 0, u2(t) ∈ [−1, 1],
ẋ3(t) = u3(t), x3(0) = 0, u3(t) ∈ [−1, 1],
ẋ4(t) = u4(t), x4(0) = 0, u4(t) ∈ [−1, 1],
ẋ5(t) = x2

1(t) − x2
2(t), x5(0) = 0,

ẋ6(t) = x2
3(t) − x2

4(t), x6(0) = 0,
ẋ7(t) = x5(t)x6(t), x7(0) = 0,
ẋ8(t) = x2

5(t) − x2
7(t), x8(0) = 0.
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We define:
x := (x1, x2, x3, x4, x5, x6, x7, x8)T ,

f (x) := (0, 0, 0, 0, x2
1 − x2

2, x
2
3 − x2

4, x5x6, x2
5 − x2

7)T ,

g1(x) := (±1, 0, 0, 0, 0, 0, 0, 0)T ,

g2(x) := (0,±1, 0, 0, 0, 0, 0, 0)T ,

g3(x) := (0, 0,±1, 0, 0, 0, 0, 0)T ,

g4(x) := (0, 0, 0,±1, 0, 0, 0, 0)T .

One can directly verify that:

K0 =M0 = {x ∈ R8 : x5 = x6 = x7 = x8 = 0},

K1 =M1 = {x ∈ R8 : x7 = x8 = 0},

K2 = {x ∈ R8 : x7 = αβ, x8 = β2, α, β ∈ R},

L2 =M1,

M2 = {x ∈ R8 : x8 = 0}, K3 = {x ∈ R8 : x8 ≥ 0},

L3 = L2, M3 =M2.

Thus, applying Theorem 2.16, we cannot conclude anything regarding the STLC of the system Σ2

at the origin.

In fact, the control system Σ2 is not small-time locally controllable at the origin. Indeed, let
ui : [0,T ] → [−1, 1] for i = 1, 2, 3, 4 be arbitrary admissible controls, and let x1(t), . . . , x8(t) be
the corresponding trajectory over t ∈ [0,T ]. Since the controls are bounded, there exists a constant
C > 0 such that:

|xi(t)| ≤ Ct, for all i = 1, . . . , 8, and t ∈ [0,T ].

Applying Hŏlder’s inequality, we obtain:(∫ t

0
x5(s)x6(s) ds

)2

≤

(∫ t

0
x2

5(s) ds
) (∫ t

0
x2

6(s) ds
)
≤

C2t3

3

∫ t

0
x2

5(s) ds. (1)

Then, for each sufficiently small T > 0, we have:

x8(T ) =

∫ T

0

(
x2

5(t) − x2
7(t)

)
dt =

∫ T

0

x2
5(t) −

(∫ t

0
x5(s)x6(s) ds

)2 dt.

Using inequality (1), it follows that:

x8(T ) ≥
(
1 −

C2T 4

12

) ∫ T

0
x2

5(t) dt ≥ 0.

Hence, any point with a negative x8-coordinate does not belong to the reachable set of the system
Σ2. This confirms that Σ2 is not small-time locally controllable at the origin.
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3. Proof of Theorem 2.16

First, we remind the reader that there exists a compact neighborhood Ω0 of the origin and a positive
real number T0 > 0 such that each trajectory x of Σ starting from a point x0 ∈ Ω0, and corresponding
to some admissible control, is well-defined on the interval [0,T ] with T ≤ T0, and remains within Ω.

Let N be the set of all positive integers. We define the following sets:

U :=

u : (0, εu)→ U ∩ B̄ | u(ε) =

m∑
i=1

εαiui, ui ∈ U, αi > 0, i = 1, . . . ,m, m ∈ N

 ,
U± :=

u : (0, εu)→ (rec U) ∩ B̄ | u(ε) =

m∑
i=1

εαiui, ui ∈ rec U, αi > 0, i = 1, . . . ,m, m ∈ N

 ,
and finally,

U1 :=

u : (0, εu)→
m∑

i=1

εαiui | ui ∈ M1, αi > 0, m ∈ N

 , where εu ∈ (0, 1).

Without loss of generality we may assume that κ ≥ 2, where κ = min{s : Ms+1 = Ms}. Let us fix
the reals α, β, and γ such that

1 < α <
γ

4
and 1 < 2κ−1β < 2κ+1β < α. (3.1)

Remark 3.1. The positive triples (α, β, γ) are explicitly defined via the inequalities (3.1). The non-
emptiness of the set of feasible triples (α, β, γ) can be easily verified from these inequalities. Moreover,
these inequalities ensure that the retained Lie terms dominate the remainders (for detailed, see pages 4
and 5).

Let µ := 2κβ, and for each s = 1, . . . , κ, we set

µ1 := 2κ−1β, µ2 := 2κ−1
(
1 +

1
2

)
β, µs := 2κ−1

(
1 +

1
2

+ · · · +
1

2s−1

)
β.

Clearly, the inequalities (3.1) imply that

1 < µ1 < µ2 < · · · < µκ < µ and 2µ < α. (3.2)

Next we prove that for each elements p and q of the set {1, . . . , κ}with p < q the following inequality
holds true

µp + µ ≤ 2µq. (3.3)

Indeed, we have that

2µq − µ − µp = 2κ
(
1 +

1
2

+ · · · +
1

2q−1

)
β − 2κβ − 2κ−1

(
1 +

1
2

+ · · · +
1

2p−1

)
β

= 2κ
(
1 +

1
2

+ · · · +
1

2q−1

)
β − 2κ

(
1 +

1
2

+ · · · +
1

2p−1 +
1
2p

)
β ≥ 0.
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Let us fix an integer number p from the set {1, 2, . . . , κ} and an arbitrary Lie bracket
[
gup ,

[
gvp , f

]]
with

[
gup ,

[
gvp , f

]]
(0) ∈ Mp. Then Lemma A.5 (cf. the Appendix) implies the existence of a real

εupvp ∈ (0, 1), elements vi ∈ M1 and reals δi ≥ 0, i = 1, . . . , ρ̄, such that

(0, εupvp) 3 ε→ εµ+µp
[
gup ,

[
gvp , f

]]
+ ε2µ

ρ̄∑
i=1

εδi f (vi)

is an admissible sum of Lie brackets of length seven, i.e., there exist u0 ∈ U, uα ∈ U±, α = 1, . . . , s1,
and uα ∈ U1, α = s1 + 1, . . . , s, such that for each ε ∈ (0, εupvp) we have that

