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Abstract: The free vibration behavior of carbon nanotube (CNT)-reinforced nanocomposite conical 
shells was investigated using the first-order shear deformation theory (FSDT) in conjunction with the 
Mori–Tanaka homogenization scheme. CNTs were incorporated into an epoxy matrix and E-glass 
fibers to enhance mechanical performance, particularly stiffness and damping characteristics. The 
effective material properties of the CNT-reinforced nanocomposite were computed using the Mori–
Tanaka method, accounting for the volume fraction, orientation, and dispersion of CNTs within the 
matrix. A derivation of the dynamic equilibrium equations of motion for conical shells was carried out 
using Hamilton’s principle, incorporating lateral shear deformation effects to improve accuracy for 
thick and moderately thick shells. An appropriate boundary condition associated with spline 
approximation was used to extract the natural frequencies. Ply orientation, number of layers, and shape 
parameters, including cone angle, length ratio, and circumferential node number, were considered to 
assess their influence on the frequencies. Numerical results demonstrate that matrix material 
significantly affects natural frequencies. Inclusion and exclusion of CNT in composites also alter the 
natural frequencies. These outcomes provide useful perspectives for improving the design and 
vibration mitigation of advanced nanocomposite conical shell structures used in aerospace, automotive, 
and marine engineering applications. 
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1. Introduction 

The Mori–Tanaka method is used for homogenizing composites with various types of 
reinforcements. Among them, carbon nanotubes (CNTs) are preferred for their exceptional stiffness 
and modulus. To analyze structural behaviors like free vibration, advanced modeling techniques are 
required to consider the scale-dependent and anisotropic nature of these materials. 

Free vibration analysis helps to determine natural frequencies and mode shapes, critical for 
dynamic design and stability. The governing equations derived via FSDT are typically solved using 
different methods, such as Rayleigh–Ritz, Galerkin’s, or the finite element method (FEM). These and 
other methods to solve such problems are used in the studies mentioned below. 

Afshari and Amirabadi [1] studied the shuddering of cone-shaped structures reinforced with 
CNTs, in which material properties were derived via the Eshelby–Mori–Tanaka approach, vibrational 
behavior was modeled using FSDT, and natural frequencies were calculated via the generalized 
differential quadrature (GDQ) method. CNT agglomeration was shown to significantly decrease 
natural frequencies, while higher agglomeration levels lead to more pronounced stiffness degradation. 
This work extended classical FSDT by including realistic dispersion effects. Validation was limited to 
prior numerical data, instead of experimental benchmarks. In addition to this, a lack of exploration of 
graded or rotating shells makes generalization to FG-CNT or rotating configurations limited. Moreover, 
the study did not examine functionally graded CNT distributions, hybrid reinforcement patterns, or 
advanced CNT orientation strategies, restricting the generality of the conclusions to uniformly 
dispersed CNT composites. Rotating or spinning configurations, which are highly relevant to 
aerospace and rotor applications, were also not considered, reducing the applicability of the findings 
to dynamic environments involving centrifugal or Coriolis effects. Finally, the analysis remains within 
linear vibration assumptions, without exploring geometric nonlinearities, thermal influences, or 
viscoelasticity, all of which can significantly alter vibration characteristics in real-world operating 
conditions. Present research fills a scientific gap by using the spline approximation technique in 
analyzing the vibration behavior of CNT-reinforced nanocomposite conical shells. 

Alinejad et al. [2] used the FSDT displacement model to examine the natural frequency of tapered 
shells with CNT-reinforced FG porous face layers and magnetorheological elastomer. The solution 
was based on semi-analytical methods (triangular functions circumferentially and DQM meridionally). 
Moreover, the Mori–Tanaka model was used for the FG-CNT face layers. Findings showed that face-
layer porosity and CNT grading significantly influence both frequencies and damping (loss factors). 
In addition, end conditions strongly affect dynamic responses, especially in FG configurations. This 
study provided a novel combination of FG-CNT, porous layers, and a smart MRE core. Analysis was 
limited to linear vibration and focused more on forced/damped scenarios rather than pure free vibration. 
Buckling response or rotational dynamics were not addressed in this study. 

Bina et al. [3] analyzed wavy CNT-enhanced face sheets on a sandwich cylindrical and conical 
shell. 3D elasticity theory was used with the generalized DQ method. This method extended 
micromechanics beyond Mori–Tanaka to include waviness and tube–tube contact. The findings of this 
study show that waviness and damaged core presence significantly lower natural frequencies. 
Moreover, the 3D elasticity model yields lower frequency predictions compared to FSDT models. 
Although the study focused on cylindrical shells, it offers direct implications for conical geometries. 
It demonstrates limitations of Mori–Tanaka homogenization when CNT morphology is non-ideal and 
provides high computational complexity compared to FSDT methods. Furthermore, the study does not 
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include experimental validation or comparison with multiscale finite element models, leaving 
uncertainty regarding the real-world accuracy of the predicted reductions in natural frequencies caused 
by CNT waviness and core damage. Finally, the investigation remains within the framework of linear 
vibration analysis; thermal loading, nonlinear deformation, environmental effects, and viscoelasticity 
factors known to strongly influence nanocomposite shell behavior were not explored. The current study 
fills such a gap by using FSDT to reduce computational complexity.  

Afshari and Amirabadi [1] and Bina et al. [3] applied MT for CNT fractions of up to 5%–8% and 
reported acceptable accuracy when dispersion is assumed to be ideal. In our work, the 5% CNT volume 
fraction is selected only as an upper-bound design case; the primary trends remain consistent across 
lower fractions. Nevertheless, we now clearly acknowledge MT’s limitations at higher CNT contents 
and include this point in both the discussion and the limitations sections. 

Arshadi et al. [4] applied FSDT to sandwich shells with FG-CNT face sheets and auxetic 
honeycomb cores, including ring stiffeners. The problem was solved analytically and semi-analytically. 
Findings of the study show that the auxetic core combined with CNT-reinforced face sheets 
significantly boosts dynamic stiffness and alters the frequency spectrum. This study combines 
advanced core architecture (auxetic honeycomb) with CNT reinforcement in a conical shell context. 
Moreover, the study focused on sandwich/face-core interaction rather than standalone solid CNT-
reinforced conical shells. The Mori–Tanaka method was used peripherally for CNT modeling, and the 
analysis remained limited to linear vibration behavior. Nonlinear dynamic effects, thermal gradients, 
viscoelastic core response, and geometric imperfections, which are critical in real aerospace and 
mechanical applications, were not included. The study also lacked experimental validation or 
comparison with multiscale finite element models, leaving uncertainty regarding the practical accuracy 
of the predicted improvements in stiffness and frequency response. Finally, although both analytical 
and semi-analytical approaches were employed, the semi-analytical method still relies on simplifying 
assumptions that may restrict its applicability to more complex boundary conditions, non-uniform 
CNT patterns, or irregular shell geometries. 

Mallek et al. [5] studied a 3D FSDT finite-element model incorporating CNT agglomeration via 
a statistical agglomeration parameter. This study demonstrated that CNT clustering significantly 
reduces both stiffness and natural frequencies by up to 15% lower than perfectly dispersed cases. The 
author was the first to couple through-thickness stretch with agglomeration in a 3D FSDT framework. 
This was an extensive parametric study on agglomeration level, volume fraction, and boundary 
conditions; however, its limitation was that it relied on a single agglomeration parameter, while real 
CNT networks may exhibit more complex clustering behavior. Moreover, it neglected geometric 
nonlinearities and damping, which can be important at higher modes or large amplitudes. 

