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Abstract: Small-time local controllability (STLC) at a point x, is a fundamental property of control
systems, and is intimately connected to the local structure of their reachable sets. This study built upon
the notion of a fangent vector field to the reachable set of a control system, a concept introduced by
Hermes in [7], based on an idea of Krener (cf. [18]). The importance of this concept stemed from the
fact that the set E*(x), consisting of all tangent vector fields to the reachable set at x,, formed a convex
cone. If the zero vector lay in the interior of this cone, the system is STLC at x,. A long-standing open
question concerns the precise characterization of the set E*(xy). In this paper, we studied the Lie
algebra generated by the drift term—a vector field homogeneous of degree two—and the constant
vector fields of a polynomial control system. By applying the classical Campbell-Baker—Hausdorff
formula from Lie group theory, along with symmetries inherent to the control system, we derived
new elements of the set E*(xy). Our results showed that certain “bad” Lie brackets (in the sense of
Sussmann) do not obstruct the STLC property. As a corollary, we provided a sufficient condition for
STLC.
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1. Introduction

Controllability is a fundamental property of nonlinear control systems. The relationship between
global and local controllability is explored in the work by Bacciotti and Stefani (cf. [3]) for a class of
analytic control systems defined on an analytic manifold. One can study the small-time controllability
of a control system at a given point, or the small-time attainability of a set (cf., for example, [5, 20]).
Furthermore, controllability is closely linked to the continuity properties of the minimum time function
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(cf., for instance, [23,25]), among other aspects.

Various approaches have been developed to study small-time local controllability (STLC) at a point,
leading to different results under varying assumptions. General sufficient conditions for STLC have
been established by Agrachev and Gamkrelidze [1], Sussmann [28,29], Meng et al. [21] and others.
The first necessary condition for STLC was proven by Sussmann in [28]. This condition was later
generalized by Stefani in [26]. Kawski established in [9] a necessary condition that depends on the
“size” of a symmetric interval within which the controls take their values. In [11] this condition was
further generalized for the case of a non-symmetric interval. Additionally, a necessary condition for
Lipschitz continuous control systems was proven in [13]. Moreover, a complete answer to the open
problem on the small-time local controllability of Korteweg-de Vries system on all critical lengths is
given in [22]. Additionally, both sufficient and necessary conditions have been presented for specific
cases by Brunovsky (cf. [4]), Jurdjevic and Kupka (cf. [8]), and others (cf. [17,30]). Despite these
efforts, a significant gap remains between the existing sufficient and necessary conditions for STLC.

An attempt to bridge this gap was made by Aguilar (cf. [2]), who analyzed a class of homogeneous
control systems. The results obtained in [2] were later generalized in [14]. The present paper continues
the line of investigation initiated in [14, 15], focusing on a class of polynomial control systems. To
analyze STLC, we employ the set E*(x,) of tangent vector fields to the reachable set at a fixed point
X0-

The set E*(xp) was introduced by Hermes [7]. This concept was subsequently used in [30] for
piecewise linear control systems and in [17] for switching linear systems. It was further extended
in [16] to study the small-time attainability of a set. Other concepts of tangent vector fields can be
found in [19, 27]. By applying the classical Campbell-Baker—Hausdorff (C-B-H) formula from Lie
group theory together with certain symmetries intrinsic to the control system, we show that specific
“bad” Lie brackets (in the sense of Sussmann) belong to the set E*(x() and therefore do not obstruct
the STLC property. As a corollary, we obtain a sufficient condition for STLC.

The structure of the paper is as follows. In Section 2, we present the differential-geometrical
framework employed in this study and state the main result, accompanied by a corollary and illustrative
examples that demonstrate the applicability of our approach. Section 3 is devoted to the proof of the
main theorem. Section 4 concludes the paper, and all technical details are collected in an Appendix.

2. Preliminaries and statement of the main result

First, we introduce some notations used throughout the exposition:

co(S) denotes the convex hull of the elements in the subset S of R”,

span(S ) refers to the linear space generated by the elements of S,

cone(S ) represents the cone generated by the elements of S, and

rec(C) is the largest linear space contained within the convex closed cone C in R”.

Let us consider the control system X in R":
i) = f(x(0) +u®), u)eUNB, 2.1)

with x(0) = 0, where U c R" is a closed convex cone, B is the closed unit ball, and f : R” — R"is a
vector field with homogeneous quadratic components.
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Remark 2.1. System (2.1) represents a class of nonlinear control systems in R" with additive but
constrained control input. Although the control enters linearly, the constraint u(f) € U N B, where
U c R" is a closed convex cone, makes the analysis of reachability and controllability nontrivial.
In particular, the directions of admissible control actions are restricted by U, so the system cannot
in general be steered arbitrarily in R". Moreover, the drift term f(x) has homogeneous quadratic
components, which introduces nonlinear coupling between the state variables and leads to nontrivial
geometric properties of the attainable sets.

For each T > 0, we define the set of admissible controls:
Ur = {u : [0, 7] = R" measurable | u(r) e UNB a.e.}.

An admissible trajectory is any absolutely continuous function x : [0,7] — R” satisfying (2.1) with
ue 7/{]‘.
The reachable set from xg in time 7 is

R(xo, T) := {x(T) | x is an admissible trajectory with x(0) = xo} .

Definition 2.2. The system X is STLC at the origin if 0 € int R(0, T') for every T > 0.

We make use of the Lie bracket of smooth vector fields X and Y,
[X, Y1(x) = V() X(x) — X' ()Y (x),

as well as the exponential map Exp(tZ)(x,), which denotes the time flow of the ODE x(7) = tZ(x(1)),
with x(0) = xo for t = 1.
Given u € U N B, the vector field x — f(x) + u belongs to the set S*(0) defined below.

Definition 2.3. An analytic vector field Z belongs to S*(0) if there exist a compact neighborhood Q of
the origin, and constants K, T > 0, such that

Exp(tZ)(x) € R(x,Kf) Yxe€Q, t€[0,T].

We use the notation o(¢*) and O(#*) to denote families of analytic vector fields that satisfy standard
asymptotic bounds as t — 0. We write A° for families of vector fields a(t, x), parametrized by ¢, such
that ||a(z, x)|| < ct’||x|| for some constants c,§ > 0. We also call a polynomial of the form

p(t) = ait’ + -+ a™,

where a; > 0 and
0< by <b2<"'<bs

for all i, a positive polynomial. The minimal positive number b, is called the order of the polynomial
p, and it is denoted by ord(p).

Remark 2.4. Based on some classical results (see, e.g., Proposition 4.3 in [28] and Proposition 2.1
in [1], the analyticity of the vector fields ensures uniform convergence of the expansions on compact
sets and stability under compositions of bounded length.
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Definition 2.5. An analytic vector field Z belongs to the set E¥(0) if there exist @ > 0, a compact
neighborhood Q of the origin, a time T > 0, a positive polynomial p(f), and families a(f) € A° and
o(t*) such that

Exp(t"Z + a(t) + o(t*))(x) € R(x, p(t)) VxeQ, te[0,T].

One can similarly define the sets E*(x() and S*(x(), where x, is an arbitrary equilibrium point of the
control system under consideration (cf., for example, [10, 16, 17]). The significance of the sets E* and
S* in analyzing the local properties of the reachable sets of a nonlinear control system is emphasized
by the following lemmas:

Lemma 2.6. IfZ,,...,Z, € E*(xg) and 0 € int co{Z;(xy)}, then X is STLC at x.
Lemma 2.7. The set E*(xy) is a convex cone.