εµ+µp
[
gup ,

[
gvp , f

]]
+ ε2µ

ρ̄∑
i=1

εδi f (vi) = gu0(ε) +

s∑
α=1

f (uα(ε)). (3.4)

According to Lemma A.4 (cf. the Appendix), there exist positive numbers q0, qi
1, and qi

2, for
i = 1, . . . , s, a real number ε̄ ∈ (0, 1), and a family of vector fields a(·) ∈ A0 (the set A0 of parameterized
families of analytic vector fields is defined before the set E+(0)) such that for each x ∈ Ω0 and each
ε ∈ (0, ε̄), we have thatV(ε) is an admissible flow, where

V(ε)(x) = Exp


ε6γ+3 + q0ε

2γ+1 +

s∑
i=s1+1

(
qi

1ε
3γ + qi

2ε
γ
) f

+ε6γ+3α

gu0(ε) +

s∑
i=1

f (ui(ε))

 + a(ε) + O
(
ε6γ+4α

) (x)

∈ R

x, ε6γ+3α + q0ε
2γ+α +

s∑
i=s1+1

(
qi

1ε
3γ + qi

2ε
γ
) . (3.5)

Taking into account (3.4), we obtain that

V(ε)(x) = Exp


ε6γ+3 + q0ε

2γ+1 +

s2∑
i=s1+1

(
qi

1ε
3γ + qi

2ε
γ
) f

+ε6γ+3α

εµ+µp
[
gup ,

[
gvp , f

]]
+ ε2µ

ρ̄∑
i=1

εδi f (vi)

 + a(ε) + O
(
ε6γ+4α

) (x). (3.6)

Our choice of µp and µ (cf. the inequalities (3.2) and (3.3)) implies the inequalities µp < µ and
2µ < α. From here we obtain that

6γ + 3α + µp + µ < 6γ + 3α + 2µ < 6γ + 4α.

Taking into account that f and a(ε) vanish at the origin for each ε ∈ (0, ε̄upvp), we obtain that[
gup ,

[
gvp , f

]]
∈ E+(0). This completes the proof of Theorem 2.16.
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4. Conclusions

We apply the general differential-geometrical approach proposed by Hermes (cf. [7]) to study the
local properties of the reachable sets of smooth control systems. This approach was later employed
in [17,30] to characterize the STLC property for a class of piecewise linear control systems and a class
of switching control systems, respectively.

In the present paper, we extend this approach to the study of reachable sets for a class of polynomial
control systems whose dynamics are determined by a convex compact set and by a polynomial drift
term, a polynomial vector field that is homogeneous of degree two. The main result shows that certain
“bad” Lie brackets (in the sense of Sussmann, cf. [28, 29]) are not obstructions to the STLC property
and, in fact, yield tangent vector fields to the reachable set of the considered control system.

As a corollary, we derive a new sufficient condition for STLC. This condition generalizes the results
previously obtained in [14,15]. Finally, two examples are provided to illustrate the applicability of the
results.

We emphasize that the main results of this paper rely critically on the quadratic homogeneity of
the drift term f . In particular, the recursive cone construction and the analysis of Lie brackets use
the specific scaling properties of quadratic vector fields to ensure the dominance of certain terms
and the control of remainders. While the overall strategy may provide insight for more general
analytic drifts, extending the sufficient conditions for STLC beyond the quadratic case remains an open
problem. Thus, the current results are strictly valid for systems with quadratic homogeneous drifts,
and any generalization to higher-degree or non-homogeneous analytic drifts would require additional
techniques and careful analysis.
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Appendix

Proof of Lemma 2.10. According to the assumptions of Lemma 2.10, we have that C ∈ G± with f (C) =

0. Also, for i = 1, 2, we have

Exp
(
Ai(ε) + εβi Bi + O

(
εα+2βi

))
(x) ∈ R (x, qi(ε)) for all ε ∈ [0, ε0], (A.1)

and for all x belonging to a neighborhood of the origin, where:

• Bi, i = 1, 2, are elements of L, homogeneous of degree zero, with B1 + B2 = 0,
• Ai(ε) = p0

i (ε) f +
∑ki

j=1 p j
i (ε)Λ j

i ,
• Λ

j
i are elements of L, homogeneous of degree two,

• p j
i and qi are positive real polynomials, with

min
{
ord

(
p j

i

)
j = 0, 1, . . . , ki, i = 1, 2

}
≥ α > 0,
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• min {β1, β2} > α.

Without loss of generality, we may assume that β1 = β2 = β. Indeed, let us assume that β1 < β2.
Then we set β := β2 and ε := εβ2/β1 in (A.1) for i = 1, and obtain that

Exp
(
Ã1(ε) + εβB1 + Õ1

(
εα+2β

))
(x) ∈ R (x, q̃1(ε)) for all ε ∈ [0, εβ1/β2

0 ],

where Ã1(ε) := A1(εβ2/β1), Õ1(εα+2β) := O1(εαβ/β1+2β) and q̃1(ε) := q1(εβ2/β1). One can proceed similarly
if β1 > β2.

Since C ∈ G± and β > α, we fix arbitrary δ ∈ (α, β) and α̂ ∈ (α/2, α) such that δ + α > α̂ + β.
Possibly after reducing ε0 > 0, we have (because δ > α > 0) that

Exp
(
εα f ± εδC

)
(x) ∈ R (x, εα) for all ε ∈ [0, ε0] and all x ∈ Ω0. (A.2)

Because α̂ ∈ (α/2, α), for i = 1, 2, the ratio

Oi(εα+2β)
εα̂+2β =

Oi(εα+2β)
εα+2β ·

εα+2β

εα̂+2β

tends to zero as ε → 0, uniformly with respect to x ∈ Ω0. For this reason, we write Oi

(
εα+2β

)
as

oi

(
εα̂+2β

)
, for i = 1, 2.

