Research article

Mechanical vibration response of CNT-reinforced nanocomposite conical shells using the Mori–Tanaka micromechanics model and FSDT

  • Published: 15 December 2025
  • MSC : 70H25, 74-10, 74A05, 74H15, 74H25, 74M20

  • The free vibration behavior of carbon nanotube (CNT)-reinforced nanocomposite conical shells was investigated using the first-order shear deformation theory (FSDT) in conjunction with the Mori–Tanaka homogenization scheme. CNTs were incorporated into an epoxy matrix and E-glass fibers to enhance mechanical performance, particularly stiffness and damping characteristics. The effective material properties of the CNT-reinforced nanocomposite were computed using the Mori–Tanaka method, accounting for the volume fraction, orientation, and dispersion of CNTs within the matrix. A derivation of the dynamic equilibrium equations of motion for conical shells was carried out using Hamilton's principle, incorporating lateral shear deformation effects to improve accuracy for thick and moderately thick shells. An appropriate boundary condition associated with spline approximation was used to extract the natural frequencies. Ply orientation, number of layers, and shape parameters, including cone angle, length ratio, and circumferential node number, were considered to assess their influence on the frequencies. Numerical results demonstrate that matrix material significantly affects natural frequencies. Inclusion and exclusion of CNT in composites also alter the natural frequencies. These outcomes provide useful perspectives for improving the design and vibration mitigation of advanced nanocomposite conical shell structures used in aerospace, automotive, and marine engineering applications.

    Citation: Saira Javed. Mechanical vibration response of CNT-reinforced nanocomposite conical shells using the Mori–Tanaka micromechanics model and FSDT[J]. AIMS Mathematics, 2025, 10(12): 29552-29581. doi: 10.3934/math.20251298

    Related Papers:

  • The free vibration behavior of carbon nanotube (CNT)-reinforced nanocomposite conical shells was investigated using the first-order shear deformation theory (FSDT) in conjunction with the Mori–Tanaka homogenization scheme. CNTs were incorporated into an epoxy matrix and E-glass fibers to enhance mechanical performance, particularly stiffness and damping characteristics. The effective material properties of the CNT-reinforced nanocomposite were computed using the Mori–Tanaka method, accounting for the volume fraction, orientation, and dispersion of CNTs within the matrix. A derivation of the dynamic equilibrium equations of motion for conical shells was carried out using Hamilton's principle, incorporating lateral shear deformation effects to improve accuracy for thick and moderately thick shells. An appropriate boundary condition associated with spline approximation was used to extract the natural frequencies. Ply orientation, number of layers, and shape parameters, including cone angle, length ratio, and circumferential node number, were considered to assess their influence on the frequencies. Numerical results demonstrate that matrix material significantly affects natural frequencies. Inclusion and exclusion of CNT in composites also alter the natural frequencies. These outcomes provide useful perspectives for improving the design and vibration mitigation of advanced nanocomposite conical shell structures used in aerospace, automotive, and marine engineering applications.