Lemma 2.8. Let Aj, Ay € E*(xg) with A1(xo) + Ay(xo) = 0, and B € S8*(xy) with B(xg) = 0. Then
[B,A:],[B,As] € E*(xo).

Lemmas 2.6 and 2.7 are proved in [17]. Lemma 2.8 is a corollary of Proposition 2.4 proven in [16].
Next, we briefly outline our approach, which will be developed in detail later. First, we introduce
the following notation: For an arbitrary element u € U, we denote by g, the constant vector field
defined by
gu(x) :==u forall x e R".

Let x be an arbitrary point in R”, and let u;, us, ..., u;—; and u; be arbitrary elements of U. Also
consider arbitrary positive real polynomials @;(¢) and SB;(t), i = 1,2,...,k, for t € [0,f). In what
follows, we assume that 7, > 0 is sufficiently small; if necessary, we can decrease f, to satisfy the
required assumptions. Without loss of generality, we assume that

Bi(Hu; e UNB  forallt€[0,t)andeachi=1,2,...,k.
Then the vector field f + 5;(1)g,, is admissible for the control system (2.1). We define
fir=f and g, :=g,, fori=12,... k
Clearly, for eachi =1,2,...,k, we have that
Exp (ai(0)f; + a:(DBi()g:) = Exp (i(?) (i + Bi(1)g)) (x) € R(x, (1)) forallz € [0,50].  (2.2)
With the vector fields f; and g;, we associate the polynomials () and «;(?)B;(¢), respectively, for each

i=1,2,...,k
According to the C-B-H formula, there exists a Lie polynomial S(¢) such that

Exp(S(#))(x) := Exp (a1()(f1 + B1(1)g1)) © - - - o Exp (ax(t)(fi + Br(D)gr)) (x), 1 € [0, 10).

Taking into account (2.2), we obtain that
k
Exp (S(®)) (x) € R [x, > a,-(z)] for all ¢ € [0, o].
i=1
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Moreover, the C-B-H formula implies that each S(¢), for 7 € [0, ), is a Lie series composed of Lie
brackets A;, j =1,2,..., of the vector fields f;and g;,i = 1,2,...,k, ie.,

S = ipiOA,,

=1
where 4; € R, and if
Aj =[], (R, [...[h_ k)1 with R e{figli=1,... k)
then the corresponding polynomial p;() is given by
D) = p{(®) - pl() - pla),

where pi(t) denotes the polynomial associated with the vector field h Jforu=1,2,...,s.

Suppose that there exists a Lie bracket A;, such that A;(0) # 0, and the order of the corresponding
polynomial p;, is strictly less than the orders of the polynomials p; associated with all other Lie brackets
A that are non-vanishing at the point 0. Then, the Lie bracket A;, belongs to the set £¥(0). This idea
is illustrated by Lemma 2.10 below.

Moreover, using this idea, we select below appropriate elements u; € U, together with appropriate
positive real polynomials a;(¢) and 5;(¢), i = 1,2,...,k. We then demonstrate, in detail, how one can
construct elements of the set E*(0). Notably, some of these elements correspond to so-called “bad”
Lie brackets in the sense of Sussmann (cf. [28,29]).

Since the polynomial vector field f is homogeneous of degree two, we have that [g,, [g., f]] is a
constant vector field equal to 2f(u) for every point x € R". For simplicity, we denote the constant
vector field gy, simply by f(u).

We define the following sets:

G:={g,:ucUNB}, G :={g,:xuecUNB}, G;:=GU{f}. (2.3)

Remark 2.9. Recall that f : R" — R" is a polynomial vector field homogeneous of degree two, and
that each element of G is a constant vector field. We denote by L the Lie algebra generated by the
elements of G. Let A be a Lie bracket composed of elements from G, involving the vector field f
exactly k times and elements of G exactly m times. Then, one can directly verify that A is either a
homogeneous vector field of degree k — m + 1, or identically equal to zero.

In particular, if A is homogeneous of degree one, then k = m; that is, A has even length (where the
length of a Lie bracket refers to the total number of vector field occurrences in A). Likewise, if A is
homogeneous of degree zero, then A has odd length.

The proof of the next lemma is given in the Appendix:

Lemma 2.10. Let C € G* with f(C) =0. Leta > 0and B; > 0, i = 1,2, be real numbers, and let
Exp (Ai(e) + &% B; + 0 (™)) (x) € R(x.qi(e))  for all & € [0, ], (2.4)
and for all x belonging to a neighborhood of the origin, where:
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B;,i=1,2 are elements_ of .E,‘ homogeneous of degree zero, with By + B, = 0,
Ai(e) = pl@)f + I, plEA],

A{ are elements of L, homogeneous of degree two,

p! and q; are positive real polynomials, with

min{ord (plj) j=0,1,...,k, i= 1,2}20z>0,

e min {5y, 5} > a.
Then the Lie bracket [By, [C\, f]] belongs to the set E*(0).
Corollary 2.11. Let C € G* with f(C) =0. Let @« > 0 and 8; > 0, i = 1,2, be real numbers, and let

Exp(Ai(e) + & Bi + 0 (")) (x) € R(x,qi(e))  for all & € [0, &), (2.5)

and for all x belonging to a neighborhood of the origin, where:

e B, i=1,2, are elements of L, homogeneous of degree zero, with B; + B, = 0 and f(B,) =0,
« Ai(e) = pl&)f + T, pl@A],

° A{ are elements of L, homogeneous of degree two,

e p! and g; are positive real polynomials, with

minford (p/) j=0.1,....k i=1,2}2a>0,

e min {$1,5:} > a.
Then the Lie bracket [By, [C, f]] belongs to the set E*(0).

One of the most fruitful ideas in the geometric theory of nonlinear systems, particularly in
establishing sufficient conditions for STLC, is the use of symmetries inherent in the control system
under consideration. This is demonstrated in the proofs of the general sufficient controllability
conditions derived in [28,29]. We also emphasize that the so-called chronological calculus, developed
by Agrachev and Gamkrelidze [1], is a powerful tool for representing the flows generated by control
systems. More recently, new results concerning the properties of nonlinear systems have been
presented in [6,24].

To analyze the reachable sets of system (2.1), we follow the approach of [29], using compositions
of admissible flows and their C-B-H representations. These compositions give rise to diffeomorphisms
whose Lie series expansions involve Lie brackets endowed with symmetry-induced invariance
properties.

The following Proposition 2.12 is proved in [29] (cf. Proposition 5.1). To formulate it, we introduce
the following notions.

Let L be a finite-dimensional nilpotent Lie algebra over R, and let G, denote the corresponding
connected, simply connected Lie group. Since the exponential map

exp: L— G
is a global diffeomorphism, any map A : L — L induces a unique map A: G, — G, defined by

A(exp(2)) = exp(A(z)),  ze L.
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Proposition 2.12. Let L be a finite-dimensional, nilpotent Lie algebra over R, and let G|
be the corresponding connected, simply connected Lie group. Let AN be a finite group of
pseudoautomorphisms of L, and let A 1= {1 : 1 € A} be the group of bijections of Gy, induced by
A. Let S be a nonempty subset of G which is closed under multiplication. Suppose that every A € A
maps S into S. Then, S contains an element s such that A(s) = s for all 1 € A.

Let A = [Xy,[X5,...,[ X1, Xi]...]1] be a Lie bracket of length k, where X; € G;. We define the
linear involutions:
-g, ifg, € G*,

) TA = [Xi, [Xe—1, .. [ X0, X1 .. 1,
g, otherwise,

Af =1, Agu:{

extended linearly to any sum of Lie brackets. A bracket A is said to be invariant under A or T if
AA = A or TA = A, respectively. The maps A, T satisfy A2 = T? = I and commute.