From this point, we may assume (after possibly decreasing ε0 > 0 and Ω0) that

M(ε)(x) :=M1(ε) ◦ Exp
(
εα̂ f

)
◦M2(ε)(x) ∈ R

(
x, εα̂ + 2εα + q1(ε) + q2(ε)

)
(A.3)

for all ε ∈ [0, ε0] and all x ∈ Ω0, and

Mi(ε) := Exp
(
Ai(ε) + εβBi + o(εα̂+2β)

)
◦ Exp

(
εα f + εδCi

)
, (A.4)

with Ci := (−1)i+1C, i = 1, 2. Applying the C-B-H formula, we obtain that

Mi(ε) = Exp
(
Ai(ε) + εα f + εβBi + εδCi +

1
2
εα[Ai(ε), f ] +

εδ

2
[Ai(ε),Ci]

+
εα+β

2
[Bi, f ] +

εβ+δ

2
[Bi,Ci] +

εα

12
[Ai(ε), [Ai(ε), f ]] +

εδ

12
[Ai(ε), [Ai(ε),Ci]]

+
εα+β

12
[Ai(ε), [Bi, f ]] +

εβ+δ

12
[Ai(ε), [Bi,Ci]] +

εα+β

12
[Bi, [Ai(ε), f ]] +

εβ+δ

12
[Bi, [Ai(ε),Ci]]

+
εα+2β

12
[Bi, [Bi, f ]] +

ε2β+δ

12
[Bi, [Bi,Ci]] +

ε2α

12
[ f , [ f , Ai(ε)]] +

ε2α+β

12
[ f , [ f , Bi]]

+
εα+δ

12
[ f , [Ci, Ai(ε)]] +

εα+β+δ

12
[ f , [Ci, Bi]] +

εα+δ

12
[Ci, [ f , A1(ε)]]

+
εα+β+δ

12
[Ci, [ f , Bi]] +

ε2δ

12
[Ci, [Ci, Ai(ε)]] +

εβ+2δ

12
[Ci, [Ci, Bi]] + O

(
ε4α

)
+ oi

(
εα̂+2β

))
(using the inequality α + δ > α̂ + β)

= Exp
(
εβBi + εδCi +

εα+β

2
[Bi, f ] +

εδ

2
[Ai(ε),Ci] + a2

i (ε) + oi

(
εα̂+β+δ

))
, (A.5)
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where a2
i (ε) = Ai(ε) + εα f plus a finite sum of Lie brackets of Ai(ε), εα f , εβBi, and εδCi, each of which

is homogeneous of degree greater than two. Also, we have used the inequalities ord(p j
i ) ≥ α for each

j = 1, . . . , ki, i = 1, 2.
Note that the vector fields Bi, and Ci, i = 1, 2, are homogeneous of degree zero, and hence [Bi, B j] ≡

0, [Bi,C j] ≡ 0 and [Ci,C j] ≡ 0, i = 1, 2; j = 1, 2. Also, the identity

[Ci, [Bi, f ]] + [Bi, [ f ,Ci]] + [ f , [Ci, Bi]] = 0,

implies that [Ci, [Bi, f ]] = [Bi, [Ci, f ]].
Taking into account (A.5) and that B1 + B2 = 0, we apply again the C-B-H formula and obtain that

M(ε)(x) =M1(ε) ◦ Exp
(
εα̂ f

)
◦M2(ε)(x)

= Exp
(

1
12

[εβB1 + εδC1, [εβB1 + εδC1, f ]]

+
1

12
[εβB2 + εδC2, [εβB2 + εδC2, f ]] + a(ε) + õ

(
εα̂+β+δ

))
,

where a(ε) is a finite sum of Lie brackets that vanish at zero. This equality follows from a
straightforward calculation based on the C-B-H formula. In the computation, we use the relations
B1 + B2 = 0 and C1 + C2 = 0, as well as the fact that the Lie bracket of two vector fields that vanish at
the origin also vanishes at the origin.

Since [C1, [C1, f ]] = 2 f (C1) = 0, B2 = −B1, C2 = −C1, and [Ci, [Bi, f ]] = [Bi, [Ci, f ]] for i = 1, 2,
the previously written equality together with (A.3) implies that

M(ε)(x) = Exp
(
1
3
εα̂+β+δ[B1, [C1, f ]] + a(ε) + o

(
εα̂+β+δ

))
∈ R

(
x, εα̂ + 2εα + q1(ε) + q2(ε)

)
for all x ∈ Ω and for each ε ∈ [0, ε0). Hence, we obtain that [B1, [C1, f ]] ∈ E+(0). This completes the
proof of Lemma 2.10. �

Proof of Corollary 2.11. Assume that α = β1 = β2. The proof of Corollary 2.11 follows the same steps
as the proof of Lemma 2.10, with the only difference being the choice of δ: we set δ := α. Continuing
as in the proof of Lemma 2.10, we obtain that

M(ε)(x) = Exp
(
1
3
εα̂+2α[B1, [C1, f ]] +

εα̂+2α

6
[B1, [B1, f ]] + a(ε) + õ

(
εα̂+2α

))
∈ R

(
x, εα̂ + 2εα + q1(ε) + q2(ε)

)
for all x ∈ Ω and all ε ∈ [0, ε0). Since

[B1, [B1, f ]] = 2 f (B1) = 0,

it follows that [B1, [C1, f ]] ∈ E+(0). This completes the proof of Corollary 2.11. �

We recall that γ > 1, and the setsU,U±, andU1 are defined in Section 3. Furthermore, there exist
a compact neighborhood Ω0 of the origin and a constant T0 > 0 such that every trajectory x of the
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system Σ, starting from a point x0 ∈ Ω0 and corresponding to some admissible control, is well-defined
on the interval [0,T ] for all T ≤ T0, and remains within Ω.

For notational convenience, we define the function τ : N→ R+ by

τ(η) :=
T0

η
.