Cho et al. [6] investigated FSDT displacement field mapped onto a 2D planar natural element 
method (NEM) mesh with Mori–Tanaka to obtain a graded elastic modulus. The NEM approach 
achieved <5% error against benchmark solutions, even on coarse grids, and identified that grading 
patterns (e.g., top-heavy vs. bottom-heavy CNT distribution) can tune mode shapes more effectively 
than uniform distribution. The mesh-free nature allows for complex shell geometries without 
remeshing. Rigorous validation was conducted against both Donnell’s theory and FSDT finite 
elements. The limitation of this study was that planar mapping overlooked curvature in the element 
stiffness matrix, which may introduce small geometric errors for steep cone angles. Moreover, only 
linear free vibration was studied, and there was no treatment of thermal or rotational effects. 
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Amirabadi et al. [7] studied FSDT with centrifugal and Coriolis accelerations included for rotation. 
The Mori–Tanaka model was used for effective moduli, paired with a power-law gradation in both 
thickness and volume fraction. Non-uniform thickness (thicker at small radius) can increase first-mode 
frequency by ~8%, counter-intuitively stiffening the shell edge against rotation. Functionally graded 
volume fraction (higher at mid-span) counters rotational softening. The strength of this study was that 
it integrated rotation, graded thickness, and graded CNT content in one model and highlighted design 
levers for aerospace turbine casings. The limitation was that it used a constant shear correction factor, 
as accuracy deteriorates for very thick shells. Moreover, this study did not validate higher-order or 3D 
elasticity solutions. 

The Halpin-Tsai, rule of mixtures, and Mori–Tanaka method are three micromechanical models. 
These models can estimate a composite’s overall material behavior, especially composites reinforced 
with nanomaterials and, particularly, CNT-infused composites. Among them, the Mori–Tanaka 
homogenization method is the most accurate for inclusions in the matrix. This method handles random 
orientations, matrix-inclusion interaction, and nonlinearities, being more accurate for low filler volume 
fractions. 

Studies like [8,9] effectively employed the Mori–Tanaka model to derive the homogenized elastic 
moduli of nanocomposite materials for use in continuum mechanics-based shell theories. This 
approach is especially appropriate for moderately thick conical shells, where shear effects cannot be 
neglected. Xiang et al. [10] conducted a free dynamic analysis of functionally graded (FG) composites 
reinforced with CNT cone structures, comparing results from FSDT with higher-order shear 
deformation theories (HSDT), emphasizing the importance of shell thickness and tapering on dynamic 
response. Zhang and Liu [11] modeled laminated conical shells with CNT reinforcements using shear 
deformation theory and showed the significant effect of boundary conditions and geometric parameters 
on frequency. Thomas and Suresh [12] conducted parametric studies using FEM to verify semi-
analytical FSDT solutions, highlighting the accuracy of the Mori–Tanaka model for low CNT volume 
fractions. Aghaei and Talebi [13] investigated uniform and functionally graded CNT distributions 
under thermal loading using Galerkin’s method based on classical shell theory. Sofiyev et al. [14] 
focused on FG-CNT materials in conical shells under combined loading conditions using power-law 
grading. Heydarpour et al. [15] used Mori–Tanaka homogenization and FSDT for rotating FG-CNT 
cases for a number of boundary conditions. Ansari et al. [16] examined free vibration and stability 
under axial loads with Mori–Tanaka-based FG-CNT models for functionally graded CNT-reinforced 
composite structures. Kiani et al. [17] used a detailed FSDT model for FG-CNT conical panels, 
validated via differential quadrature methods. Tornabene et al. [18] applied FSDT for FG shell 
behavior and discussed graded CNTs in conical configurations. Bulut [19] conducted FEA-based 
vibration studies of composite conical shells with different fiber orientations, complementing 
CNT-reinforced investigations.  

Shadmani et al. [20] derived nonlinear motion equations via FSDT with von Kármán strains and 
solved them using Galerkin and Poincaré–Lindstedt methods for periodic amplitude-dependent 
frequencies. While not CNT-specific, this demonstrates the application of FSDT in a nonlinear 
dynamic setting for conical shells. The nonlinear regime analysis of graded shells sets a useful 
benchmark for future CNT-shell studies. However, this study lacked CNT reinforcement modeling, so 
Mori–Tanaka homogenization and CNT effects are absent. 

Shi et al. [21] examined a state space, piecewise, analytical, and semi-analytical solution for free 
vibration of assembled spherical conical shell systems. A rigorous state space formulation and 
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piecewise matching provided high accuracy for multi-segment shell assemblies, which is useful as a 
benchmark for complex geometries. It focuses on a geometrical solution methodology rather than on 
advanced material microstructure, with no nanofiller homogenization or CNT-specific 
micromechanics. Applying this framework to CNT-reinforced shells would require coupling their 
mechanical formulation with a micromechanics homogenization step. 

Shi et al. [22] developed a traveling wave solution and precise integration transfer matrices for 
spinning, thick multi-conical shells. This study addressed rotation and spinning (important for rotors 
in aircraft) with careful transfer matrix accuracy, valuable where Coriolis centrifugal effects are non-
negligible. Material modeling remains classical. It also did not treat nanocomposite homogenization 
details (CNT waviness or interphase), so it does not resolve micromechanical uncertainties. The 
present study fills this gap. Zhang et al. [23] investigated the free vibration of FG metal foam panels 
reinforced with graphene platelets using the Halpin–Tsai extended rule of mixtures for effective 
properties, considering a solid treatment of porous metal foam graphene platelets, a clear exposition 
of homogenization choices, and sensitivity to porosity dispersion. Effects such as agglomeration, 
nonlinearities, and interface degradation were not considered. 

Bayat et al. [24] conducted a comprehensive review of structural behavior and computational 
methods for CNT-reinforced structural elements. It provides a detailed up-to-date synthesis of 
modeling choices such as micromechanics approaches, classical vs. refined plate shell theories, and 
treatments of agglomeration waviness. Kiarasi et al. [25] conducted a dynamic transient impulsive 
analysis of the FG-CNTRC beam on a viscoelastic foundation using higher-order beam theory. 
Nonetheless, such analysis was confined to one-dimensional beam structures and did not extend to 
shell geometries. The present study fills this gap. Additionally, nonlinear effects, temperature-
dependent material properties, and CNT imperfections were not incorporated. 

Khatoonabadi et al. [26] focused on the buckling of porosity of graphene platelets using Halpin–
Tsai effective properties. A thorough parametric study for porosity distribution demonstrated the 
sensitivity of stability results to microstructural grading. Although the porosity distribution was 
thoroughly examined, the work made simplifying assumptions regarding perfect GPL dispersion and 
did not explore nonlinear buckling or post-buckling behavior. The influence of GPL orientation or 
interphase effects is also absent. Babaei et al. [27] studied torsional buckling of FG porous truncated 
conical shell panels with GPL reinforcement and examined GPL patterns, porosity, and foundation 
effects. While a rich parametric study was conducted, the analysis was restricted to torsional loading 
and did not evaluate combined or complex loading states, such as shear deformation. The present study 
fills this gap. The modeling assumed ideal porosity distributions and perfect graphene platelet behavior. 

Bayat et al. [28] investigated the natural frequencies of stiffened FG graphene-reinforced 
multilayer plates on elastic foundations, conducting a broad, parametric study. Parametric mapping of 
stiffeners, cutouts, and foundation stiffness was carried out, helping to understand how structural 
features dominate modal behavior. The study did not incorporate nanoscale effects such as CNTs, 
temperature dependence, or nonlinearity. Experimental correlation was also lacking. Hemmatnezhad 
et al. [29] demonstrated how geometric imperfections induce modal localization and alter modal 
ordering in cylindrical shells. The study highlighted an important practical effect (imperfections) that 
significantly modifies modal localization and must be considered in comparisons with idealized 
models. It also highlighted critical, practical issues, yet focused solely on specific imperfection patterns 
and did not examine multiscale reinforcement. The present study fills this gap, including thermal 
effects or nonlinear material behavior that may interact with imperfections. 
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Zippo et al. [30] conducted experimental and numerical studies on nonlinear shell dynamics under 
thermal gradients, showing strong thermal influence on nonlinear response and resonance phenomena. 
The study combined experiments and nonlinear theory to provide authoritative evidence that thermal 
gradients and nonlinearities fundamentally change shell dynamics. Although authoritative, the 
investigation was limited to conventional materials and did not incorporate nanocomposites (as the 
present study does), graded reinforcements, or micromechanical modeling. The strong nonlinear 
thermal coupling observed was not extended to hybrid or multiscale shell systems. Amabili [31] 
conducted a comprehensive monograph on geometrically nonlinear vibrations, compared the theory 
with experimental results, provided model comparisons, and used reduced-order techniques. The study 
presented an authoritative treatment of nonlinear shell behavior and a comparison among theories, 
regarded as essential background for anyone extending linear shell models to large amplitudes or 
thermal/nonlinear coupling. Soedel [32] is a classic reference covering linear vibration theory, practical 
examples, and complicating factors such as rotation and shear. Moreover, Leissa [33] is a classical 
NASA monograph providing fundamental solutions and benchmarks for shell vibration, with both thin 
shell theory and canonical geometries. The study provided a timeless benchmark for modal frequencies 
and mode shapes that are often used to validate new numerical and analytical formulations. 