Let E := {I, T} and E* := {I, A, T, AT}. It is known (cf. Lemma 7.1 and Corollary 7.2 in [29]) that
a Lie bracket is invariant under Z if and only if it is of odd length. Similarly, a Lie bracket is invariant
under =* if and only if it is of odd length and each element of G* appears an even number of times or
not at all (cf. Theorem 7.3 in [29]).

Let © € {E, =%}, and let S be the Lie series associated with a composition of admissible flows:

Exp(S) = Exp(t1(f + gu)) © - - 0 Explte(f + gu,));
where u; e UNnBandt; >0fori=1,...,¢ Then, forsmall T :=t; + - -- + t,, we have
Exp(S)(x) € R(x, T).
According to the C-B-H formula, the series S can be presented as

S =T + iy + 25,

inv notinv

where X% consists of Lie brackets of length < k that are invariant under the group O, Z:(’ftinv consists

of Lie brackets of length < k that are not invariant under ®, and X* consists of brackets of length > k.
As a corollary of Proposition 2.12 and under the above assumptions on S, we obtain the following
result:

Corollary 2.13. There exist a positive integer m and a time T > 0 such that, for any x in a compact
neighborhood of the origin,

Exp(S)(x) € R(x,mT), S=mXI* 45k 4 52k

mv mv
where ankv is a finite sum of Lie brackets invariant under ©.

Remark 2.14. If ® = E, then all invariant Lie brackets in S have odd length. If ® = =*, then the
invariant Lie brackets are either constant vector fields or vector fields that are homogeneous of degree
at least two.

Remark 2.15. The proof of Proposition 2.12 (i.e., the proof of Proposition 5.1 in [29]) shows that the
number m in Corollary 2.13 depends only on k and not on the specific choice of Lie brackets.

AIMS Mathematics Volume 10, Issue 12, 29703-29731.



29710

In order to formulate our main result, we define the following sets:

Step 0:
7(0 = U, MO =rec 7((),
Step 1:
Ki=co({f(w):ue My}uU), M =reckKi;
Step 2:

¥o=co({f(w):ue Mi}ul);
Lr={ue M :—f(u) eI}
Mo = span ({[gu, [8v, F11(0) : v e My, u € L}UM));
Step s + 1: For s = 2, 3,..., we define the sets K1, L., and M, recursively as follows:

(](Hl =co (7(2 U Ma) )

Lo ={ue My : —f(u) € K1},
M1 = span ({[8u, [8v, f11(0) :ve My,u € L1} UM,).

Finally, we set k = min{s : M;;; = M;}. Clearly, « < n.
Then the main result is the following:

Theorem 2.16. The set {g, : u € K.} is a subset of E*(0).

Corollary 2.17. If the origin belongs to the interior of the set
{8u: u e Ky,

then the control system (2.1) is small-time locally controllable at the origin.

Proof. Taking into account Theorem 2.16, we obtain that the set
{8utue K
is a subset of E*(0). Applying Lemma 2.6, we complete the proof.

As a corollary of Theorem 2.16, we obtain the main result in [14]:

Corollary 2.18. If the origin belongs to the interior of the set
{8u 1 u € IG},

then the control system (2.1) is small-time locally controllable at the origin.
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To clarify the relation of Theorem 2.16 to the main result in [15], we define the sets

Ni=fueMo:—fu) e Ki};
My = span ({[gu, [gv, F110) : v € Mo,u € N1} U My).

For s = 1,2,3,..., we define the sets 7~(S+1, Ni.1, and /\~/(S+1 recursively as follows:

K1 = cone (7(1 v Ms),
Nyt = {u € Mo : =f(u) € Kin),
Mt = span ({[gu. [0, F110) : v € Mo, u € Ny} U M,).
One can directly verify the following inclusions:
KK, MCM, s=273,...,

where the sets K and M; (for s = 2,3, ...) are defined prior to the statement of Theorem 2.16.
As a corollary of Theorem 2.16, we also recover the main result of [15].
Corollary 2.19. Let
MK+1 = MK'
If the origin belongs to the interior of the set
{gu: u € K,
then the control system (2.1) is small-time locally controllable at the origin.

Next, we present illustrative examples showing the applicability of the obtained results. The STLC
property of the control system in the first example does not follow directly from Theorem 2.16.
However, by applying ideas from the proofs of Lemma 2.10, Corollary 2.11, and Theorem 2.16, one
can prove its small-time controllability at the origin.

Example 2.20. Let us consider the following control system Z;:

x1(0) = uy (1), x1(0) =0, wu(r)€e[-1,1],
X (1) = ua(1), x(0) =0, w(r)€[-1,1],
X3(1) = us(0), x3(0) =0, us3(®) € [-1,1],
X4(1) = uy(), x4(0) =0, wy(®) € [-1,1],

X5(1) = x1(1) — x3(1), x5(0) =0,
X6(1) = x3(0)x5(1), x6(0) = 0,
X7(1) = x4(Ox6(r),  x7(0) = 0.

We define:
. T
X = ()C1, X2, X3, X4, X5, X6, X7) )

f(x) :=(0,0,0,0, x3 — x3, x3x5, X4%6)" ,
g1(x) := (£1,0,0,0,0,0,0)7,
2(x) :=(0,+1,0,0,0,0,0)7,
g3(x) :==(0,0,+1,0,0,0,0)7,
g4(x) :=(0,0,0,+1,0,0,0)T.
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One can directly verify that:
WOZMOZ{XER7:X5:X6:)C7:0},

Ki=M, ={xeR:x=0,x; =0},
¥G ={xeR’: x; = 0},
.£2:M1, M2=7(2:7(3:.£3:M3.

Thus, by applying Theorem 2.16, we cannot conclude anything regarding the STLC of the system
%, at the origin.

On the other hand, one can directly verify (using the identity (A.9) from the proof of Theorem 2.16)
that there exists positive integer m and real numbers c;, i=1,2, such that

2me

Exp|4me” f + 3

f(gl) + CissyAi + Oi(‘c’jy) (-x) € R(x, 4m87)? X € QO’ g€ (Oa 80),

where A; is a sum of Lie brackets of f and g;, i = 1, 2, of length five, that are invariant with respect to
=*, and hence, A; is sum of Lie brackets each of them is homogeneous of degree at least two. In this
example, and taking into account Corollary 2.13, one can verify that the term O;(£’?) is a sum of Lie
brackets of f and g;, i = 1,2, where each addend is homogeneous of degree at least two. Moreover,
f(g1) + f(g2) = 0and f(f(g1)) = 0. By applying Lemma 2.10 witha =y > 0,8, = 5, := 3y > «,
By = f(g1), B, = f(g2) and C = g3, we obtain that

hi == [f(g), g3, f1l, i=1.2,

belong to the set E*(0). Next, one can prove (following the approach proposed in [12]) that

[hi9 [g4’ f]]al = 13 29

also belong to the set E*(0). Applying Lemma 2.6, we conclude that the system X, is small-time locally
controllable at the origin. Let us note that the main results presented in [14, 15] are not applicable to
this example.