Let u be an arbitrary element of U±, and let ε ∈ (0, ε̄u), where ε̄u := min(εu, τ(4)). Applying the
equality −gu(ε) = g−u(ε) and the C-B-H formula, we obtain

Exp
(
εγ( f ± gu(ε))

)
◦ Exp

(
εγ( f ∓ gu(ε))

)
= Exp

(
2εγ f ± ε2γ[gu(ε), f ] +

ε3γ

3
[gu(ε), [gu(ε), f ]] + O±(ε4γ)

)
. (A.6)

Our choice of ε implies that for each x ∈ Ω0, the trajectory Pu(ε)(x) is well-defined, where

Pu(ε)(x) := Exp
(
εγ( f + gu(ε))

)
◦ Exp

(
εγ( f − gu(ε))

)
◦ Exp

(
εγ( f − gu(ε))

)
◦ Exp

(
εγ( f + gu(ε))

)
(x) ∈ R(x, 4εγ). (A.7)

Taking into account Eq (A.6) and the C-B-H formula, we obtain

Pu(ε) = Exp
(
2εγ f + ε2γ[gu(ε), f ] +

ε3γ

3
[gu(ε), [gu(ε), f ]] + O+(ε4γ)

)
◦ Exp

(
2εγ f − ε2γ[gu(ε), f ] +

ε3γ

3
[gu(ε), [gu(ε), f ]] + O−(ε4γ)

)
.

Thus, we have

Pu(ε) = Exp
(
4εγ f +

2ε3γ

3
[gu(ε), [gu(ε), f ]] + 2ε3γ[ f , [ f , gu(ε)]] + O(ε4γ)

)
. (A.8)

Applying Corollary 2.13 with Ξ±, we obtain that there exists a positive integer m and an admissible
flow P̂u(ε), for ε ∈ (0, ε̄m

u ) with ε̄m
u := min({εu, τ(4m)}), such that

P̂u(ε)(x) = Exp
(
4mεγ f + m

2ε3γ

3
[gu(ε), [gu(ε), f ]]

+ ε5γΛu(ε) + O(ε7γ)
)
(x) ∈ R(x, 4mεγ), x ∈ Ω0, ε ∈ (0, ε̄m

u ), (A.9)

where Λu(ε) is a finite sum of Lie brackets of length five of f and gu(ε) that are invariant with respect
to Ξ±. Taking into account Remark 2.14, we obtain that Λu(ε) is a finite sum of Lie brackets that are
homogeneous of degree at least two, and hence vanish at the origin.

Remark A.1. Note that the proof of Proposition 5.1 from [29] implies that the positive integer m does
not depend on the particular choice of the element u fromU±.
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We choose arbitrary elements u0 ∈ U and u1, . . . , us from U±, set û := (u0, u1, . . . , us), εû =

min{εui , i = 0, 1, . . . , s} > 0,
ε̄û := min{εû, τ(2m(2s + 1)}

and consider the function

(0, ε̄û) 3 ε→ gu0(ε) +

s∑
i=1

f (ui(ε)) .

We call this function an admissible sum of Lie brackets of length three. Then, taking into
account (A.7)–(A.9), we obtain that for each x ∈ Ω0 and for each ε ∈ (0, ε̄û) we have that Qû(ε)(x) is
an admissible flow, where

Qû(ε)(x) := Exp
(
4m
3
ε3γ ( f + gu0(ε)

))
◦ P̂u1(ε) ◦ . . .

◦ P̂us(ε)(x) ∈ R
(
x,

4m
3
ε3γ + 4msεγ

)
. (A.10)

According to the C-B-H, we have that

Qû(ε)(x) = Exp

(4m
3
ε3γ + 4msεγ

)
f +

4m
3
ε3γ

gu0(ε) +
1
2

s∑
i=1

[gui(ε), [gui(ε), f ]]

 + Os(ε4γ)
)
.

Applying Corollary 2.13 with Ξ±, we obtain that there exists a positive integer p such that for each
ε ∈ (0, ε̄p

û) with ε̄p
û := min{ε̄û, τ(2pm(2s+1))} and for each x ∈ Ω0 it is well defined the admissible flow

Q̂û(ε)(x) := Exp
(
p
(
4m
3
ε3γ + 4msεγ

)
f

+
4mp

3
ε3γ

gu0(ε) +
1
2

s∑
i=1

[gui(ε), [gui(ε), f ]]

 + a(ε) + Os(ε7γ)
)
(x)

= Exp

p
(
4m
3
ε3γ + 4msεγ

)
f +

4mp
3

ε3γ

gu0(ε) +

s∑
i=1

f (ui(ε))


+a(ε) + Os(ε7γ)

)
(x) ∈ R

(
x, p

4m
3
ε3γ + 4mpsεγ

)
,

where a(ε) is a finite sum of Lie brackets of length five of f and gui(ε), i = 0, 1, . . . , s, that are invariant
with respect to Ξ±. Taking into account Remark 2.14, we obtain that a(ε) is a finite sum of Lie brackets
that are homogeneous of degree at least two, and hence, vanishing at the origin. In such a way we have
proved the following:

Lemma A.2. Let

(0, εû) 3 ε→ gu0(ε) +

s∑
i=1

f (ui(ε)) ,

be an arbitrary admissible sum of Lie brackets of length three where u0 ∈ U and u1, . . . , us belong to
U±,

û := (u0, u1, . . . , us) and εû = min{εui , i = 0, 1, . . . , s}.
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Then there exists an admissible flow Q̂û(ε), ε ∈ (0, ε̄û) with

ε̄
p
û := min{ε̄û, τ(2pm(s + 1))}

such that for each ε ∈ (0, ε̄p
û) and each x ∈ Ω0 we have that

Q̂û(ε) := Exp

p
(
4m
3
ε3γ + 4msεγ

)
f +

4mp
3

ε3γ

gu0(ε) +

s∑
i=1

f (ui(ε))


+ a(ε) + Os(ε7γ)

)
∈ R

(
x, p

4m
3
ε3γ + 4mpsεγ

)
, (A.11)

where a(ε) is a finite sum of Lie brackets of length five of f and gui(ε), i = 1, . . . , s, homogeneous of
degree at least two, and thus vanishing at the origin.

Let us fix an arbitrary element u ∈ U1. According to the definition of the setU1, we have that

(0, εu) 3 ε→ u(ε) =

m0∑
i=1

εαiui, with αi > 1 and ui ∈ M1, i = 1, . . .m0.