Amabili [34] did a comparative study of different shell theories, such as Donnell, Sanders, and 
Flügge, for large-amplitude vibrations. It demonstrated which theories are appropriate depending on 
amplitude and accuracy requirements, which is very relevant to model selection. 

Recent research (2024 and 2025) in [7,24] has deepened modeling accuracy by incorporating 
CNT agglomeration, functionally graded CNT distributions, and advanced substrates like porous or 
smart core shells. However, most FSDT-based studies remain limited to linear free vibration, static 
thermal effects, and simplified shell geometries. The 3D elasticity-based studies expose the over-
predictions of FSDT/Mori–Tanaka models when CNT morphology is non-ideal or when core defects 
exist. Yet, comprehensive models combining grading, rotation, nonlinearity, and thermal effects for 
conical shells are still notably missing. 

Several parameters influence the CNT-reinforced conical shell’s vibrational features: 

 CNT volume fraction fV : Higher fV  enhances stiffness, thus increasing natural frequencies. 

 Geometry (cone half angle, ratio of material’s thickness to its radius): Affects mode shapes 
and critical frequencies. 

 Boundary conditions: Clamped and simply supported ends drastically alter the dynamic 
response. 

 CNT distribution: Uniform vs. functionally graded distribution significantly alters the 
stiffness profile along the thickness. 

The influence of the above-mentioned factors on the shuddering of CNT-reinforced cone-shaped 
structures is evident from the outcomes of the current study.  

A number of studies used FSDT and the Mori–Tanaka model for CNT-reinforced conical shells. 
For example, in [1], the authors used the differential quadrature method; the natural element method 
was used in [6]; the differential quadrature method was used in [7]; the Ritz method was used in [10]; 
and the differential quadrature method was used in [15] for numerical computation. As such, the 
distinct novelty of this work that has not yet been covered is the spline approximation technique. This 
research is based on the vibrational behavior of CNT-reinforced nanocomposite conical shells using 
the FSDT in conjunction with the Mori–Tanaka homogenization scheme. FSDT (Mindlin Reissner 
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theory) improves upon the classical laminate plate theory (CLPT) by including transverse shear 
deformation, allowing for a linear variation of displacement across the thickness and introducing shear 
correction factors. For material modeling, the Mori–Tanaka homogenization method is used for 
estimating the effective mechanical properties of CNT-reinforced composites. It accounts for: 

 The volume proportion of CNTs ( fV ). 

 Orientation and distribution, which are aligned in this study. 

 Efficiency factors for transverse and shear load transfer ( and  ). 

In this study, aligned CNTs are embedded within an epoxy matrix and E-glass fibers to enhance 
mechanical properties, especially stiffness and damping. The macroscopic material properties are 
calculated using the Mori–Tanaka method, considering CNT volume fraction, alignment, and 
dispersion within the matrix and fibers. The dynamic equilibrium equations for the cone-shaped shell 
are formulated using Hamilton’s principle, incorporating lateral shear deformation to improve 
accuracy, particularly for thick and moderately thick shells. The effects of end conditions, ply 
orientations, ply number, and structural geometry characteristics such as cone angle, length-to-radius 
ratio, and circumferential node number are investigated for their influence on natural frequencies. 
Numerical analysis shows that the choice of matrix and fibers plays a decisive effect in determining 
vibration characteristics. The presence or absence of CNTs in the composite also leads to notable 
changes in natural frequencies. The parameters with the largest influence in composite shells is the 
thickness ratio   and CNT effective stiffness (CNT volume + dispersion + orientation). Geometry 

(cone angle and length ratio) is also strong, but its effect is mode dependent. CNTs change the effective 
elastic moduli and density of the composite shell. The Mori–Tanaka homogenization method provides 
the effective Young’s modulus, shear, and bulk moduli used in FSDT. Higher effective stiffness (for 
the same mass distribution), in return, produces higher natural frequencies. The volume fraction ( fV ) 

is related to effective stiffness, so it definitely affects frequencies. Aligned CNT orientation is more 
effective at increasing directional stiffness (longitudinal modulus). 

Limitations of the study 

1) The Mori–Tanaka method assumes dilute, well-dispersed inclusions and uses average-field 
interactions; it can under- or overestimate effective properties when the CNT volume fraction is 
high, CNTs agglomerate, or interactions are strong. 

2) The perfect-dispersion assumption may overestimate the effective moduli and natural frequencies. 
3) The classical Mori–Tanaka (MT) homogenization scheme provides the most accurate predictions 

at low CNT volume fractions due to its assumption of dilute and uniformly dispersed inclusions. 
Specifically, previous studies (e.g., Afshari & Amirabadi [1]; Bina et al. [3]) have applied MT for 
CNT fractions up to 5%–8% and reported acceptable accuracy when dispersion is assumed to be 
ideal. In our work, the 5% CNT volume fraction is selected only as an upper-bound design case; 
the primary trends remain consistent across lower fractions. Although idealized, this assumption 
aligns with the standard Mori–Tanaka homogenization approach, which requires geometrically 
simple, ellipsoidal inclusions. More advanced micromechanics models capable of incorporating 
waviness (e.g., “wavy CNT” models, orientation distribution–based MT variants) fall outside the 
scope of the present analytical study. 

4) Aligned CNTs may not capture the frequency shifts introduced by random orientation, especially 
in torsional and coupled modes. 



29559 

AIMS Mathematics  Volume 10, Issue 12, 29552–29581. 

5) The model typically assumes uniform distribution and a prescribed orientation (e.g., aligned, 
random). Real composites often show non-uniform dispersion and local alignment variations that 
affect stiffness and vibration. 

6) CNTs are often wavy or curved in actual materials; treating them as straight inclusions inflates 
predicted stiffness and natural frequencies. 

7) Homogenization treats the interface implicitly (perfect bonding). Interfacial sliding, debonding, 
or imperfect load transfer (especially at high strain or under fatigue) are not captured. 

8) FSDT + classical continuum homogenization ignores nonlocal elasticity/surface energy effects 
that can be important for very thin shells or very small CNT-reinforced layers. 

9) FSDT assumes a linear transverse shear strain distribution and requires a shear correction factor; 
for very thick shells or strong through-thickness property gradients, higher-order theories might 
be more accurate. 

10) Using a single shear correction factor, e.g., 5/6 for all layups and thicknesses, is an approximation; 
its best value depends on geometry and material through thickness variation.  

11) The adopted shear correction factor follows the classical FSDT formulation commonly employed 
in conical shell analyses and is consistent with values used in recent studies on CNT-reinforced 
shells. To improve transparency, advanced formulations require additional kinematic assumptions 
outside the scope of the present analytical model; the classical approach was adopted for 
consistency with comparable literature.  

12) The analysis assumes linear vibrations. Geometric nonlinearity (large deflections) and material 
nonlinearity (plasticity, damage) are not considered and can change frequencies and mode shapes 
under large amplitudes. 

13) The study neglects structural damping, viscoelasticity, or energy dissipation mechanisms so it 
predicts undamped natural frequencies only. 

14) A perfectly, simply supported boundary is assumed, whereas real supports are often elastic or 
imperfect and can shift frequencies and mode shapes. 

15) Thermal stresses, temperature-dependent material properties, moisture, or chemical aging were 
not considered, but can significantly affect stiffness and vibration. 

16) Material property scatter (CNT properties, matrix properties, interphase properties) and model 
sensitivity to those uncertainties are not quantified. 

2. Mechanics-based formulation 

The dynamic equilibrium equations for conical shells are as follows: 
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where , ,x xN N N   are the stress resultants in the respective directions, , ,x xM M M   are the bending 

and twisting moment resultants in corresponding orientations, and Q ,Qxz z  are the lateral shear 

resultants in the corresponding orientations. 
The strain displacement relations are 
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where ,x    are the strain components in the axial direction, , ,x xz z     are the strain components in 

the shear direction, and , ,x x     are the deformation-induced curvatures of the midplane 

deformation for the corresponding orientations for the conical shell. 
The displacement components are 

0( , , , ) ( , , ) ( , , )xu x z t u x t z x t     , 
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where u , v , and w  are the supplanting functions in x ,  , and z -corresponding orientations, 0u , 0v , 

and w  are the spatial deviation of the mid plane of the cone, and x ,   are the rotational 

deformations of the cone's neutral axis due to shear forces. The material properties used via Mori–
Tanaka methods are as follows: 

Longitudinal Young’s modulus (along the CNT axis): 
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Transverse Young’s modulus (perpendicular to CNT axis): 
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CNTE : Young’s modulus of CNT 

mE : Young’s modulus of matrix 

 : Shape-dependent factor 

fV : CNT volume fraction 

Longitudinal shear modulus: 
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Transverse shear modulus: 
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      (4) 

CNTG : Shear modulus of CNT 

mG : Shear modulus of matrix 

 : Shape-dependent factor 

fV : CNT volume fraction 

The dynamic equilibrium equations characterizing the shuddering of a conical shell, including 
FSDT, are as follows: 
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   (5) 

The elastic coefficients ijA , ijB , and ijD  are the axial, coupling, and flexural rigidity stiffnesses, 

respectively [35]. 
The displacement components u , v , w  and shear rotations x ,   are assumed in separable 

form, given as 

( , , ) ( ) cos i tu x t U x n e   , 

( , , ) ( )sin i tv x t V x n e   , 

( , , ) ( )cos i tw x t W x n e  ,       (6) 

( , , ) ( )cos i t
x xx t x n e     , 

( , , ) ( )sin i tx t x n e 
     , 

where 
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  = radian frequency of vibration  
n  = circumferential node number  
t  = time 

The parameters used are:  

x a
X

l


 , a x b   and [0,1]X   
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11
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  , ratios of the material’s thickness to its characteristic length 

a
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  , a length proportion 

k
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h
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   , proportional layer width of the k -th layer. 

Cubic spline functions are used to approximate the obtained differential equations, for [0,1]X  . 

Supplanting functions ( )U X , ( )V X , ( )W X  and rotating functions ( )X X , ( )X  are 

approximated by cubic splines [36]. 
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     (7) 

Here, )( jXXH   is the Heaviside step function, and N  is the number of intervals into which 

the range ]1,0[  of X  is divided. The points
N

s
XX s   , ),.....,2,1,0( Ns  , are chosen as the 

knots of the splines, as well as the collocation points. Thus, the splines are assumed to satisfy the 
differential equations given by Eq (7), at all sX  . The resulting expressions contain the )55( N

homogeneous system of equations in the )155( N  spline coefficients. 

The boundary condition considered is as follows: 
Simply-supported (S-S): both ends are simply supported: 



29564 

AIMS Mathematics  Volume 10, Issue 12, 29552–29581. 

0X XV W N M      . 

The simply supported end condition gives 10 more equations, thus making a total of (5 15)N   

equations. The resulting equations are written as follows: 

       2O t P t ,        (8) 

where  O and  P  are the n n  matrix, and { }t  is a column matrix. The generalized eigenvalue 

problem is the eigenfrequency parameter   and the eigenvector { }t , whose components are the spline 

coefficients. The problem is solved to find the first three fundamental frequencies (eigenvalues) and 
their respective mode shapes (from eigenvectors). The equations are built from square matrices that 
include the material's stress, strain, and displacement, all of which determine the final frequency values. 

3. Analysis and interpretation of results 

In this study, the CNT-reinforced nanocomposite conical shells consisted of CNT/epoxy matrix 
and CNT/E-glass fibers composite materials with 5% CNT. Detailed material properties are given in 
Tables 1 and 2. Moreover, conical shells consisting of 3- and 5-layered Kevlar epoxy and E-glass 
epoxy composite materials were considered. The effect of CNT inclusion and exclusion on the 
frequency of shells was investigated by changing the length ratio, cone angle, and circumferential node 
number. 

Table 1. Mechanical properties for both the epoxy matrix/CNTs and their effective 
composite using the Mori–Tanaka method (assuming aligned CNTs and 5% volume 
fraction). 

Property Symbol Epoxy matrix Carbon nanotubes 
(CNTs)

Composite 
(5% CNT)

Young’s modulus (longitudinal) 11E  3.5 GPa 1000 GPa 53.25 GPa 

Young’s modulus (transverse) 22E  3.5 GPa 100 GPa 5.64 GPa 

Longitudinal shear modulus 12G  1.296 GPa 42 GPa 2.86 GPa 

Transverse shear modulus 23G  1.296 GPa 42 GPa 1.85 GPa 

Poisson’s ratio 12  0.35 0.19 0.343 

Density   1200 kg/m³ 1600 kg/m³ 1220 kg/m³
CNT volume fraction fV  - - 0.05 (5%) 

CNT transverse efficiency factor   - - 2 

CNT shear efficiency factor   - - 2 
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Table 2. Mechanical properties for both the E-glass fibers/CNTs and their effective 
composite using the Mori–Tanaka method (assuming aligned CNTs and 5% volume 
fraction). 

Property Symbol E-glass fibers Carbon nanotubes 
(CNTs)

Composite 
(5% CNT)

Young’s modulus (longitudinal) 11E  76 GPa 1000 GPa 123.8 GPa 

Young’s modulus (transverse) 22E  76 GPa 100 GPa 79.9 GPa 

Longitudinal shear modulus 12G  32 GPa 42 GPa 32.5 GPa 

Transverse shear modulus 23G  32 GPa 42 GPa 32.6 GPa 

Poisson’s ratio 12  0.22 0.19 0.2185 

Density   2550 kg/m³ 1600 kg/m³ 2483 kg/m³
CNT volume fraction fV  - - 0.05 (5%) 

CNT transverse efficiency factor   - - 2 

CNT shear efficiency factor   - - 2 

3.1. Convergence study 

The frequency parameter with respect to different configurations was carried out to confirm the 
convergence of the spline method for conical shells. The number of subintervals N of the range 

 0,1X   started at 4 and was fixed for N = 14, since for the next value of N, the percent changes in 

the   values are very low, the maximum being 2%. 
Table 3 shows a comparison of the reliability of the current results with those from the literature.  

Table 3. Comparison of fundamental frequencies for the SS boundary condition. 

0 /R h  Xiang et al. [10] Cho [6] Present 

25 7.1582 7.4946 7.3124 
50 10.9383 10.8709 10.7312 
100 16.6892 17.2480 17.1352 

Another comparative analysis is shown in Table 4, which compares these results with those by 
Heydarpour et al. [15], Ansari et al. [37], and Tavakoli et al. [38]. It is clear that the outcomes from 
the current work are very close to those from existing literature. 

Table 4. Comparison of the frequency value  of the C-C CNT nanocomposite shells for 
different cone angles. 

Cone angle  Heydarpour et al. [15] Ansari et al. [37] Tavakoli et al. [38] Present 
015   0.878 0.907 0.863 0.852 

 0.642 0.657 0.637 0.626 
030   0.822 0.824 0.819 0.805 

 0.599 0.606 0.596 0.585 
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Table 5 shows the influence of CNT inclusion and exclusion on the frequency of 3- and 5-layered 
CNT-reinforced nanocomposite conical shells with respect to the length ratio. In both cases, the 
frequency value decreases with the increase in the number of layers. The nondimensional angular 
frequency   is extremely sensitive to the length ratio  . In all cases, increasing   from 0.1 to 0.9 

results in a massive frequency increase of over 1700%. The 5-layer Kevlar/epoxy shell shows the 
highest sensitivity. Adding CNTs to the epoxy matrix alone actually results in a slight decrease in 
frequency for this specific case (   = 0.5). However, using CNTs to reinforce the E-glass fibers leads 

to a dramatic increase in frequency, more than doubling it to over 100% increase. This demonstrates 
that placing CNTs in the fibers vs. the matrix is critical. Kevlar/epoxy shells consistently show a higher 
natural frequency than E-glass/epoxy shells, confirming that Kevlar provides a stiffer structure. The 
advantage is more pronounced in the 3-ply configuration. The effect of adding more layers (from 3 to 
5) is not universal and depends on the base material. For Kevlar/epoxy, the 3-ply layup is stiffer. For 
E-glass/epoxy, the 5-ply symmetric layup is stiffer. This highlights the complex interactions between 
material properties and laminate stacking sequence. 

Table 5. Influence of length ratio   on the nondimensional angular frequency   of 

CNT-reinforced and CNT-free nanocomposite shells for various ply orientations and 
layups. 

 
  

Exclusion of CNT Inclusion of CNT

Kevlar epoxy E-glass epoxy CNT/epoxy matrix CNT/E-glass fibers

450/00/450 300/450/00

/450/300 

450/00/450 300/450/00 

/450/300

450/00/450 300/450/00 

/450/300

450/00/450 300/450/00

/450/300

0.1 219.051 198.595 144.595 164.138 206.23 196.075 300.09 300.88
0.3 655.661 599.115 466.282 496.856 624.47 589.612 1057.3 1052
0.5 1110.35 1030.38 779.143 849.524 1051.4 1004 1782.1 1774
0.7 1969.58 2099.02 1339.75 1768.2 1838.5 1950.52 3003.3 3038.43
0.9 4235.96 4232.89 2605.61 3072.17 3784.8 3779.82 5522.5 5522.35

Table 6 shows the influence of CNT inclusion and exclusion on the frequency of 3- and 5-layered 
CNT-reinforced nanocomposite conical shells with respect to cone angle. The nondimensional 
frequency is highly sensitive to the cone angle. In all cases, increasing the cone angle from 10° to 90° 
(i.e., making the shell more like a cylinder) results in a significant decrease in frequency, typically 
between 37% and 57%. The E-glass/epoxy shells show the greatest sensitivity to this change. The 
effect of CNT reinforcement is highly dependent on what it is reinforcing. Adding CNTs to the epoxy 
matrix results in a significant increase in frequency of around 18%. Conversely, adding CNTs to the 
E-glass fibers results in a large decrease in frequency of over 23%. This is a stark contrast to the 
previous table and suggests that the effect of CNT placement is complex and interacts with the cone 
angle and material properties. For conical shells at this angle, E-glass/epoxy shells have a significantly 
higher natural frequency over 42% than Kevlar/epoxy shells. This is the opposite of what was observed 
for the length ratio in Table 5, highlighting how the optimal material depends on the geometric 
parameters. For conical shells, the number of layers (3 vs. 5) has a very minor effect on the natural 
frequency, with differences of less than 2%. The 3-ply configuration is consistently slightly stiffer, but 
the effect is negligible compared to the influence of material and cone angle. 
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Table 6. Influence of cone angle   on the nondimensional frequency  of CNT-
reinforced and CNT-free nanocomposite shells for various ply orientations and layups. 

  Exclusion of CNT Inclusion of CNT

Kevlar epoxy E-glass epoxy CNT/epoxy matrix CNT/E-glass fibers

450/00/450 300/450/00 

/450/300 
450/00/450 300/450/00/ 

450/300

450/00/450 300/450/00 

/450/300

450/00/450 300/450/00 

/450/300

10 1.06923 1.00861 2.2206 2.2075 1.2551 1.1944 1.6899 1.42456
30 0.79769 0.81702 1.1965 1.1962 0.9074 0.9193 1.10495 1.09292
50 0.65633 0.64994 0.9332 0.9319 0.7412 0.7398 0.87918 0.86329
70 0.6205 0.61979 0.9434 0.9415 0.712 0.7138 0.89252 0.876619
90 0.61127 0.61217 0.9469 0.9447 0.7042 0.7069 0.90796 0.89427

Table 7 shows the influence of CNT inclusion and exclusion on the frequency of 3- and 5-layered 
CNT-reinforced nanocomposite conical shells with respect to circumferential node number. The 
inclusion of CNT increases the frequency of the shell. The nondimensional frequency is highly 
sensitive to the circumferential node number. In all cases, increasing n from 2 to 10 results in a very 
large increase in frequency, between 80% and 106%. This indicates that higher-order vibration modes 
with more waves around the circumference have significantly higher frequencies. The 3-ply 
Kevlar/epoxy shell shows the greatest sensitivity. Adding CNTs provides a consistent increase in 
natural frequency across all material systems for this vibration mode (n = 6). The most significant 
benefit is seen when CNTs are used to reinforce the E-glass fibers, with an increase of over 15% for 
the 3-ply and a substantial 30.1% for the 5-ply layup. Reinforcing the epoxy matrix also provides a 
clear benefit, increasing frequency by 7.5%–10.8%. For this specific mode (n = 6), E-glass/epoxy 
shells have a higher natural frequency than Kevlar/epoxy shells, with the 5-ply configuration showing 
a more pronounced advantage of almost 17%. This continues the trend observed with the cone angle, 
where E-glass outperforms Kevlar for this shell geometry. The effect of the number of layers is 
material-dependent. For Kevlar-based shells, the 3-ply layup is significantly stiffer (around 8%–9% 
higher frequency) than the 5-ply layup. For E-glass-based shells, the difference between 3 and 5 plies 
is very small (<1%), with the 3-ply being marginally stiffer. 

Table 7. Influence of circumferential node number n  on the nondimensional frequency 
 of CNT-reinforced and CNT-free nanocomposite shells for various ply orientations and 
layups. 

n Exclusion of CNT Inclusion of CNT

Kevlar epoxy E-glass epoxy CNT/epoxy matrix CNT/E-glass fibers

450/00/450 300/450/00 

/450/300 
450/00/450 300/450/00 

/450/300

450/00/450 300/450/00 

/450/300

450/00/450 300/450/00 

/450/300

2 0.3478 0.31587 0.42057 0.37002 0.3739 0.35 0.4862 0.4814
4 0.34061 0.32631 0.36378 0.3622 0.346 0.3351 0.3846 0.3826
6 0.37893 0.34475 0.40628 0.40297 0.3856 0.3547 0.4296 0.4232
8 0.52338 0.45105 0.57881 0.54623 0.5403 0.4747 0.6235 0.6096
10 0.7165 0.60188 0.81164 0.74053 0.7482 0.644 0.8852 0.8628
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 The influence of CNT-reinforced nanocomposites with different matrix materials on the 
frequency of conical shells with respect to circumferential node number is seen in Table 8. It shows 
that as the number of layers increases, the frequency also increases. Moreover, E-glass fibers show a 
higher frequency value compared to the epoxy matrix. Increasing the node number causes a large 
increase in frequency, from 70% to 95%. The 3-ply epoxy matrix system shows the highest sensitivity. 
The 5-ply layups for both materials show very similar sensitivity (~69%–79%). 

Table 8. Influence of circumferential node number n  on the frequency  of CNT-
reinforced nanocomposite with different materials for various ply orientation and layups. 

n variation Epoxy matrix E-glass fibers
300/00/300 300/600/00/600/300 300/00/300 300/600/00/600/300 

2 0.2734 0.4251 0.4563 0.4943 
4 0.2689 0.3568 0.3635 0.3868 
6 0.298 0.3802 0.4021 0.4307 
8 0.3955 0.5237 0.5782 0.6235 
10 0.5331 0.7207 0.8187 0.8842 

The effect of CNT-reinforced nanocomposites with different matrix materials on the frequency 
of conical shells with respect to the length ratio is seen in Table 9. As the number of layers increases, 
the frequency value also increases. Moreover, E-glass fiber shows a significantly higher frequency 
value than the epoxy matrix. The length ratio is the most dominant parameter, causing astronomical 
increases in frequency (over 1700%). The 3-ply epoxy matrix system is the most sensitive. CNT/E-
glass fibers consistently produce a much higher frequency than CNT/epoxy matrix across all 
parameters. The advantage is most pronounced for the length ratio and least pronounced for the 5-ply 
cone angle and node number. The effect of the layup is highly dependent on the base material. For the 
CNT/epoxy matrix, the 5-ply layup is significantly stiffer, increasing frequency by 20%–30%. For the 
CNT/E-glass fibers, the 5-ply layup provides only a marginal benefit from 2.7% to 7.1%, making the 
3-ply layup nearly as effective for this material system. 