Again, we cannot decide, using Theorem 2.16, whether the control system in the next example is
small-time local controllable at the origin. However, a direct calculation now shows that this system is
not STLC:

Example 2.21. Let us consider the following control system Z;:

X1(1) = uy (1), x1(0) =0, wu(®€e[-1,1],
X (1) = us(1), 00) =0, w(r)e[-1,1],
X3(0) = us(1), x3(0) =0, ws(r) € [-1,1],
X4(1) = ug(0), x4(0) =0, wy(®) € [-1,1],

Xs5(1) = x3(t) — x3(1), x5(0) =0,
X6(1) = x3(1) — x5(1), x6(0) =0,
X7(8) = x5()x6(1), x7(0) = 0,
X3(r) = x2(1) — x3(1), x3(0) = 0.
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We define:
- T
X = (XI, X2, X3, X4, X5, X6, X7, XS) )

f(x):=(0,0,0,0, x% - xg, x% - xﬁ, X5Xg, xg - x%)T,
g1(x) :=(+1,0,0,0,0,0,0,0)7,
22(x) :=(0,%+1,0,0,0,0,0,0)7,
g3(x) :=(0,0,+1,0,0,0,0,0)7,
24(x) :=(0,0,0,+1,0,0,0,0)".
One can directly verify that:

WOZM():{XERE;2X5:)C6:X7:Xg:0},

K, =M, ={xeR®: x; = xg = 0},
WQ:{xERS:m:a,B,xg:,Bz, a,B € R},
LHr =M,
My={xeR’: x5 =0}, FK;={xeR*: x>0}
Li=Ly,, My=M,.

Thus, applying Theorem 2.16, we cannot conclude anything regarding the STLC of the system X,
at the origin.

In fact, the control system X, is not small-time locally controllable at the origin. Indeed, let
u; : [0,T] — [-1,1] for i = 1,2,3,4 be arbitrary admissible controls, and let x;(¢),..., xg(¢) be
the corresponding trajectory over ¢ € [0,7]. Since the controls are bounded, there exists a constant
C > 0 such that:
lx; ()| < Ct, foralli=1,...,8, andt € [0,T].

Applying Holder’s inequality, we obtain:
2

t t ! C2t3 t
( f x5(s)x6(s)ds) s( f xg(s)ds) ( f xg(s)ds)s— f x3(s) ds. (1)
0 0 0 3 0

Then, for each sufficiently small 7 > 0, we have:

T T t 2
xs(T) = f (x3) = 5(0)) dt = f (xg(t)—( f x5(s)x6(s)ds))dt.
0 0 0

Using inequality (1), it follows that:

C2T4 T
Xg(T)Z(l— )f Xty dt > 0.
12 ) Jo

Hence, any point with a negative xg-coordinate does not belong to the reachable set of the system
%,. This confirms that %, is not small-time locally controllable at the origin.
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3. Proof of Theorem 2.16

First, we remind the reader that there exists a compact neighborhood €, of the origin and a positive
real number 7y > O such that each trajectory x of X starting from a point xy € €y, and corresponding
to some admissible control, is well-defined on the interval [0, 7] with T < T, and remains within Q.

Let N be the set of all positive integers. We define the following sets:

U = {u :(0,g,) > UNB | ue) = Zsa"ui, uelU a;>0,i=1,...,m, meN},
i=1
U* = {u :(0,&,) = (tec U)NB | u(e) = Ze""u,-, uerecU, a;>0,i=1,...,m, m EN},
i=1

and finally,

U, = {u : (0,8, — Zs“"ui lu; e My, @; >0, me N}, where ¢, € (0,1).

i=1
Without loss of generality we may assume that « > 2, where x = min{s : M,; = M,}. Let us fix

the reals a, 3, and y such that
l<a< % and 1<2'8<218 < q. 3.1)

Remark 3.1. The positive triples (e, (,y) are explicitly defined via the inequalities (3.1). The non-
emptiness of the set of feasible triples («, 3, y) can be easily verified from these inequalities. Moreover,
these inequalities ensure that the retained Lie terms dominate the remainders (for detailed, see pages 4
and 5).

Let u := 2B, and foreach s = 1, ..., k, we set

— K— 1 k= ! !
p=28, ppi=2 1(1+§)ﬁ, ps =2 1(1+§+"'+2s_1)ﬂ-

Clearly, the inequalities (3.1) imply that

l<pu<pp<---<pu<p and 2u<a. (3.2)
Next we prove that for each elements p and g of the set {1, . .., x} with p < g the following inequality
holds true
Mp + < 2u,. (3.3)
Indeed, we have that
o 1 1 . 1 1 1
2,uq—,u—,up—2 1+§+"'+Fﬁ—2ﬁ—2 1+§+"'+ﬁﬁ
. 1 1 . 1 1 1
=2 (1+§+~~-+F),8—2 (1+§+~-+F+§),820.
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Let us fix an integer number p from the set {1,2,...,«} and an arbitrary Lie bracket [gup, [gvp, f ”
with [gup, [gvp, f]] (0) € M,. Then Lemma A.5 (cf. the Appendix) implies the existence of a real
&y, €(0,1), elements v; € M, andreals §; > 0,i = 1,...,p, such that

pVp

P
(0,&4,,,) > & — & [gm & S]]+ 82“2857@)

i=1

is an admissible sum of Lie brackets of length seven, i.e., there exist uy € U, u, € U*, a =1,..., sy,
and u, € U, = 51+ 1,...,s, such that for each € € (0, 8upvp) we have that

p s
& [ guys (81,0 ] + 8% D€ F 0D = Buer + ) Fttal®)). (3.4)
a=1

i=1

According to Lemma A.4 (cf. the Appendix), there exist positive numbers gy, q’i, and qg, for
i=1,...,s areal number &€ € (0, 1), and a family of vector fields a(-) € A° (the set A of parameterized
families of analytic vector fields is defined before the set £*(0)) such that for each x € €, and each
€ € (0, &), we have that V(g) is an admissible flow, where

V(e)(x) = Exp [[86“3 + o + ) (qhe7 + q;s’))f

i=s1+1

+ebr3e [guo(S) + Z f(ul-(g))] +a(e) + 0 (567+4a)] (x)

i=1

c R[x, POAEIN q082y+a + Z (qi1837 +q§87)]. (3.5)

i=s1+1
Taking into account (3.4), we obtain that

5
V(e)(x) = Exp ((867+3 +qoe? ! + Z (q’is” + qée’)] f

=5 +1

P
4+ g67+3 (Suﬂtp [gup 8 f + g Z 66if(vi)) +a(e)+ 0 (867““4“)) (x). (3.6)

i=1

Our choice of y, and pu (cf. the inequalities (3.2) and (3.3)) implies the inequalities u, < u and
2u < a. From here we obtain that

6y +3a+u, +u <6y+3a+2u<6y+4da.

Taking into account that f and a(e) vanish at the origin for each ¢ € (0,&,,,), we obtain that
[gup, [gvp, f ]] € E*(0). This completes the proof of Theorem 2.16.
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4. Conclusions

We apply the general differential-geometrical approach proposed by Hermes (cf. [7]) to study the
local properties of the reachable sets of smooth control systems. This approach was later employed
in [17,30] to characterize the STLC property for a class of piecewise linear control systems and a class
of switching control systems, respectively.

In the present paper, we extend this approach to the study of reachable sets for a class of polynomial
control systems whose dynamics are determined by a convex compact set and by a polynomial drift
term, a polynomial vector field that is homogeneous of degree two. The main result shows that certain
“bad” Lie brackets (in the sense of Sussmann, cf. [28,29]) are not obstructions to the STLC property
and, in fact, yield tangent vector fields to the reachable set of the considered control system.

As a corollary, we derive a new sufficient condition for STLC. This condition generalizes the results
previously obtained in [14, 15]. Finally, two examples are provided to illustrate the applicability of the
results.

We emphasize that the main results of this paper rely critically on the quadratic homogeneity of
the drift term f. In particular, the recursive cone construction and the analysis of Lie brackets use
the specific scaling properties of quadratic vector fields to ensure the dominance of certain terms
and the control of remainders. While the overall strategy may provide insight for more general
analytic drifts, extending the sufficient conditions for STLC beyond the quadratic case remains an open
problem. Thus, the current results are strictly valid for systems with quadratic homogeneous drifts,
and any generalization to higher-degree or non-homogeneous analytic drifts would require additional
techniques and careful analysis.
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Appendix

Proof of Lemma 2.10. According to the assumptions of Lemma 2.10, we have that C € G* with f(C) =

0.

Also, for i = 1,2, we have

Exp (Ai(e) + &¥B; + 0 (")) (x) € R (x. qi(¢)) forall & € [0, &), (A.1)

and for all x belonging to a neighborhood of the origin, where:

B;,i=1,2, are elements_of .E,_ homogeneous of degree zero, with B; + B, = 0,
Ai(e) = ple)f + T, pl@A].

A{ are elements of £, homogeneous of degree two,

p; and g; are positive real polynomials, with

minford (p/) j=0.1,....k, i=12}>a>0,
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e min {ﬁ],ﬂz} > .

Without loss of generality, we may assume that 5; = 8, = . Indeed, let us assume that 8, < S,.
Then we set 8 := 8, and & := £/ in (A.1) for i = 1, and obtain that

Exp (A1(8) +&°B) + 0 (so‘ﬂﬁ)) (x) € R(x,q1(e)) forall & € [0, 57,

where A,(g) := A (P, 0,(£2%F) := 0,(s®P/F1+?P) and §,(g) := ¢1(¢*/P"). One can proceed similarly
lfﬂl >ﬁ2.

Since C € G* and 8 > a, we fix arbitrary 6 € (o,8) and & € (@/2,a) such that 6 + @ > & + 5.
Possibly after reducing &y > 0, we have (because 6 > a > 0) that

Exp (s"f + s‘sC) (x) € R(x,&%) forall € € [0, &] and all x € Q. (A.2)
Because & € (a/2,a), fori = 1,2, the ratio

Oi(8(1+2,8) B Oi(8a+2ﬁ) 8a+2,6’
git28 | gatlp ga+2p

tends to zero as € — 0, uniformly with respect to x € €. For this reason, we write O; (s‘”zﬂ) as
0; (%), fori = 1,2.

From this point, we may assume (after possibly decreasing €y, > 0 and €)) that
M(e)(x) := M'(e) o Exp (67 f) o MA(e)(x) € R(x,67 + 26" + 1 (&) + qa(&)) (A.3)
for all € € [0, &] and all x € Q, and
Mi(e) := Exp(Ai(e) + &°B; + o(s"**#)) o Exp (" f + £°C;), (A.4)

with C; := (=1)*'C, i = 1,2. Applying the C-B-H formula, we obtain that

)

Mi(e) = Exp (Ai(a) +&°f + 8B+ £°C; + %s"[Ai(s), f1+ %[A,.(g), C;]

8a+,8 +0 & 86
+T[Bi’f] + T[Bia Cil+ E[Ai(é‘), [Ai(e), f1] + E[Ai(é‘), [Ai(e), Cil]
a+f +0 a+p +6

12 [Ai(e), [B;, f1] + 12 [Ai(e), [Bi, Cil] + E[Bia [Ai(e), f1] + H[Bh [Ai(e), Cil]

8a+2ﬁ 2B+0 82& 2a+3

+T[Bi’ [Bi, f1] + 12 [B;, [B;, Ci]] + E[f’ [f, Ai&)]] + 12
a+§ a+p+5 gato

+E[f’ [Ci, Ai(e)]] + 12 Lf, [Ci, Bill + E[Ci’ [f,Ai1(e)]]

a+f+0 20 +20

&
12 [Ci, [f, Bil] + E[Ci» [Ci, Ai(e)]] + 12

(using the inequality @ + 6 > & + 3)

g™’ & 2 G+B+6
S 1Bi f1+ S 1Aie). Cil + ai(e) + 0, (7)) (A5)

+

[f’ [f’ Bt]]

+

[Ci.[Ci. Bill + O (&) + 0, (7% ))

= Exp|&’B; + £°C; +
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where al.z(s) = A;(g) + £ f plus a finite sum of Lie brackets of A;(¢), £ f, £#B;, and £°C;, each of which
is homogeneous of degree greater than two. Also, we have used the inequalities ord(p{ ) > « for each
j=1,..,k,i=1,2.

Note that the vector fields B;, and C;, i = 1,2, are homogeneous of degree zero, and hence [B;, B;] =
0,[B;,C;]=0and [C;,C;]=0,i=1,2;j=1,2. Also, the identity

[Ci, [Bi, f11 + [Bi, [f, C:l] + [f,[Ci, Bi]] = 0,

implies that [Ci9 [Bi9 f]] = [Bi’ [Ci’ f]]
Taking into account (A.5) and that B; + B, = 0, we apply again the C-B-H formula and obtain that

M(e)(x) = M'(2) o Exp (&7 f) o MP(e)(x)

= Exp (%[&Bl +&°Cy,[€°B) + £°Cy, f1]
+11—2[8ﬂBz + 86C2, [SﬁBg + 86C2,f]] +ae)+o (8&/+ﬁ+6)) ,

where a(e) is a finite sum of Lie brackets that vanish at zero. This equality follows from a
straightforward calculation based on the C-B-H formula. In the computation, we use the relations
B; + B, =0and C; + C, = 0, as well as the fact that the Lie bracket of two vector fields that vanish at
the origin also vanishes at the origin.

Since [C1, [C1, f1] = 2f(C1) = 0, B, = =By, C; = =Cy, and [C,, [By, f1] = [B, [Cy, f1] for i = 1,2,
the previously written equality together with (A.3) implies that

M(e)(x) = Exp %gmﬂ”wl, [Ci, f1] +a(e) + 0 (g@+ﬁ+5)) € R(x,6" + 26" + qi(e) + qa(e))

for all x € Q and for each ¢ € [0, gy). Hence, we obtain that [By, [Cy, f]] € E*(0). This completes the
proof of Lemma 2.10. O

Proof of Corollary 2.11. Assume that @ = 81 = 8,. The proof of Corollary 2.11 follows the same steps
as the proof of Lemma 2.10, with the only difference being the choice of 6: we set ¢ := @. Continuing
as in the proof of Lemma 2.10, we obtain that

a+2a

6
€ R(x, ¥ + 2% + q(e) + qz(g))

1 ¢ A
M(e)(x) = Exp (§8a+2a[31’ [Ci, f11+ [Bi,[B1, f11 + a(e) + 0 (g“+2“))

for all x € Q and all € € [0, gy). Since

[B1,[B1, f11 =2f(B)) =0,
it follows that [By, [C}, f]] € E*(0). This completes the proof of Corollary 2.11. O

We recall that y > 1, and the sets U, U*, and U, are defined in Section 3. Furthermore, there exist
a compact neighborhood € of the origin and a constant 7y > 0 such that every trajectory x of the
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system X, starting from a point x, € €y and corresponding to some admissible control, is well-defined
on the interval [0, T'] for all T < T, and remains within Q.
For notational convenience, we define the function 7 : N — R, by

() = 2.
n

Let u be an arbitrary element of U™, and let & € (0, &,), where &, := min(g,, 7(4)). Applying the
equality —g,) = g-ue) and the C-B-H formula, we obtain

Exp ("(f % gu) © Exp (&"(f F gue))

gy N
=Exp|2e’f + gzy[gu(s)’f] + ?[gu(a)’ [ue)» S11 + 0_(847))- (A.6)
Our choice of & implies that for each x € €, the trajectory P, (g)(x) is well-defined, where

P.u(£)(x) := Exp (&7(f + 8uw)) © Exp (&7(f — gue)))
o Exp ("(f — gus)) © Exp (&7(f + gu)) (X) € R(x,4e”). (A7)

Taking into account Eq (A.6) and the C-B-H formula, we obtain

3y

P.(e) = Exp (Zsz + 87 [gue), f1+ %[gu@, [8ute)> f11 + 0+(847))
3y

° EXp (Zsyf - Szy[gu(a)’ f] + %[gu(s), [gu(s), f]] + 0_(84y)) .