The definition ofM1 imply that each ui = ui0 +
∑mi

j=1 f (ui j) with ui0 ∈ U and ui j ∈ M0, j = 1, . . . ,mi,
i = 1, . . . ,m0. Then

u(ε) =

m0∑
i=1

εαi

ui0 +

mi∑
j=1

f (ui j)

 =

m0∑
i=1

εαiui0 +

m0∑
i=1

mi∑
j=1

f (εαi/2ui j)

(after renumbering these sums can be written as follows)

= û0(ε) +

m∑
i=1

f (εαi/2ūi) = û0(ε) +

m∑
i=1

f (ûi(ε)),

where û0(ε) :=
∑m0

i=1 ε
αiui0, ûi(ε) := εαi/2ūi. We set û := (û0, û1, . . . , ûm). Without loss of generality we

may think that εû := min{ûi, i = 0, 1, . . . ,m} ∈ (0, 1) is so small that for each ε ∈ (0, εû) we have that

m0∑
i=1

εαiui0 ∈ U ∩ B̄ and εαi/2ūi ∈ M0 ∩ B̄, i = 1, . . .m. (A.12)

Applying Lemma A.2, we obtain that there exists a positive integer p+ such that for each point
x ∈ Ω0 and each ε ∈ (0, ε̄p+

û ) it is satisfied

Exp

p+

(
4m
3
ε3γ + 4msεγ

)
f + p+ 4m

3
ε3γ

gu0(ε) +

m∑
i=1

f (ûi(ε))

 + a+(ε) + O+(ε7γ)
)
(x)

= Exp
(
p+

(
4m
3
ε3γ + 4msεγ

)
f + p+ 4m

3
ε3γu(ε) + a+(ε) + O+(ε7γ)

)
(x)

∈ R

(
x, p+

(
4m
3
ε3γ + 4msεγ

))
, (A.13)
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where a+(ε) is a finite sum of Lie brackets of f and gui(ε), i = 0, 1, . . . , s of length five that are invariant
with respect to Ξ±. Taking into account Remark 2.14, we obtain that a(ε) is a finite sum of Lie brackets
that are homogeneous of degree at least two, and hence, vanishing at the origin.

By the following change of the parameter

ε := ε

(
p+4m

3

) 1
3γ

,

it follows from (A.13) that there exists positive reals σ+ and ε̄σ
+

û such that for each point x ∈ Ω0 and
each ε ∈ (0, ε̄σ

+

û ) the following inclusion is satisfied

Exp
(
(ε3γ + σ+εγ) f + ε3γu(ε) + â+(ε) + Ô+(ε7γ)

)
(x) ∈ R

(
x, ε3γ + σ+εγ

)
, (A.14)

where â+(ε) ∈ A0.
According to the definition ofM1, we have that

−ui = ũi0 +

li∑
j=1

f (ũi j), i = 1, ...,m0,

where each ũi0 ∈ U and each ũi j ∈ M0. Hence,

−u(ε) = −

m0∑
i=1

εαiui =

m0∑
i=1

εαi

ũi0 +

li∑
j=1

f (ũi j)

 =

m0∑
i=1

ũi0(ε) +

m0∑
i=1

li∑
j=1

f (εαi/2ũi j) = ũ0(ε) +

m̄∑
i=1

f (ũi(ε)),

(A.15)

where ũ0(ε) =
∑m0

i=1 ũi0(ε) with ũi0(ε) := εαi ũi0 and ũi(ε), i = 1, . . . .m̄, are determined by the equality

m̃∑
i=1

f (ũi(ε)) =

m∑
i=1

li∑
j=1

f (εαi/2ũi j). (A.16)

Without loss of generality we may think that εû is so small that for each ε ∈ (0, εû) we have that

m0∑
i=1

εαi ũi0 ∈ U ∩ B̃ and εαi/2ũi ∈ M0 ∩ B̄, i = 1, . . .m. (A.17)

Applying Lemma A.2, we obtain that there exists a positive integer p− such that for each point
x ∈ Ω and each ε ∈ (0, ε̄p−

û ) it is satisfied

Exp

p−
(
4m
3
ε3γ + 4msεγ

)
f + p−

4m
3
ε3γ

gũ0(ε) +

m̃∑
i=1

f (ũi(ε))


+ a−(ε) + Os(ε7γ)

)
(x) = Exp

(
p−

(
4m
3
ε3γ + 4msεγ

)
f (A.18)

−p−
4m
3
ε3γu(ε) + a−(ε) + O−(ε7γ)

)
(x) ∈ R

(
x, p−

(
4m
3
ε3γ + 4msεγ

))
,
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where a−(ε) is a finite sum of Lie brackets of f and gui(ε), i = 0, 1, . . . , s, of length five that are invariant
with respect to Ξ±. Taking into account Remark 2.14, we obtain that a(ε) is a finite sum of Lie brackets
that are homogeneous of degree at least two, and hence, vanishing at the origin.

By the following change of the parameter

ε := ε

(
p−4m

3

) 1
3γ

,

it follows from (A.18) that there exists positive reals σ− and ε̄σ
−

û such that for each point x ∈ Ω0 and
each ε ∈ (0, ε̄σ

−

û ) the following inclusion is satisfied

Exp
(
(ε3γ + σ−εγ) f + ε3γu(ε) + â−(ε) + Ô−(ε7γ)

)
(x) ∈ R

(
x, ε3γ + σ−εγ

)
, (A.19)

where â−(ε) ∈ A0.
Using (A.14) and (A.19), we obtain that

Exp
(
(ε3γ + σ+εγ) f + ε3γu(ε) + â+(ε) + Ô+(ε7γ)

)
◦ Exp

(
ε3α f

)
◦ Exp

(
(ε3γ + σ−εγ) f + ε3γu(ε) + â−(ε) + Ô−(ε7γ)

)
(x) (A.20)

∈ R
(
x, 2ε3γ + (σ+ + σ−)εγ + ε3α

)
for each x ∈ Ω0 and for each ε ∈ (0, ε̄σ

+,σ−

û ) with

ε̄σ
+,σ−

û := min{εû, τ(3 + σ+ + σ−)}.

Applying Corollary 2.13 with Ξ, we obtain that there exists a positive integer σ∗ and a real ε̃u such
that for each point x ∈ Ω and each ε ∈ (0, ε̃u) it is satisfied

S∗u(ε) := Exp
(
σ∗(2ε3γ + (σ+ + σ−)εγ + ε3α) f + σ∗

ε6γ+3α

12
[gu(ε), [gu(ε), f ]] + ãu(ε) + Õu

(
ε6γ+4α))

= Exp
(
σ∗(2ε3γ + (σ+ + σ−)εγ + ε3α) f + σ∗

ε6γ+3α

6
f (u(ε)) + ãu(ε) + Õu

(
ε6γ+4α))

∈ R
(
x, σ∗(2ε3γ + (σ+ + σ−)εγ + ε3α)

)
(A.21)

where ãu(ε) is a finite sum of Lie brackets (obtained from the C-B-H formula) that are invariant with
respect to Ξ (and, hence, of odd length) and such that gu(ε) appears in them at most one time (according
to the choice of the reals α and γ in (3.1)). Taking into account Remark 2.9, we obtain that a(ε) is
a finite sum of Lie brackets that are homogeneous of degree at least two, and hence, vanishing at the
origin.

This and the inclusion (A.21) imply the existence of positive reals q0, q1 and q2 such that for each
x ∈ Ω0 and for each ε ∈ (0, ε̃) there exists an admissible flow Fu(ε) such that

Fu(ε) := Exp
((

q0ε
3γ + q1ε

γ + q2ε
3α

)
f + ε6γ+3α f (u(ε)) + au(ε) + Ou

(
ε6γ+4α

))
∈ R

(
x, q0ε

3γ + q1ε
γ + q2ε

3α
)
,

where au(ε) is a family of analytic vector fields parameterized by ε, homogeneous of degree at least
two and thus vanishing at the origin. Thus we have proved the following:
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Lemma A.3. For each u ∈ U1 with εu ∈ (0, 1) that satisfies the relations (A.12) and (A.17) there exists
an admissible flow Fu(ε), ε ∈ (0, ε̃u), such that

Fu(ε) := Exp
((

q0ε
3γ + q1ε

γ + q2ε
3α

)
f + ε6γ+3α f (u(ε)) + au(ε) + Ou

(
ε6γ+4α

))
and Fu(ε)(x) ∈ R

(
x, q0ε

3γ + q1ε
γ + q2ε

3α
)
, x ∈ Ω0, ε ∈ (0, ε̃u), (A.22)

where au(ε) is a family of analytic vector fields parameterized by ε, homogeneous of degree at least
two, and hence, vanishing at the origin.

We choose arbitrary elements u0 ∈ U and u1, . . . , us fromU±∪U1, set ε̄ = min{εui , i = 0, 1, . . . , s} >
0 and consider the function

(0, ε̄) 3 ε→ gu0(ε) +

s∑
i=1

f (ui(ε)) .

We call this function an admissible sum of Lie brackets of length seven.
Let

(0, ε̄) 3 ε→ gu0(ε) +

s∑
i=1

f (ui(ε))

be an admissible sum of Lie brackets of length seven. Without loss of generality we may think that

(0, ε̄) 3 ε→ gu0(ε) +

s1∑
i=1

f (ui(ε)) +

s∑
i=s1+1

f (ui(ε)) ,

where ui ∈ U
± for i = 1, . . . , s1, and ui ∈ U1 for i = s1 + 1, . . . , s. We set û := (u0, u1, . . . , us1). Also,

we may think that the real ε̄ > 0 is so small that for each ε ∈ (0, ε̄) and for each x ∈ Ω0 the following
admissible flow is well defined

V(ε) := Qû(ε
2γ+α
γ (4mp/3)−1/(3γ)) ◦ Fus1+1(ε) ◦ · · · ◦ Fus2

(ε).

Taking into account Lemmas A.2 and A.3, we obtain existence of positive real numbers p0, qi
0, q

i
1 and

qi
2, i = s1 + 1, . . . , s, such that

V(ε) = Exp

(ε6γ+3α + p0ε
2γ+α

)
f + ε6γ+3α

gu0(ε) +

s1∑
i=1

f (ui(ε))

 + as1(ε) + Os1(ε6γ+4α)
)

◦Exp
((

qs1+1
0 ε3γ + qs1+1

1 εγ + qs1+1
2 ε3α

)
f + ε6γ+3α f (u(ε)) + aus1+1(ε) + Ous1+1

(
ε6γ+4α

))
◦ · · · ◦ Exp

((
qs

0ε
3γ + qs

1ε
γ + qs

2ε
3α

)
f + ε6γ+3α f (u(ε))+ aus(ε) + Ous

(
ε6γ+4α

))
.

Applying the C-B-H formula, we obtain that

V(ε) = Exp


ε6γ+3 + q0ε

2γ+1 +

s∑
i=s1+1

(
qs1+1

0 ε3γ + qs1+1
1 εγ + qs1+1

2 ε3α
) f

+ε6γ+3α

gu0(ε) +

s∑
i=1

f (ui(ε))

 + a(ε) + O
(
ε6γ+4α

) ,
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where a(ε) is a family of analytic vector fields parameterized by ε that are homogeneous of degree at
least two and vanishing at the origin. Moreover, for each x ∈ Ω0 and ε ∈ (0, ε̄) the following inclusion
holds true

V(ε)(x) ∈ R

x, ε6γ+3α + q0ε
2γ+α +

s∑
i=s1+1

(
qs1+1

0 ε3γ + qs1+1
1 εγ + qs1+1

2 ε3α
) .

In this way we have proved the following:

Lemma A.4. If

(0, ε) 3 ε→ gu0(ε) +

s∑
i=1

f (ui(ε))

is an arbitrary admissible sum of Lie brackets of length seven with u0 ∈ U, ui ∈ U
± for i = 1, . . . , s1,

and ui ∈ U1 for i = s1 + 1, . . . , s, then there exist a real ε̄ > 0 and an admissible flow

V(ε) = Exp


ε6γ+3 + q0ε

2γ+1 +

s∑
i=s1+1

(
qs1+1

0 ε3γ + qs1+1
1 εγ + qs1+1

2 ε3α
) f

+ε6γ+3α

gu0(ε) +

s∑
i=1

f (ui(ε))

 + a(ε) + O
(
ε6γ+4α

) ,
with a(ε) belonging to A0, and such that for each x ∈ Ω0 and each ε ∈ (0, ε̄) the following inclusion
holds trueV(ε)(x) ∈

∈ R

x, ε6γ+3α + q0ε
2γ+α +

s∑
i=s1+1

(
qs1+1

0 ε3γ + qs1+1
1 εγ + qs1+1

2 ε3α
) . (A.23)

As a reminder, the real numbers α, β and γ satisfy the following inequalities 1 < α <

γ/4 and 1 < 2κ−1β < 2κ+1β < α. Moreover, µ := 2κβ, µ1 := 2κ−1β, µ2 := 2κ−1
(
1 + 1

2

)
β, µs :=

2κ−1
(
1 + 1

2 + · · · + 1
2s−1

)
β, for each s = 1, . . . , κ. Also, we have shown that for each elements p and

q of the set {1, . . . , κ} with p < q the following inequality holds true:

µp + µ ≤ 2µq.

Next, we prove the following:

Lemma A.5. Let κ ≥ 2. Then for each positive integer q ∈ {2, . . . , κ} and for each Lie bracket[
guq ,

[
gvq , f

]]
with

[
guq ,

[
gvq , f

]]
(0) ∈ Mq there exist εuqvq ∈ (0, 1), elements vqi ∈ M1 and reals δqi ≥ 0,

i = 1, . . . , q̄, such that the function

(0, εuqvq) 3 ε→ εµq+µ
[
guq ,

[
gvq , f

]]
+ ε2µ

q̄∑
i=1

εδqi f (vqi) (A.24)

is an admissible sum of Lie brackets of length seven, i.e., there exists u0 ∈ U and uα ∈ U± ∪U1, α =

1, . . . , s, such that

εµq+µ
[
guq ,

[
gvq , f

]]
+ ε2µ

q̄∑
i=1

εδqi f (vqi) = gu0(ε) +

s∑
α=1

f (uα(ε))

for each ε ∈ (0, εuqvq).
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Proof of Lemma A5. The proof will be done by induction. First, we show that the claim holds true for
q = 2. Indeed, let

[
gu1 ,

[
gv1 , f

]]
be a Lie bracket with

[
gu1 ,

[
gv1 , f

]]
(0) ∈ M2. Then v1 ∈ M1, u1 ∈ L2.

According to the definition of L2, u1 ∈ M1 and

− f (u1) = u1,0 +

p1∑
j=1

f (u1 j) (A.25)

where u1,0 ∈ U and u1 j ∈ M1, j = 1, . . . , p1.

Because u1 and v1 belong toM1, we have that

u1 = u10 +

a1∑
i=1

f (u1i) with u10 ∈ U, u1i ∈ M0, i = 1, . . . , a1,

and

v1 = v10 +

b1∑
i=1

f (v1i) with v10 ∈ U, v1i ∈ M0, i = 1, . . . , b1.

Then

εµ1u1 + εµv1 = εµ1u10 + εµv10 +

a1∑
i=1

f (εµ1/2u1i) +

b1∑
i=1

f (εµ/2v1i). (A.26)

Clearly, there exists εu1v1 ∈ (0, 1) such that for each ε ∈ (0, εu1v1) we have that εµ1u10 + εµv10 ∈ U ∩ B̄
and the elements εµ1/2u1i, i = 1, . . . , a1, and εµ/2v1i, i = 1, . . . , b1, belong toM0∩ B̄. Moreover, we have
that

f (εµ1u1+ε
µv1)+ε2µ1gu1,0+

p1∑
j=1

f (εµ1u1 j) = ε2µ1 f (u1)+εµ1+µ [gu1 ,
[
gv1 , f

]]
+ε2µ f (v1)+ε2µ1gu1,0+ε

2µ1

p1∑
j=1

f (u1 j)

Applying (A.25) we obtain that

εµ1+µ [gu1 ,
[
gv1 , f

]]
+ ε2µ f (v1) = ε2µ1gu1,0 + f (εµ1u1 + εµv1) +

p1∑
j=1

f (εµ1u1 j). (A.27)

Clearly,

(0, εu1v1) ∈ ε→ ε2µ1gu1,0 + f (εµ1u1 + εµv1) +

p1∑
j=1

f (εµ1u1 j)

is an admissible sum of Lie brackets of length seven. Hence, according to (A.27), the function

(0, εu1v1) ∈ ε→ εµ1+µ [gu1 ,
[
gv1 , f

]]
+ ε2µ f (v1)

is also an admissible sum of Lie brackets of length seven. So, we obtain that Lemma A.5 holds true
for q = 2.

Let us assume that the Lemma A.5 holds true for each positive integer r satisfying the inequality
r ≤ q for some positive integer q < κ. We prove that it holds true also for p := q + 1.
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Indeed, let us fix a Lie bracket
[
gup ,

[
gvp , f

]]
with

[
gup ,

[
gvp , f

]]
(0) ∈ Mp \Mq. Then vp ∈ M1, up ∈

Lp. According to the definition of Lp, we have that

− f (up) = uαp +

β̄p∑
βp=1

f (uβp) +

δ̄p∑
δp=1

f (uδp) +

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγp jp

,
[
gvγp jp

, f
]]

(0), (A.28)

where uαp ∈ U, uβp ∈ M0, uδp ∈ M1 and each
[
guγp jp

,
[
gvγp jp

, f
]]

(0) belongs to Mγp with γp < p.
Clearly, there exists εu0

pv0
p
∈ (0, 1) such that for each ε ∈ (0, εu0

pv0
p
) the sum εµpup + εµvp can be present

as a sum (analogously to the equality (A.26))

εµpup + εµvp = εµpup0 + εµvp0 +

ap∑
i=1

f (εµp/2upi) +

bp∑
i=1

f (εµ/2vpi), (A.29)

where εµpup0 + εµvp0 ∈ U ∩ B̄, and εµp/2upi, i = 1, . . . , ap, and εµ/2vpi, i = 1, . . . , bp, belong toM0 ∩ B̄.
Moreover,

f
(
εµpup + εµvp

)
= ε2µp f

(
up

)
+ εµp+µ

[
gup ,

[
gvp , f

]]
+ ε2µ f

(
vp

)
.