Table 9. Influence of length ratio   on the nondimensional angular frequency   of 

CNT-reinforced nanocomposite with different matrix and fibers for various ply 
orientations and layups. 

  Epoxy matrix E-glass fibers
300/00/300 300/600/00/600/300 300/00/300 300/600/00/600/300 

0.1 169.64 209.907 298.077 297.98 
0.3 513.238 674.698 1031 1059.18 
0.5 884.89 1145.77 1745.5 1792
0.7 1915.13 2032.52 3028.6 3038.81 
0.9 3330 3795.49 5381.4 5524.4 

The influence of CNT-reinforced nanocomposites with different matrix materials on the 
frequency of conical shells with respect to cone angle is seen in Table 10. Increasing the cone angle 
causes a strong decrease in frequency from 39% to 58%. E-glass fiber systems are more sensitive to 
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this change. The 5-ply layup is slightly more sensitive for the epoxy matrix, while the 3-ply is slightly 
more sensitive for the E-glass fibers. 

The reason for the frequency decrease is not the increase in the number of layers itself, but the 
specific change in ply orientation that accompanied it. The 3-layer laminate (45/0/45) has a more 
optimal stacking sequence for maximizing bending stiffness (and thus natural frequency) than the 5-
layer laminate (30/45/0/45/30) for this specific shell structure and boundary conditions. The effect of 
the less favorable orientation in the 5-layer laminate outweighs the benefit of having additional layers 
and a slightly greater overall thickness. It is concluded that stiffness is driven more by what the layers 
are made of (their orientation) and where they are placed, rather than just the raw number of layers. 

Table 10. Influence of cone angle   on the nondimensional frequency  of CNT-
reinforced nanocomposites with different matrix and fibers for various ply orientations and 
layups. 

  Epoxy matrix E-glass fibers
300/00/300 300/600/00/600/300 300/00/300 300/600/00/600/300

10 1.0743 1.3072 2.1232 2.2537 
30 0.7954 0.9861 1.1322 1.201 
50 0.6553 0.7859 0.8772 0.9383 
70 0.6517 0.7561 0.8848 0.9482 
90 0.6503 0.7472 0.8871 0.9515 

Figure 1 shows the variation of radian frequency 310m Hz   of 5-layered CNT-reinforced 

nanocomposite (CNT/epoxy matrix) conical shells with respect to the length proportion   with 5% 

CNT volume fraction. The factors are kept constant. It can be seen that the radian frequency variation 
between   0.1 and 0.6 is minimal, but then significant. 

 

Figure 1. Radian frequency 310m Hz   variation of CNT-reinforced nanocomposite 

(CNT/epoxy matrix) conical shells with respect to the length ratio   with 5% CNT 

volume fraction. The 5- layered ply alignment of the CNT-reinforced nanocomposite is (a) 

300/ 450/00/ 450/300, (b) 300/600/ 00/600/300, 02, 0.05, 45n     . 

Figure 1 reveals three distinct behaviors in the frequency vs.   relationship. For small and 
moderate length ratios ( 0.6)   , the first three modes exhibit a very weak dependence on β. This 

region corresponds to a shell that is relatively long compared to its characteristic radius, where the 
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deformation for the lower circumferential modes is governed primarily by membrane-dominated strain 
energy. The curves are almost flat in this region because the effective axial modulus 11E  of the CNT-

reinforced plies, derived from the Mori–Tanaka homogenization, is already high due to CNT stiffening. 
Thus, small changes in β do not significantly alter the extensional stiffness contribution. In this regime, 
geometric stiffening associated with conicity is minimal, and the shell behaves closer to a cylindrical 
structure. Moreover, all three modes are governed mostly by extensional membrane stiffness, and the 
difference between m = 1, 2, 3 remains relatively small. This region reflects weak geometric sensitivity 
and strong stiffness dominance. 

As   increases beyond 0.6, the curves begin to separate, especially for modes m = 2 and m = 3. 

This marks the transition region where the local cone angle increases sufficiently, modifying the 
curvature distribution, the circumferential stretching stiffness, and shear energy contribution of FSDT 
terms with 12G . The key mechanism when   increases beyond 0.6 is as follows: 

 Increasing   effectively shortens the shell while increasing the change in radius along the length, 

which enhances circumferential curvature. 
 This curvature raises the modal stiffness for higher circumferential wave numbers (especially m 

= 3), making their frequencies more sensitive to geometric variation. 
 The CNT reinforcement contributes more prominently to tangential extensional stiffness, 

amplifying differences between higher circumferential modes. 
Thus, this region shows the interaction between CNT-induced stiffness and geometric curvature. 

The most striking feature is the sharp upward increase in frequency for all modes when   approaches 

0.9, particularly for m = 3, which shoots up dramatically. This sharp increase corresponds to the 
geometric stiffening effect of the conical shell near the apex, where the radius decreases rapidly, 
membrane stiffness (proportional to radius and laminate extensional rigidity) increases sharply, and 
bending stiffness increases due to combined curvature effects. Because the CNT-reinforced plies 
significantly increase 11E , 22E , and, particularly , 12G , the stiffening effect becomes more pronounced 

in higher modes. 
The mode m = 3 increases the most because it has more circumferential waves and higher 

curvature energy and is more sensitive to radial contraction. CNT stiffening substantially increases the 
shear modulus 12G , which strongly affects higher-order circumferential modes as predicted by FSDT. 

Near the small-radius end of the cone, the CNT-reinforced material behaves like a geometrically 
constrained membrane, pushing the frequency upward very sharply. Thus, the sharp rise reflects a 
combined CNT-material stiffening and geometric curvature amplification, with higher modes affected 
more strongly. Laminate sequences of 300/ 450/00/ 450/300 emphasize in-plane extensional stiffness 
and moderate shear coupling, whereas 300/600/ 00/600/300 sequences introduce higher in-plane 
anisotropy and increased shear–extension coupling, making the shell slightly more sensitive to   near 

the conical apex. This explains why sequence (b) often yields slightly higher frequencies for m = 2 and 
m = 3, especially near 0.9  . Overall, the figure highlights the interaction between CNT-induced 

material stiffening and geometry-driven curvature effects in governing the dynamic behavior of conical 
shells. 

Figure 2 shows the frequency variation of 3- and 5-layer CNT-reinforced nanocomposite 
(CNT/epoxy matrix) conical shells with respect to the cone angle  . The factors 

2, 0.5, 0.5n      are kept constant. It is evident that the frequency value decreases as the cone 

angle increases. The decrease in the frequency value is significant until  =10–40 and is almost linear 
afterward. The plotted non-dimensional frequency measure m  for modes m = 1,2,3 drops 
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monotonically as   increases from 10° to 50° and then approaches a near constant value for   > 50°–
70°. Physically, increasing the cone angle reduces the effective circumferential curvature seen by the 
shell for the same axial coordinate or, equivalently, changes how radius varies along the length, which 
changes the balance between the membrane and bending contributions to modal stiffness. For a large 
 , the geometry approaches a “flatter” cone segment or a geometry where additional increases in α 
produce diminishing changes in curvature distribution, so the dynamic stiffness saturates and m  levels 

off. The curves are ordered as , 3m m  > , 2m m  > , 1m m   across  . This reflects that higher 

circumferential wave number modes store relatively more circumferential bending curvature energy 
and are therefore intrinsically stiffer (higher frequency) for the same overall stiffness field. The 
separation between modes is largest at small  and shrinks as   increases. At small cone angles, the 
structural curvature is pronounced, and small changes in   produce large changes in curvature 
distribution and therefore large changes in modal stiffness. That is why m  falls rapidly in this range; 

the shell’s dynamics are curvature sensitive. At   50°, the curvature and slope changes have a small 
incremental effect on the local stiffness distribution, so m  approaches an asymptotic value controlled 

primarily by material stiffness (CNT-enhanced moduli) and the laminate architecture rather than 
geometry. The two stacking sequences differ in directional stiffness and coupling. Sequences with 
more ±60° plies supply larger circumferential stiffness components and more shear extension coupling, 
increasing m  for higher m modes. The presence of a central 0° ply reduces anisotropic softening in 

the axial direction and helps maintain membrane stiffness as   varies. Therefore, the difference 
between 3- and 5-layer responses shows how ply architecture redistributes strain energy between 
circumferential extension, axial extension, and transverse shear changing mode sensitivities to  . 

 

Figure 2. Frequency m  variation of CNT-reinforced nanocomposite (CNT/epoxy matrix) 

shells varies with the cone angle   with 5% CNT volume fraction. 3- and 5- layered ply 
alignment of CNT-reinforced nanocomposite is (a) 600/ 00/600, (b) 300/600/ 00/600/300, 

2, 0.5, 0.5n      

CNT reinforcement (Mori–Tanaka effective moduli) raises 11E , 22E , and 12G . Increased 12G

makes FSDT shear terms more important for higher modes; increased 22E and 11E increase membrane 

stiffness. Because geometry determines how much of the modal energy is in bending vs. membrane 
vs. shear, the CNT effect couples with α to produce the observed  -dependent trend. 

Increasing the cone angle changes the meridional curvature and meridional bending stiffness. A 
larger angle tends to reduce the effective meridional bending resistance and also changes the coupling 
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between bending and membrane strains, so the global stiffness of many vibrational modes falls and 
lowers the natural frequencies. For certain geometries, this also moves the lowest-frequency mode 
from one circumferential wave number to another. 

 The effect is stronger for moderately thick shells where bending contributes significantly. For 
extremely thin shells, membrane effects dominate, and geometry-induced changes appear 
differently. 

 If the design goal is to raise a particular natural frequency, decreasing the cone angle to make 
it more cylinder is typically beneficial. 

Frequency m variation of 3- and 5-layer CNT-reinforced nanocomposite (CNT/epoxy matrix) 

conical shells with respect to the circumferential node number n  is seen in Figure 3. The factors 
00.5, 0.05, 45      are kept constant. Frequency values first decrease and then gradually 

increase with the increase of circumferential node number. 

 

Figure 3. Frequency m  variation of CNT-reinforced nanocomposite (CNT/epoxy matrix) 

varies with the circumferential node number n  with 5% CNT volume fraction. 3- and 5- 
layered ply alignment of CNT-reinforced nanocomposite is (a) 450/ 00/450, (b) 300/450/ 

00/450/300, 045 , 0.05, 0.5     . 

In both laminate configurations, the curves for all three values of m exhibit a monotonic increase 
in frequency as n increases. This behavior is physically expected since higher circumferential mode 
numbers correspond to shorter circumferential wavelengths, producing higher bending and shear 
stiffness and consequently higher vibration frequencies. The increase is smooth in both cases, 
indicating that CNT reinforcement stabilizes the dynamic response by enhancing stiffness uniformly 
throughout the laminate. The CNT reinforcement also contributes to this stiffening effect through 
enhanced 11E , 22E , and 12G  predicted by the Mori–Tanaka model. The inclusion of 5% CNTs 

significantly alters the effective elastic properties, especially 11E , 22E , and 12G , due to strong CNT 

matrix interfacial load transfer. This enhancement is reflected in the upward shift of all frequency 
curves compared to conventional fiber-reinforced or pure epoxy shells. CNTs provide additional 
stiffness in the axial and circumferential directions, particularly benefiting higher order modes. 

For both configurations (a) and (b), the curves are clearly ordered as , 3m m  > , 2m m  >

, 1m m  . The frequency separation between adjacent axial modes widens slightly with increasing n, 

indicating stronger coupling effects in higher circumferential modes. The presence of CNTs amplifies 
these separations because the stiffened matrix becomes more sensitive to mode shape curvature. This 
consistent ordering also indicates that the laminate configurations do not introduce modal crossover or 
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mode coupled instabilities. The 450/00/ 450 configuration provides moderate axial stiffness (due to the 
central 0° ply) and high in-plane shear stiffness (due to the 45° plies). This configuration yields a 
balanced and symmetric stiffness profile. As reflected in the figure, the frequencies increase smoothly 
without abrupt slope changes, showing that the configuration is dynamically stable and mechanically 
efficient for moderate loading conditions. The 300/ 450/00/ 450/300 configuration provides higher 
stiffness than the 3-layer laminate due to an increased number of plies. It provides more gradual 
stiffness transitions across thickness and better distribution of CNT-enhanced stiffness. The outer 30° 
layers add additional circumferential stiffness, while the inner 45° and 0° layers enhance shear and 
axial stiffness, respectively. As a result, the frequencies in Figure 3(b) are higher than those in Figure 
3(a) for the same n and m, being more linear with respect to n, especially for higher modes, and less 
sensitive to CNT dispersion variability. This is because the 5-layer system distributes the CNT-induced 
stiffening more uniformly, minimizing localized deformation modes. Both figures depict shaded bands 
around each curve, representing uncertainty due to CNT agglomeration, nonuniform CNT distribution, 
modeling approximations, or variability in interfacial bonding. These bands widen slightly for large n, 
especially in configuration (a). This occurs because the 3-layer system experiences larger strain 
gradients in higher-order modes, making it more sensitive to uncertainty. The expected narrower bands 
in configuration (b) indicate better mechanical stability and more predictable vibration behavior due 
to the smoother distribution of stiffness. 

Conical shells show non-monotonic curve frequency which may fall to the minimum at some end 
and then increase again. There are two broad mode families:  

Inextensional (low n): Bending-dominated, large transverse motion offers lower frequencies for 
small n. 

Regular/extension (low n): Membrane-dominated modes where in-plane stretching raises 
frequency scaling differently with geometry. 

To avoid resonance, we have to do a full n sweep because small geometric tweaks can change 
which circumferential mode is the lowest and therefore which frequency you must avoid.  

The effect of different matrices of CNT-reinforced nanocomposites on the radian frequency   
of conical shells with respect to the length proportion   is shown in Figure 4, with three different ply 

orientations.  

 

Figure 4. Radian frequency   variation of CNT-reinforced nanocomposite conical shells 
with respect to the length ratio   with different matrix materials. 3- layered ply alignment 

of CNT-reinforced nanocomposite is (a) 300/ 00/300, (b) 450/ 00/450, (c) 600/ 00/600. 

The influence of different matrices of CNT-reinforced nanocomposites on the frequency of 
conical shells with respect to the cone angle is shown in Figure 5, with a 5-layer ply orientation. The 
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impact of different matrices of CNT on the frequency of conical shells with respect to the 
circumferential node number is shown in Figure 6, with a 5-layer ply orientation. 

 

Figure 5. Frequency variation   of CNT-reinforced nanocomposites varies with the cone 
angle   with different matrix materials. 5-layered ply alignment of CNT-reinforced 
nanocomposite is 300/450/ 00/450/300, 2, 0.5, 0.5n     . 

 

Figure 6. Frequency variation   of 5-layered CNT-reinforced nanocomposite conical 
shells varies with the circumferential node number n  for various matrix materials. Ply 
alignment of CNT-reinforced nanocomposite is 300/600/ 00/600/300, 

045 , 0.05, 0.5     . 

Figure 7 depicts the frequency variation   of 3-layered CNT-reinforced nanocomposite conical 
shells with respect to the circumferential node number n  with different matrix materials. 

 

Figure 7. Frequency variation   of 3-layered CNT-reinforced nanocomposite shells 
varies with the circumferential node number n  under various matrix materials.