Thus, we have

2%
P.(e) = Exp (4sz + ‘%[gu@, [gucey F11+ 2877 L, Lf guieo) 1] + 0<s47)). (A.8)

Applying Corollary 2.13 with Z*, we obtain that there exists a positive integer m and an admissible
flow 73”(8), for € € (0, &) with €] := min({g,, 7(4m)}), such that

283

N Y
P.(e)(x) = Exp (4m8yf + mT[gu(a)’ [ue)» f1]

+ &7 Ay + O(EM)(x) € R(x,4me”), x € Qy, e € (0,8, (A.9)

where A, is a finite sum of Lie brackets of length five of f and g, that are invariant with respect
to Z*. Taking into account Remark 2.14, we obtain that A, is a finite sum of Lie brackets that are
homogeneous of degree at least two, and hence vanish at the origin.

Remark A.1. Note that the proof of Proposition 5.1 from [29] implies that the positive integer m does
not depend on the particular choice of the element u from U*.
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We choose arbitrary elements uy € U and uy,...,u; from U=, set &t = (g, Uy, ...,uUs), & =
min{e,,, i =0,1,...,s} >0,
&y := min{e;, T2m(2s + 1)}

and consider the function

(0,80) 3 & = guyer + ), f (Wi(2)).
i=1

We call this function an admissible sum of Lie brackets of length three. Then, taking into
account (A.7)—(A.9), we obtain that for each x € Q; and for each ¢ € (0, &;) we have that Q;(g)(x) is
an admissible flow, where

4 .
Qi(e)(x) == Exp (7m837 (f + guo(s))) oP,(e)o...
o P, (e)(x) € R (x, 4?’"837 + 4mss7) . (A.10)

According to the C-B-H, we have that
4dm 3y y 4dm 3y I o s/ dy
Qu(e)(x) = Exp ?s +4dmse” | f + ?8 Suoe) T 3 Z[gui(s)’ [Suie SN |+ O'(e )).
i=1

Applying Corollary 2.13 with E*, we obtain that there exists a positive integer p such that for each
g€ (0, é‘l’j ) with 5‘5 := min{&;, T(2pm(2s+ 1))} and for each x € Q) it is well defined the admissible flow

Qi(e)(x) = Exp (p (4Tm837 + 4msg7)f

4 I v
+be” (guo(g) 3 ;[gu,@), [8u» f]]) +a(@) + 0™

= Exp (p (4?’%537 + 4mssy)f + 4%8” (gu0(8> + Z f(u,-(e))]

i=1
ST 4m 3
+a(e) + O°(e 7))(x) eR x,p?s Y +dmpse’ |,

where a(e) is a finite sum of Lie brackets of length five of f and g,,), i =0, 1,..., s, that are invariant
with respect to E*. Taking into account Remark 2.14, we obtain that a(¢) is a finite sum of Lie brackets
that are homogeneous of degree at least two, and hence, vanishing at the origin. In such a way we have
proved the following:

Lemma A.2. Let ;
(0,8) 3 & = uoey + . f (i),

i=1
be an arbitrary admissible sum of Lie brackets of length three where uy € U and uy, ..., us belong to
q/{i
i = (up,uy,...,us) and g, = min{g,,,i =0,1,...,s}.
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Then there exists an admissible flow Q;(a), g € (0, &) with
g 1= min{&;, T2pm(s + 1))}

such that for each € € (0, é‘; ) and each x € £y we have that

A 4m Adm d
Qu(e) := Exp (p (7837 + 4mssy) f+ Tps” (gm@ + Z f(ui(s)))

4
+a(e) + 03(877)) eR (x, p?majy + 4mpss7) , (A.11)

where a(g) is a finite sum of Lie brackets of length five of f and g,,, i = 1,...,s, homogeneous of
degree at least two, and thus vanishing at the origin.

Let us fix an arbitrary element u € U,. According to the definition of the set U, we have that

mo
0,8, 2€ > ule) = Zs“"ui, witha; > landu; € My,i=1,...my.

i=1
The definition of M, imply that each u; = u;o + ZJ’Z"I f(uij) withujp € U and u;; € Mo, j=1,...,m,
i=1,...,mp. Then

mo i mg my m;

u(e) = Z g [Mio + i f(”ij)] = Z e%ujy + Z Z f(sa[/zuij)
j=1 i=1

i=1 i=1 j=1

(after renumbering these sums can be written as follows)

= (e) + Y f(&") = (&) + ) f(@(e)),
i=1 i=1

where iiy(g) = Z;’fl %y, () := %%, We set it := (D, iy, . . . , it,,). Without loss of generality we
may think that &; := min{é;,i =0, 1,...,m} € (0, 1) is so small that for each ¢ € (0, ;) we have that
mo _ _
Zs""uio ceUNBand e, e MyNB,i=1,...m. (A.12)

i=1
Applying Lemma A.2, we obtain that there exists a positive integer p* such that for each point

x€Qpandeach s € (0,8 ) it is satisfied

Exp (p* (%me” + 4mssy) f+ p+47’"s” (gm) W (a,(s))) +a'(e) + 0+<s77>)<x>
i=1

4 4
= Exp (p+ (ngw + 4mss7)f + p+Tm837u(3) +a'(e) + 0+(877)) (x)
eR (x, pt (4?”1837 + 4mss7)) , (A.13)
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where a*(¢) is a finite sum of Lie brackets of f and g,,), i =0, 1,..., s of length five that are invariant
with respect to E*. Taking into account Remark 2.14, we obtain that a(¢) is a finite sum of Lie brackets
that are homogeneous of degree at least two, and hence, vanishing at the origin.

By the following change of the parameter

pTdm ¥
g:=¢€ ,
3

it follows from (A.13) that there exists positive reals o and éf such that for each point x € Q, and
each & € (0, &7 ") the following inclusion is satisfied

Exp((e” + &) f + 7u(e) + &' (e) + 0(e")) (x) € R (x.6 + 07&), (A.14)

where a*(g) € A°.
According to the definition of M,, we have that

li
—wp =g + ) flliy),i =1, ...,
=1

where each ii;, € U and each ii;; € M,. Hence,

m m I; m m I; m
~u(e) = - Z £"u; = Z & [a,-o ) f(a,,»)] = Z fio(2) + Z D FE Py = fg(e) + ) flau(e),
i=1 i=1 j=1 i=1 i=1 j=1 i=1 (Als)
where iig(e) = 277, llio(e) with iij(e) 1= i and ii;(€), i = 1,....m, are determined by the equality
i m
fie) =) > [ i), (A.16)
i=1 i=1 j=1

Without loss of generality we may think that &; is so small that for each ¢ € (0, ;) we have that

m

Zs"’ﬁ,-o e UNBand e e MyNB,i=1,...m. (A.17)
i=1

Applying Lemma A.2, we obtain that there exists a positive integer p~ such that for each point
x € Qand each € € (0, &) ) it is satisfied

Exp [p_ (4?m£37 + 4mss7)f + p_4?ms37 [g;,o(s) + Z f(iti(s)))
i=1
+a (e) + OS(SH))(X) = Exp (p (4?’"837 + 4msg7) f (A.18)

—p_4?m83"u(8) +a (&) + 0_(877)) (x)eR (x, p- (4Tm837 + 4mss7)) ,
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where a” (¢) 1s a finite sum of Lie brackets of f and g,,), 1 = 0, 1,..., s, of length five that are invariant
with respect to =*. Taking into account Remark 2.14, we obtain that a(¢) is a finite sum of Lie brackets
that are homogeneous of degree at least two, and hence, vanishing at the origin.

By the following change of the parameter

p~4m »
g:=¢ ,
3

it follows from (A.18) that there exists positive reals o~ and & such that for each point x € Q, and
each ¢ € (0, &7 ) the following inclusion is satisfied

Exp (7 + 078" f + &7u(e) + & (e) + 07 (™)) (x) € R (x,67 + o7&), (A.19)

where a~(g) € A°.
Using (A.14) and (A.19), we obtain that

Exp ((337 + 0N+ ule) + at(e) + O*(s”)) o Exp (83“]‘)
o Exp((e” + o7& f + &7u(e) + & (e) + 07(e")) (x) (A.20)
e R (x, 287 + (" +07)e" + 83")

for each x € Q, and for each ¢ € (0, égt”f) with

éf"f :=min{g;, 73+ +07)}.
Applying Corollary 2.13 with =, we obtain that there exists a positive integer o and a real &, such

that for each point x € Q and each € € (0, &,) it is satisfied

Oy+3a _
S;(e) := Exp (a*(m 40"+ 0 + 8 f + 0" LG [u F11 + 3(@) + O (6754

6y+3a

6
c R(x, T2 + (ot + 0 )e” + 83“)) (A.21)

where a“(¢) is a finite sum of Lie brackets (obtained from the C-B-H formula) that are invariant with
respect to = (and, hence, of odd length) and such that g, appears in them at most one time (according
to the choice of the reals @ and vy in (3.1)). Taking into account Remark 2.9, we obtain that a(e) is
a finite sum of Lie brackets that are homogeneous of degree at least two, and hence, vanishing at the
origin.

This and the inclusion (A.21) imply the existence of positive reals gy, g; and ¢, such that for each
x € Qg and for each ¢ € (0, &) there exists an admissible flow ¥,(¢) such that

Fule) = Exp ((q0837 + qlg)’ + q283a)f + 867+3af(u(8)) +a(e) + O" (86y+4a))

= Exp (0'*(2637 +(@T+0)E +ENf+ o fu(e)) +a“(e) + 0" (867+4"))

€ R(x.qos” + @18 + o5™),

where a“(¢) is a family of analytic vector fields parameterized by &, homogeneous of degree at least
two and thus vanishing at the origin. Thus we have proved the following:
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Lemma A.3. For each u € U, with g, € (0, 1) that satisfies the relations (A.12) and (A.17) there exists
an admissible flow F,(¢), € € (0, &,), such that

Fu(€) := Exp (((]0837 +q18" + q2£3“) [+ 77 f(u(e)) + a“(g) + 0" (86”4“))

and F,(e)(x) € R (x, q0637 +q1& + q283“) ,Xx €y, e€ (0,8, (A.22)

where a'(¢) is a family of analytic vector fields parameterized by &, homogeneous of degree at least
two, and hence, vanishing at the origin.

We choose arbitrary elements 1y € U and uy, . . ., u; from U*UU|, set & = minfe,,,i =0,1,..., s} >
0 and consider the function

(0,8)3 & > guwy + ) f (w(e)).
i=1
We call this function an admissible sum of Lie brackets of length seven.
Let )
(0,)3 & = guyey + ., f (&)

i=1

be an admissible sum of Lie brackets of length seven. Without loss of generality we may think that
S1 N
0,8) 3 8= guor + ), f &) + Y, f (@),
i=1 i=s1+1

where u; € U* fori=1,...,s1,and w; € Uy fori = sy +1,...,s. Weset it := (up, uy,...,us). Also,
we may think that the real £ > 0 is so small that for each € € (0, €) and for each x € Q the following
admissible flow is well defined

V(o) := Qule™ @mp/3) ') o F ()00 T, ().

Taking into account Lemmas A.2 and A.3, we obtain existence of positive real numbers py, qg, g% and
¢, i=s1+1,...,s, such that

S1
(V(E) — Exp ((86)’+3a + p0827+a)f + 867+3a (guo(s) + Zf(uz(g))] + asl(s) + 0&1(86y+4a))
i=1
SBxp (4516 +471"1e7 + g3 1) £+ £ u(e) +a(6) + 0 (6774

0---0 EXp ((q8837 + qig)’ + q£83a)f + 867+3af(u(8))+ a”f(s) +O% (86y+4a)) )

Applying the C-B-H formula, we obtain that

V(e) = Exp [[867+3 +q082y+1 + Z (q(s)l+1837+61i1+187+q;1+183“)]f

i=s1+1

463 (guo(é‘) + Z f (u,-(a))) +a(e)+ O (867+4a)] ’

i=1
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where a(e) is a family of analytic vector fields parameterized by & that are homogeneous of degree at
least two and vanishing at the origin. Moreover, for each x € ) and ¢ € (0, £) the following inclusion
holds true

(V(S)(.X) eR X, 86y+3a/+q 8Zy+a+ Z si+1 3y+qsl+lgy+qsl+l 3(1) )
i=s1+1

In this way we have proved the following:

Lemma A 4. If
0,8) 3 & = guey + ) f (wi(#))
i=1
is an arbitrary admissible sum of Lie brackets of length seven with uy € U, u; € U* fori=1,..., sy,
andu; € U, fori= s, +1,...,s, then there exist a real & > 0 and an admissible flow

V(e) = Exp [[867+3 +q0827+1 + Z (qf)‘”e”+qi‘”a’+q§1“83“)]f

i=s1+1

+86)’+3a (guo(a) + Z f (ui(s))) + 0(8) +0 (867+4a)] ,

i=1
with a(g) belonging to A°, and such that for each x € Qg and each & € (0, ) the following inclusion
holds true V(e)(x) €

eR

X, 86y+3a+q grra Z 51+1 %y+qi1+1 +q;‘+1 3a)] (A.23)

i=s1+1
As a reminder, the real numbers @, f and y satisfy the following inequalities 1 < a <
y/4and1 < 28 < 2°*18 < . Moreover, u := 2B, u; = 2B, u, = 2’<‘1(1+%)ﬁ,,us =

2x-1 (1 + % +---+ 2,—1_1),8, for each s = 1,...,k. Also, we have shown that for each elements p and
g of the set {1,...,«} with p < ¢ the following inequality holds true:

My + < 2u,.
Next, we prove the following:
Lemma A.S. Let k > 2. Then for each positive integer q € {2,...,k} and for each Lie bracket

[guq, [qu, f]] with [guq, [qu,f]] (0) € M, there exist &, € (0, 1), elements v,; € M, and reals 6,; > 0,

i=1,...,q, such that the function

q
(0.84,) 3 & > &7 [g,,. |8, f]] + £* Z &% f(vy1) (A.24)

i=1

is an admissible sum of Lie brackets of length seven, i.e., there exists uy € U and u, € U* VU, a =
1,...,s, such that

q s
gHath [guq Sy f + £2H Z gfsqif(vqi) = Quoe) + Z Fua(€))
a=1

i=1

foreach g € (0,¢&,,,).
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Proof of Lemma AS. The proof will be done by induction. First, we show that the claim holds true for
g = 2. Indeed, let [g,,,[g.,, f]] be a Lie bracket with [g,,, [gy,, f]] (0) € M,. Then v; € My, u; € L,.
According to the definition of £, u; € M, and

P1
— ) =g+ Y flu)) (A25)