We add

ε2µpguαp
+ ε2µp

β̄p∑
βp=1

f (uβp) + ε2µp

δ̄p∑
δp=1

f (uδp) + ε2µp

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγp jp

,
[
gvγp jp

, f
]]

to both sides of this equality and obtain

f
(
εµpup + εµvp

)
+ ε2µpguαp

+ ε2µp

β̄p∑
βp=1

f (uβp) + ε2µp

δ̄p∑
δp=1

f (uδp) + ε2µp

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγp jp

,
[
gvγp jp

, f
]]

= ε2µp f
(
up

)
+ εµp+µ

[
gup ,

[
gvp , f

]]
+ ε2µ f

(
vp

)
+ε2µpguαp

+ ε2µp

β̄p∑
βp=1

f (uβp) + ε2µp

δ̄p∑
δp=1

f (uδp) + ε2µp

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγp jp

,
[
gvγp jp

, f
]]
.

Taking into account (A.28), we obtain that

f
(
εµpup + εµvp

)
+ ε2µpguαp

+ ε2µp

βp∑
βp=1

f (uβ̄p) + ε2µp

δ̄p∑
δp=1

( f (uδp)

+ ε2µp

γ̄p∑
γp=1

j̄γp∑
jp=1

[
guγp jp

,
[
gvγp jp

, f
]]

= εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µ f

(
vp

)
. (A.30)

According to the inductive assumption, for each multi-index γp jp there exists εγp jp ∈ (0, 1) and a
function

(0, εγp jp) 3 ε→ ε2µ
pγp jp∑
kp=1

εδγp jpkp f (vγp jpkp),
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(here each vγp jpkp ∈ M1 and each real δγp jpkp ≥ 0) such that the function

(0, εγp jp) 3 ε→ εµ+µγp
[
guγp jp

,
[
gvγp jp

, f
]]

+ ε2µ
pγp jp∑
kp=1

εδγp jpkp f (vγp jpkp)

is an admissible sum of Lie brackets, i.e., for each ε ∈ (0, εγp jp) we have that

εµ+µγp
[
guγp jp

,
[
gvγp jp

, f
]]

+ ε2µ
pγp jp∑
kp=1

εδγp jpkp f (vγp jpkp) = gu0
γp jp

(ε) +

īγp jp∑
iγp jp =1

f
(
uiγp jp

(ε)
)
,

where u0
γp jp
∈ U and uiγp jp

∈ U± ∪U1 for each iγp jp = 1, . . . , īγp jp .
Taking this into account and setting

εu1
pv1

p
= min{εu0

pv0
p
, εγp jp , jp = 1, . . . , j̄γp , γp = 1, . . . , γ̄p} > 0,

we obtain from (A.30) that for each ε ∈ (0, εu1
pv1

p
) the following equality holds true

f
(
εµpup + εµvp

)
+ ε2µpguαp

+ ε2µp

β̄p∑
βp=1

f (uβp) + ε2µp

δ̄p∑
δp=1

f (uδp)

+

γ̄p∑
γp=1

ε2µp−µγp−µ

j̄γp∑
jp=1

εµγp +µ
[
guγp jp

,
[
gvγp jp

, f
]]

+

γ̄p∑
γp=1

ε2µp−µγp−µ

j̄γp∑
jp=1

ε2µ
pγp jp∑
kp=1

εδγp jpkp f (vγp jpkp)

= εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µ f

(
vp

)
+

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

ε2µ
pγp jp∑
kp=1

εδγp jpkp f (vγp jpkp).

Hence,

εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µ f

(
vp

)
+ ε2µ

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

pγp jp∑
kp=1

εδγp jpkp f (vγp jpkp)

= f
(
εµpup + εµvp

)
+ ε2µpguαp

+

β̄p∑
βp=1

f (εµpuβp) +

δ̄p∑
δp=1

( f (εµpuδp)

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄p∑
jp=1

εµ+µγp
[
guγp

,
[
gvγp

, f
]]

+ ε2µ
pγp jp∑
kp=1

εδγp jpkp f (vγp jpkp)


= f

(
εµpup + εµvp

)
+ ε2µpguαp

+

β̄p∑
βp=1

f (εµpuβp) +

δ̄p∑
δp=1

( f (εµpuδp) (A.31)

+

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

gu0
γp jp

(ε) +

īγp jp∑
iγp jp =1

f
(
uiγp jp

(ε)
) .
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Clearly there exists εupvp ∈ (0, εu1
pv1

p
) such that the sum

u0
p(ε) := ε2µpuαp +

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

u0
γp jp

(ε)

belongs to the setU for each ε ∈ (0, εupvp). Then (A.31) can be written as follows:

εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µ f

(
vp

)
+ ε2µ

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

pγp jp∑
kp=1

εδγp jpkp f (vγp jpkp)

= gu0
p(ε) + f

(
εµpup + εµvp

)
+

β̄p∑
βp=1

f (εµpuβp) +

δ̄p∑
δp=1

f (ε2µpuδp) +

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

īγp jp∑
iγp jp =1

f
(
uiγp jp

(ε)
)
.

Because 2µp − µ − µγp ≥ 0, the last equality implies that the function (0, εupvp) 3 ε→ Λ(ε), where

Λ(ε) = εµp+µ
[
gup ,

[
gvp , f

]]
+ ε2µ f

(
vp

)
+ ε2µ

γ̄p∑
γp=1

ε2µp−µ−µγp

j̄γp∑
jp=1

pγp jp∑
kp=1

εδγp jpkp f (vγp jpkp),

is also an admissible sum of Lie brackets. Hence, the inductive assumption holds true for the Lie
bracket

[
guγp

,
[
gvγp

, f
]]

. Thus, we can conclude that the inductive assumption holds true also for p :=
q + 1. Therefore, the inductive assumption holds true for each p ∈ {1, 2, . . . , κ}. This completes the
proof of Lemma A.5.
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