045 , 0.05, 0.5     . 
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The effect of CNT inclusion and exclusion on the frequency of 3-layered CNT-reinforced 
nanocomposite conical shells with respect to the circumferential node number n  is shown in Figure 8, 
while the same effect for 5-layered CNT-reinforced nanocomposite conical shells with respect to the 
cone angle is shown in Figure 9. 

 

Figure 8. Frequency   variation of 3-layered CNT-reinforced nanocomposite and 
without CNT composite conical shells with respect to circumferential node number n . 

045 , 0.05, 0.5     . 

 

Figure 9. Frequency  variation of 5-layered CNT-reinforced nanocomposite and without 
CNT composite shells varies with the cone angle   under different matrix materials. 

2, 0.5, 0.5n     . 

CNTs change the effective elastic moduli and density of the composite shell. Mori–Tanaka’s 
homogenization scheme provides the effective Young’s modulus, shear, and bulk moduli used in 
FSDT. Higher effective stiffness (for the same mass distribution), in return, produces higher natural 
frequencies. The volume fraction ( fV ) is related to effective stiffness, so it definitely affects 

frequencies. An aligned CNT orientation is more effective at increasing directional stiffness 
(longitudinal modulus). 

Figure 10 exhibits the mode shapes for the displacement function W of CNT-reinforced 
nanocomposite conical shells. Normalization is conducted with respect to the maximum transverse 
displacement W. As expected, the transverse displacements are mostly predominant. 
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Figure 10. Mode shapes of vibration of CNT-reinforced nanocomposite conical shells. (a) 
Mode 1. (b) Mode 2. (c) Mode 3. 

4. Conclusions 

The current study presents a comprehensive analysis of the vibration behavior of CNT-reinforced 
nanocomposite conical shells using FSDT integrated with the Mori–Tanaka homogenization scheme. 
The proposed framework offers an accurate and computationally efficient approach for capturing the 
effects of nanoscale reinforcement on dynamic response. The incorporation of aligned CNTs within 
epoxy and E-glass matrices significantly improves the stiffness and damping characteristics of the 
composite. Macroscopic material properties are computed by the Mori–Tanaka model, considering the 
influence of CNT volume fraction, alignment, and dispersion.  

The nondimensional angular frequency   is extremely sensitive to the length ratio  . In all 
cases, increasing   from 0.1 to 0.9 results in a massive frequency increase of over 1700%. The 5-

layer Kevlar/epoxy shell shows the highest sensitivity. Adding CNTs to the epoxy matrix alone 
actually results in a slight decrease in frequency for this specific case (   = 0.5). However, using CNTs 

to reinforce the E-glass fibers leads to a dramatic increase in frequency, more than doubling it to over 
a 100% increase. This demonstrates that the placement of the CNTs in the fibers vs. the matrix is 
critical. Kevlar/epoxy shells consistently have a higher natural frequency than E-glass/epoxy shells, 
confirming that Kevlar provides a stiffer structure. The advantage is more pronounced in the 3-ply 
configuration. The effect of adding more layers (from 3 to 5) is not universal and depends on the base 
material. For Kevlar/epoxy, the 3-ply layup is stiffer. For E-glass/epoxy, the 5-ply symmetric layup is 
stiffer. This highlights the complex interaction between material properties and laminate stacking 
sequence. 

The nondimensional frequency is highly sensitive to the cone angle. In all cases, increasing the 
cone angle from 10° to 90° (i.e., making the shell more like a cylinder) results in a 
significant decrease in frequency, typically between 37% and 57%. The E-glass/epoxy shells show the 
greatest sensitivity to this change. The effect of CNT reinforcement is highly dependent on what it is 
reinforcing. Adding CNTs to the epoxy matrix results in a significant increase in frequency of around 
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18%. Conversely, adding CNTs to the E-glass fibers results in a large decrease in frequency of over 
23%. This suggests that the effect of CNT placement is complex and interacts with the cone angle and 
material properties. For conical shells at this angle, E-glass/epoxy shells have a significantly higher 
natural frequency (over 42%) than Kevlar/epoxy shells. This is the opposite of what was observed for 
the length ratio in Table 5, highlighting how the optimal material depends on the geometric parameters. 
For conical shells, the number of layers (3 vs. 5) has a very minor effect on the natural frequency, with 
differences of less than 2%. The 3-ply configuration is consistently slightly stiffer, but the effect is 
negligible compared to the influence of material and cone angle. 

The nondimensional frequency is highly sensitive to the circumferential node number. In all cases, 
increasing n from 2 to 10 results in a very large increase in frequency, typically between 80% and 
106%. This indicates that higher-order vibration modes with more waves around the circumference 
have significantly higher frequencies. The 3-ply Kevlar/epoxy shell shows the greatest sensitivity. 
Adding CNTs provides a consistent increase in natural frequency across all material systems for this 
vibration mode (n = 6). The most significant benefit is seen when CNTs are used to reinforce the E-
glass fibers, with an increase of over 15% for the 3-ply and a substantial 30.1% for the 5-ply layup. 
Reinforcing the epoxy matrix also provides a clear benefit, increasing frequency from 7.5% to 10.8%. 
For this specific mode (n = 6), E-glass/epoxy shells have a higher natural frequency than Kevlar/epoxy 
shells, with the 5-ply configuration showing a more pronounced advantage of almost 17%. This 
continues the trend observed with the cone angle, where E-glass outperforms Kevlar for this shell 
geometry. The effect of the number of layers is material-dependent. For Kevlar-based shells, the 3-ply 
layup is significantly stiffer (around 8%–9% with higher frequency) than the 5-ply layup. For E-glass-
based shells, the difference between 3 and 5 plies is very small (<1%), with the 3-ply being marginally 
stiffer. 

Overall, the results demonstrate that boundary conditions, ply orientation, number of layers, and 
shape constraints such as cone angle, length proportion, and circumferential node number substantially 
affect the natural frequencies. These findings can serve as a valuable reference for the manufacturing 
and optimization of innovative nanocomposite shell structures in aerospace, mechanical, and civil 
engineering applications. Numerical results demonstrate that the matrix material affects the natural 
frequencies. Inclusion and exclusion of CNT in composites also alter such frequencies. Moreover, the 
frequency value changes with the layer number. In addition to that, E-glass fibers show higher 
frequency values compared to the epoxy matrix. 

Directions for future work: Building on the current findings, several promising directions for future 
work have been identified. These include the adoption of higher-order shear deformation theories, 
incorporation of geometric nonlinearities, exploration of thermo-mechanical effects, and development 
of optimization-based design strategies. Future work can incorporate CNT waviness corrections, 
agglomeration models, and probabilistic orientation distributions. Future models can incorporate 
orientation distribution functions (e.g., von Mises–Fisher ODF), randomly oriented CNT composites, 
and stochastic homogenization approaches to more accurately predict torsional and shear-coupled 
vibration responses in CNT-reinforced conical shells. Experimental validation and multiphysics 
extensions also represent important steps toward translating the present theoretical predictions into 
practical engineering applications. The insights provided by this study establish a foundation for future 
investigations into high-performance nanocomposite shell structures and contribute to the broader 
development of advanced materials for aerospace, marine, and mechanical systems. 
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Challenges and difficulties of the study: The investigation of the free vibration behavior of CNT-
reinforced nanocomposite conical shells using FSDT and the Mori–Tanaka homogenization scheme 
presents several challenges. One major difficulty lies in accurately modeling the effective material 
properties of CNT-reinforced composites. The Mori–Tanaka approach assumes uniform dispersion 
and perfect interfacial bonding between CNTs and the matrix, whereas, in practice, CNTs may be 
unevenly distributed, misaligned, or exhibit imperfect bonding. Moreover, the conical shell geometry 
introduces additional complexities due to its varying curvature and thickness, which make the 
governing equations highly nonlinear and coupled. 

Implementing FSDT further increases mathematical complexity by accounting for transverse 
shear effects, often requiring advanced numerical methods for solution and convergence verification. 
Sensitivity to parameters such as CNT volume fraction, orientation, and aspect ratio also affects the 
accuracy of results. Finally, experimental validation remains difficult because of limited nanoscale 
testing techniques and the lack of reliable benchmark data, making it challenging to confirm theoretical 
predictions. 
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