J=1

where u; g € Uanduj; € My, j=1,...,p1.
Because u; and v; belong to M;, we have that

aj
U = upp+ Zf(l/tll) with Uyg € U,I/tli (S M(),i = 1,. .., aq,

i=1
and
by
Vi =vig+ ) fvii) with vig € Uyvy; € Mo,i = 1,...,by.
i=1
Then
aj bl
&y + 8 = Sy + &vig + Y FE@ ) + Y (@), (A.26)
i=1 i=1

Clearly, there exists &,,,, € (0, 1) such that for each & € (0, g,,,,,) we have that &'u;y + evip € U N B
and the elements &1/%u,;,i = 1,...,a,, and &/>vy;,i = 1,..., by, belong to My NB. Moreover, we have
that

P1 P1
FE w0+ 481 gy o+ > F(8 1)) = & Fu )+ [gu, [0, &M F1) 465 g1y 4™ > Flur))

Jj=1 j=1

Applying (A.25) we obtain that

P1
M [guy, (8, [1] + 4 f(01) = &8y, + f(" Uy + V) + Z [ ). (A.27)

=1
Clearly,
D1
(0,80,) € 8 > 8%1g4,, + f(@u + Vi) + Y f(&uy))

J=1

is an admissible sum of Lie brackets of length seven. Hence, according to (A.27), the function

0, &4,,) € 8 = 7 [gu,5 [80, f1] + 82“f(v1)

is also an admissible sum of Lie brackets of length seven. So, we obtain that Lemma A.5 holds true
for g = 2.

Let us assume that the Lemma A.5 holds true for each positive integer r satisfying the inequality
r < g for some positive integer ¢ < k. We prove that it holds true also for p := g + 1.
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Indeed, let us fix a Lie bracket [gup, [gvp, f” with [gup, [gvp,f” 0) e M,\ M,. Thenv, € M;,u, €
L,. According to the definition of £,, we have that

6/) Yp j?p
— f(uy) = g, + Z Flug)+ > Fs) + >0 > Zuys [8pe £]] O (A.28)
Bp=1 6p=1 vp=1jp=1

where u,, € U, ug, € Mo, us, € M; and each [guypjp, [gvm,.p, f]] (0) belongs to M, with y, < p.
Clearly, there exists gm0 € (0, 1) such that for each € € (0, £,0.) the sum &“7u, + 'v, can be present

as a sum (analogously to the equality (A.26))
ap by
&ruy + 8, = &y + Voo + ) FE Py + D F(E ), (A.29)
i=1 i=1
where &7 u, + &'v,9 € U NB, and &%u,;,i = 1,...,a, and &/*v,,i = 1,...,b,, belong to My N B.
Moreover,

f(e”m,, + e”vp) =g f (up) + gttt [gup, [gvp,f]] + e f (vp).

We add
Y ]717
g, T 21tp Z flug,) + & 2Hp Z Sflus,) + & 2Hp Z Z 8ityyip» gvy,,,p f”
Bp=1 5p=1 ¥p=1Jjp=1
to both sides of this equality and obtain
By Y hp
f(s””up + s”vp) +g¥rg, o+ g Z flug,) + ¥ Z flus,) + 4 Z Z 8utyyjp gvy,;/p f”
By=1 5p=1 Yp=1jp=1
= 82””f (Mp) + gtk [gupa [gvp, f” + gzyf (VP)
Yoy
LD WL TRITR YR IRPEERS 3) 3l P |
By=1 8p=1 ¥p=1jp=1

Taking into account (A.28), we obtain that

Bp ‘_sp
£ (eu, + 84vy) + 8%, + &% ) fluz,) + &% ) (flus,)

Bp=1 5p=1
Y Iw

+ & Z Z 120, (85 ]| = €77 |80y [ 80,0 £]] + £ (v,)- (A.30)
vp=1Jjp=1

According to the inductive assumption, for each multi-index vy, j, there exists ¢, ;, € (0,1) and a

function
Pypip

2, Oy i
(0’ 87pjp) 2EDE ! Z € ympkpf(vypjpkp)’
kp=1
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> 0) such that the function

(here each v, ; «, € M; and eachreal 0, ; 1,
Pypip
. e 2u Sypipk ;
(0, 8y,,]p) 3g— [guypjp, [ngp,f” +é& Z &0l pf(vypjpkp)
lp=1

is an admissible sum of Lie brackets, i.e., for each € € (0, £y,j,) W€ have that

Pypip iypip
+u 2u Oy ink
gttt [guyp_,'],a [gvyp_,'],’ f” te Z g pf(vypjpkp) gu (.9) + Z f ulypfp (8))
kp=1 t,,pjp 1

where ug ;, € Uandu; €U UU, foreachiy, =1,...,0,),
Taking this into account and setting

gy =min{gp0.8y 5.0y = 1,00, Jy,.¥p = L., ¥p) >0,

we obtain from (A.30) that for each € € (0, Eult ) the following equality holds true

f (s“"up + s”vp) +gtrg 8u,, + e Z Slug,) + g Z flus,)

Bp=1
7]) ij 717 J)’p p)’plp
24—y, — + 2up—py, 2 s
+ Z o=y, —H Z gt [guy,,_/,,’ [gvmp, f” + Z Lp—Hyp = Z m Z wirke f(vy, i k)
szl jp=1 717_1 JP_l 1»’_1
Y Jrp Pypip
+ 2 241— 2 5
ol 2] o 3 3 S 0
Yp=1 ]p—l p—l
Hence,
]71) pyp]p
2 2 2
ghrth [gup’ [gvp,f” + M F (vp) 4 g Z fip=Hfiy, Z Z vty f(v,, i 1)
Yp=1 Jp=1 kp—l
5y
= [ (eu, + &v,) + £%g,, + Z f(&rug) + Z( f(&rus,)
Bp=1 op=1
Yp jp Pypip
20, —p— » +iy, 2 g pipkp
Z g Z gt [g”Yn’ [gVYp’f]] +e&* Z ghreirts f(vypjpkp)
Yp= Jjp=1 kp=1
By Sp
= 8wy + &v)) + 8%0g,, + > fleus) + > (f(&us) (A.31)
Bp=1 5p=1
Yp 7717 ?717/1?
2up—p—H
+ Z e Yp Z (8) + Z f I/t,yp]p (8))
¥p=1 Jp=1 Iypjp=1
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Clearly there exists g,,,, € (0, Eulv ) such that the sum

.]71)

¥p
0( ) o o2 241y~ 0
u,(&) = e"u,, + Z gty Z uypjp(s)

ypzl jpzl

belongs to the set U for each € € (0, &,,,,). Then (A.31) can be written as follows:

]Yp prJp
+ 2) 2) 2 ,
gHrTH [gup’ [gvp’f]] + & #f (Vp) + g Z Hp—H—Hy, Z Z Vp/pkpf(vypjpk )

vp=1 Jp=1 kp=1

J}/p l}’plp
2
ST TS YIRS JETIES YT YO W T

Bp=1 op=1 ¥p=1 Jp=liypjp=1

Because 2u, — u — py, > 0, the last equality implies that the function (0, &,,,,) > € = A(g), where

¥ Jvp Pypip
A(g) = gt [gu,,, [gv,,, f]] + M f (Vp) g Z P L Z Z SOrpikp FOy k)
o =l k=1

is also an admissible sum of Lie brackets. Hence, the inductive assumption holds true for the Lie
bracket [guyp, [gvyp, f]] Thus, we can conclude that the inductive assumption holds true also for p :=
q + 1. Therefore, the inductive assumption holds true for each p € {1,2,...,«}. This completes the
proof of Lemma A.S5.
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