    加载中


    [1] H. Afshari, H. Amirabadi, Vibration characteristics of rotating truncated conical shells reinforced with agglomerated carbon nanotubes, J.Vib. Control, 28 (2022), 1894–1914.
    [2] M. Alinejad, S. J. Mehradadi, M. M. Najafizadeh, Free vibration analysis of a sandwich conical shell with a magnetorheological elastomer core, enriched with carbone nanotubes and functionally graded porous face layers, Noise Vib. World., 55 (2024), 382–406.
    [3] R. Bina, M. S. Tehrani, A. Ahmadi, A. G. Taki, R. Akbarian, Using 3D theory of elasticity for free vibration analysis of functionally graded laminated nanocomposite shells, Steel Compos. Struct., 52 (2024), 487–499. https://doi.org/10.12989/scs.2024.52.4.487 doi: 10.12989/scs.2024.52.4.487
    [4] K. Arshadi, M. Abasi, H. Afshari, The free vibration analysis of ring-stiffened FG conical sandwich shells with auxetic and non-auxetic honeycomb cores, Noise Vib. World., 56 (2025), 76–97.
    [5] H. Mallek, H. Mellouli, L. B. Said, M. Wali, F. Dammak, M. Boujelbene, Bending and free vibration analyses of CNTRC shell structures considering agglomeration effects with through-the-thickness stretch, Thin-Wall. Struct., 191 (2023), 111036. https://doi.org/10.1016/j.tws.2023.111036 doi: 10.1016/j.tws.2023.111036
    [6] J. R. Cho, Free vibration responses of functionally graded CNT-reinforced composite conical shell panels, Polymers, 15 (2023), 1987. https://doi.org/10.3390/polym15091987 doi: 10.3390/polym15091987
    [7] H. Amirabadi, H. Afshari, M. Sarafraz, S. Rahmani, Effects of non-uniformity in thickness and volume fraction of agglomerated CNTs on the dynamics of a spinning CNT-reinforced nanocomposite truncated conical shell, Noise Vib. World., 55 (2024), 167–185.
    [8] A. F. Fedotov, Mori-Tanaka experimental-analytical model for predicting engineering elastic moduli of composite materials, Compos. Part B-Eng, 232 (2022), 109635. https://doi.org/10.1016/j.compositesb.2022.109635 doi: 10.1016/j.compositesb.2022.109635
    [9] Y. A. Benveniste, A New approach to the application of Mori-Tanaka's theory in composite materials, Mech. Mater., 6 (1987), 147–157. https://doi.org/10.1016/0167-6636(87)90005-6 doi: 10.1016/0167-6636(87)90005-6
    [10] P. Xiang, Q. Xia, L. Z. Jiang, L. Peng, J. W. Yan, X. Liu, Free vibration analysis of FG-CNTRC conical shell panels using the kernel particle Ritz element-free method, Compos. Struct., 255 (2021), 112987. https://doi.org/10.1016/j.compstruct.2020.112987 doi: 10.1016/j.compstruct.2020.112987
    [11] Y. Zhang, W. Liu, Nonlinear vibration response of a functionally graded carbon nanotube-reinforced composite conical shell using a stress function method, Acta Mech., 233 (2022), 3157–3174. https://doi.org/10.1007/s00707-022-03273-9 doi: 10.1007/s00707-022-03273-9
    [12] B. Thomas, T. P. Suresh, Vibration and buckling analysis of functionally graded carbon nanotube reinforced composite beams. Int. J. Civil Eng. Technol., 8 (2017), 74–84.
    [13] N. Aghaei, M. T. Tooti, Free vibration analysis of nanotube-reinforced composite conical shell in high temperature environment, Amirkabir J. Mech. Eng., 51 (2019), 101–110.
    [14] A. H. Sofiyev F. Tornabene, R. Dimitri, N. Kuruoglu, Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading, Nanomaterials, 10 (2020), 419. https://doi.org/10.3390/nano10030419 doi: 10.3390/nano10030419
    [15] Y. Heydarpour, M. M. Aghdam, P. Malekzadeh, Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells, Compos. Struct., 117 (2014), 187–200. https://doi.org/10.1016/j.compstruct.2014.06.023 doi: 10.1016/j.compstruct.2014.06.023
    [16] R. Ansari, J. Torabi, M. F. Shojaei, Free vibration analysis of embedded functionally graded carbon nanotube-reinforced composite conical/cylindrical shells and annular plates using a numerical approach, J. Vib. Control, 24 (2018), 1123–1144.
    [17] Y. Kiani, R. Dimitri, F. Tornabene, Free vibration study of composite conical panels reinforced with FG-CNTs, Eng. Struct., 172 (2018), 472–482. https://doi.org/10.1016/j.engstruct.2018.06.006 doi: 10.1016/j.engstruct.2018.06.006
    [18] F. Tornabene, E. Viola, D. J. Inman, 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures, J. Sound Vib., 328 (2009), 259–290. https://doi.org/10.1016/j.jsv.2009.07.031 doi: 10.1016/j.jsv.2009.07.031
    [19] M. Bulut, A numerical investigation on vibration analysis of fiber reinforced and truncated conical hollow shells with different fiber orientations, J. Institute Sci. Technol., 8 (2018), 259–269.
    [20] M. Shadmani, A. Afsari, R. Jahedi, M. J. Kazemzadeh-Parsi, Nonlinear free vibrations analysis of truncated conical shells made of bidirectional functionally graded materials, J. Vib. Control, 30 (2024), 2842–2856.
    [21] Y. Shi, Z. Chen, D. An, J. Xu, Z. Zhou, T. Q. Bui, R. Li, New free vibration solutions of arbitrarily constrained spherical-conical shell assemblies within a state-space-based piecewise solution framework, Thin-Wall. Struct., 214 (2025), 113322. https://doi.org/10.1016/j.tws.2025.113322 doi: 10.1016/j.tws.2025.113322
    [22] Y. Shi, D. An, J. Xu, R. Li, Traveling-wave vibration of spinning thick multi-conical shells: New solving methodology, Int. J. Mech. Sci., 296 (2025), 110313. https://doi.org/10.1016/j.ijmecsci.2025.110313 doi: 10.1016/j.ijmecsci.2025.110313
    [23] L. L. Zhang, L. C. Zhao, S. J. Lang, K. Asemi, Free vibration analysis of functionally graded graphene platelet-reinforced metal foam doubly curved panel, Front. Mater., 11 (2024), 1339865. https://doi.org/10.3389/fmats.2024.1339865 doi: 10.3389/fmats.2024.1339865
    [24] M. Bayat, A. Kalhori, K. Asemi, M. Babaei, Plates, beams and shells reinforced by CNTs or GPLs: A review on their structural behavior and computational methods, Comp. Model. Eng. Sci., 142 (2025), 1351. https://doi.org/10.32604/cmes.2025.060222 doi: 10.32604/cmes.2025.060222
    [25] F. Kiarasi, A. Asadi, M. Babaei, K. Asemi, M. Hosseini, Dynamic analysis of functionally graded carbon nanotube (FGCNT) reinforced composite beam resting on viscoelastic foundation subjected to impulsive loading, J. Comput. Appl. Mech., 53 (2022), 1–23. https://doi.org/10.22059/JCAMECH.2022.339008.693 doi: 10.22059/JCAMECH.2022.339008.693
    [26] M. Khatoonabadi, M. Jafari, F. Kiarasi, M. Hosseini, M. Babaei, K. Asemi, Shear buckling response of FG porous annular sector plate reinforced by graphene platelet subjected to different shear loads, J. Comput. Appl. Mech., 54 (2023), 68–86. https://doi.org/10.22059/JCAMECH.2023.352182.784 doi: 10.22059/JCAMECH.2023.352182.784
    [27] M. Babaei, F. Kiarasi, K. Asemi, Torsional buckling response of FG porous thick truncated conical shell panels reinforced by GPLs supporting on Winkler elastic foundation. Mech. Based Des. Struc., 52 (2024), 3552–3581. https://doi.org/10.1080/15397734.2023.2205488 doi: 10.1080/15397734.2023.2205488
    [28] M. J. Bayat, A. Kalhori, M. Babaei, K. Asemi, Natural frequency characteristics of stiffened FG multilayer graphene-reinforced composite plate with circular cutout resting on elastic foundation, Int. J. Struct. Stab. Dyn., 24 (2024), 2450202. https://doi.org/10.1142/S021945542450202X doi: 10.1142/S021945542450202X
    [29] M. Hemmatnezhad, G. Iarriccio, A. Zippo, F. Pellicano, Modal localization in vibrations of circular cylindrical shells with geometric imperfections, Thin-Wall. Struct., 181 (2022), 110079. https://doi.org/10.1016/j.tws.2022.110079 doi: 10.1016/j.tws.2022.110079
    [30] A. Zippo, M. Barbieri, G. Iarriccio, F. Pellicano, Nonlinear vibrations of circular cylindrical shells with thermal effects: An experimental study, Nonlinear Dyn., 99 (2020), 373–391. https://doi.org/10.1007/s11071-018-04753-1 doi: 10.1007/s11071-018-04753-1
    [31] M. Amabili, Nonlinear vibrations and stability of shells and plates, Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511619694
    [32] W. Soedel, Vibrations of shells and plates, 3Eds, CRC Press, 2004. https://doi.org/10.4324/9780203026304
    [33] A. W. Leissa, J. H. Kang, Three-dimensional vibration analysis of thick shells of revolutuion, J. Eng. Mech., 125 (1999), 1365-1371. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:12(1365) doi: 10.1061/(ASCE)0733-9399(1999)125:12(1365)
    [34] M. Amabili, A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach, J. Sound Vib., 264 (2003), 1091–1125. https://doi.org/10.1016/S0022-460X(02)01385-8 doi: 10.1016/S0022-460X(02)01385-8
    [35] S. Javed, Free vibration characteristic of laminated conical shells based on higher-order shear deformation theory, Compos. Struct., 204 (2018), 80–87. https://doi.org/10.1016/j.compstruct.2018.07.065 doi: 10.1016/j.compstruct.2018.07.065
    [36] S. Javed, A numerical solution of symmetric angle ply plates using higher-order shear deformation theory, Symmetry, 15 (2023), 767. https://doi.org/10.3390/sym15030767 doi: 10.3390/sym15030767
    [37] R. Ansari, E. Hasrati, J. Torabi, Nonlinear vibration response of higher-order shear deformable FG-CNTRC conical shells, Compos. Struct., 222 (2019), 110906. https://doi.org/10.1016/j.compstruct.2019.110906 doi: 10.1016/j.compstruct.2019.110906
    [38] A. T. Maleki, M. Pourseifi, M. Zakeri, Effect of agglomeration of the nanotubes on the vibration frequency of the multi-scale hybrid nanocomposite conical shells: A GDQ-based study, Waves Random Complex Media, 32 (2022), 359–380. https://doi.org/10.1080/17455030.2020.1773007 doi: 10.1080/17455030.2020.1773007
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(351) PDF downloads(20) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog