Research article Special Issues

Norm of the point evaluation functionals on the Zygmund-type spaces

  • Published: 15 December 2025
  • MSC : 47A30, 47B38

  • Norms of the point evaluation functionals $ {\delta}_z(f) = f(z) $ on the Zygmund-type spaces $ {\mathcal Z}^{\alpha}({\mathbb D}) $, where $ {\alpha} > 0 $, with suitably chosen standard weights on the open unit disk $ {\mathbb D} $ in the complex plane, are calculated. More precisely, when $ {\alpha} = 1 $ we calculate the norm of the functional $ {\delta}_z $ on the quotient space $ {\mathcal Z}/{\mathbb P}_1 $ for the weight $ (1-|z|^2)^{\alpha} $, whereas when $ {\alpha}\in(0, +\infty) $ we calculate the norm of the functional on the quotient space $ {\mathcal Z}^{\alpha}/{\mathbb P}_1 $ for the weight $ (1-|z|)^{\alpha} $, where $ {\mathbb P}_1 $ is the space of linear holomorphic functions (a two-dimensional linear space). The choice of the weight functions is caused by the fact that for such chosen weight functions the norms of the point evaluation functionals can be calculated due to the possibility of calculating some integrals that appear during the calculation of the norms of the functionals.

    Citation: Stevo Stević. Norm of the point evaluation functionals on the Zygmund-type spaces[J]. AIMS Mathematics, 2025, 10(12): 29582-29594. doi: 10.3934/math.20251299

    Related Papers:

  • Norms of the point evaluation functionals $ {\delta}_z(f) = f(z) $ on the Zygmund-type spaces $ {\mathcal Z}^{\alpha}({\mathbb D}) $, where $ {\alpha} > 0 $, with suitably chosen standard weights on the open unit disk $ {\mathbb D} $ in the complex plane, are calculated. More precisely, when $ {\alpha} = 1 $ we calculate the norm of the functional $ {\delta}_z $ on the quotient space $ {\mathcal Z}/{\mathbb P}_1 $ for the weight $ (1-|z|^2)^{\alpha} $, whereas when $ {\alpha}\in(0, +\infty) $ we calculate the norm of the functional on the quotient space $ {\mathcal Z}^{\alpha}/{\mathbb P}_1 $ for the weight $ (1-|z|)^{\alpha} $, where $ {\mathbb P}_1 $ is the space of linear holomorphic functions (a two-dimensional linear space). The choice of the weight functions is caused by the fact that for such chosen weight functions the norms of the point evaluation functionals can be calculated due to the possibility of calculating some integrals that appear during the calculation of the norms of the functionals.



    加载中


    [1] K. D. Bierstedt, W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. (Series A), 54 (1993), 70–79. https://doi.org/10.1017/S1446788700036983 doi: 10.1017/S1446788700036983
    [2] C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.
    [3] J. Du, S. Li, Weighted composition operators from Zygmund type spaces into Bloch type spaces, Math. Ineq. Appl., 20 (2017), 247–262. https://doi.org/10.7153/mia-20-19 doi: 10.7153/mia-20-19
    [4] J. Du, S. Li, Z. Liu, Stević-Sharma-type operators between Bergman spaces induced by doubling weights, Math. Methods Appl. Sci., 47 (2024), 10006–10023. https://doi.org/10.1002/mma.10107 doi: 10.1002/mma.10107
    [5] J. Du, S. Li, Y. Zhang, Essential norm of generalized composition operators on Zygmund type spaces and Bloch type spaces, Annal. Polon. Math., 119 (2017), 107–119. https://doi.org/10.4064/ap170405-12-7 doi: 10.4064/ap170405-12-7
    [6] J. Du, S. Li, Y. Zhang, Essential norm of weighted composition operators on Zygmund-type spaces with normal weight, Math. Inequal. Appl., 21 (2018), 701–714. https://doi.org/10.7153/mia-2018-21-49 doi: 10.7153/mia-2018-21-49
    [7] J. Du, X. Zhu, Essential norm of an integral-type operator from $\omega$-Bloch spaces to $\mu$-Zygmund spaces on the unit ball, Opusc. Math., 38 (2018), 829–839. https://doi.org/10.7494/OpMath.2018.38.6.829 doi: 10.7494/OpMath.2018.38.6.829
    [8] N. Dunford, J. T. Schwartz, Linear operators I, Interscience Publishers, Jon Willey and Sons, New York, 1958.
    [9] X. Fu, S. Li, Composition operators from Zygmund spaces into $Q_K$ spaces, J. Inequal. Appl., 2013 (2013), 175. https://doi.org/10.1186/1029-242X-2013-175 doi: 10.1186/1029-242X-2013-175
    [10] L. Hu, S. Li, R. Yang, Generalized weighted composition operators on weighted Hardy spaces, Oper. Matrices, 17 (2023), 1109–1124. https://doi.org/10.7153/oam-2023-17-73 doi: 10.7153/oam-2023-17-73
    [11] Q. Hu, S. Li, Essential norm of weighted composition operators from the Bloch space and the Zygmund space to the Bloch space, Filomat, 32 (2018), 681–691. https://doi.org/10.2298/FIL1802681H doi: 10.2298/FIL1802681H
    [12] Q. Hu, S. Li, Y. Zhang, Essential norm of weighted composition operators from analytic Besov spaces into Zygmund type spaces, J. Contemp. Math. Anal., 54 (2019), 129–142. https://doi.org/10.3103/S1068362319030014 doi: 10.3103/S1068362319030014
    [13] Q. Hu, X. Zhu, Essential norm of weighted composition operators from the Lipschtiz space to the Zygmund space, Bull. Malays. Math. Sci. Soc., 41 (2018), 1293–1307.
    [14] H. Li, S. Li, Norm of an integral operator on some analytic function spaces on the unit disk, J. Inequal. Appl., 2013 (2013), 342. https://doi.org/10.1186/1029-242X-2013-342 doi: 10.1186/1029-242X-2013-342
    [15] S. Li, S. Stević, Volterra-type operators on Zygmund spaces, J. Inequal. Appl., 2007 (2007), 32124. https://doi.org/10.1155/2007/32124 doi: 10.1155/2007/32124
    [16] S. Li, S. Stević, Integral-type operators from Bloch-type spaces to Zygmund-type spaces, Appl. Math. Comput., 215 (2009), 464–473. https://doi.org/10.1016/j.amc.2009.05.011 doi: 10.1016/j.amc.2009.05.011
    [17] X. Liu, S. Li, Norm and essential norm of a weighted composition operator on the Bloch space, Integr. Equat. Oper. Th., 87 (2017), 309–325. https://doi.org/10.1007/s00020-017-2349-y doi: 10.1007/s00020-017-2349-y
    [18] A. Pelczynski, Norms of classical operators in function spaces, Astérisque, 131 (1985), 137–162.
    [19] W. Rudin, Real and complex analysis, Higher Mathematics Series, 3Eds., McGraw-Hill Education, London, New York, Sidney, 1976.
    [20] W. Rudin, Functional analysis, 2Eds., McGraw-Hill, Inc., New York, 1991.
    [21] H. J. Schwartz, Composition operators on $H^p$, Thesis, University of Toledo, 1969.
    [22] A. K. Sharma, Weighted composition operators from Cauchy integral transforms to logarithmic weighted-type spaces, Ann. Funct. Anal., 4 (2013), 163–174. https://doi.org/10.15352/afa/1399899844 doi: 10.15352/afa/1399899844
    [23] A. K. Sharma, Norm of a composition operator from the space of Cauchy transforms into Zygmund-type spaces, Ukr. Math. J., 71 (2020), 1945–1958. https://doi.org/10.1007/s11253-020-01757-2 doi: 10.1007/s11253-020-01757-2
    [24] A. K. Sharma, R. Krishan, Difference of composition operators from the space of Cauchy integral transforms to the Dirichlet space, Complex Anal. Oper. Theory, 10 (2016), 141–152. https://doi.org/10.1007/s11785-015-0487-2 doi: 10.1007/s11785-015-0487-2
    [25] S. Stević, Norm of weighted composition operators from Bloch space to $H^\infty_\mu$ on the unit ball, Ars. Combin., 88 (2008), 125–127.
    [26] S. Stević, Norms of some operators from Bergman spaces to weighted and Bloch-type space, Util. Math., 76 (2008), 59–64.
    [27] S. Stević, Norm of weighted composition operators from ${\alpha}$-Bloch spaces to weighted-type spaces, Appl. Math. Comput., 215 (2009), 818–820. https://doi.org/10.1016/j.amc.2009.06.005 doi: 10.1016/j.amc.2009.06.005
    [28] S. Stević, Norm and essential norm of an integral-type operator from the Dirichlet space to the Bloch-type space on the unit ball, Abstr. Appl. Anal., 2010 (2010), 134969.
    [29] S. Stević, On an integral-type operator from Zygmund-type spaces to mixed-norm spaces on the unit ball, Abstr. Appl. Anal., 2010 (2010), 198608. https://doi.org/10.1155/2010/198608 doi: 10.1155/2010/198608
    [30] S. Stević, Weighted iterated radial composition operators between some spaces of holomorphic functions on the unit ball, Abstr. Appl. Anal., 2010 (2010), 801264. https://doi.org/10.1155/2010/801264 doi: 10.1155/2010/801264
    [31] S. Stević, Norm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the $m$th weighted-type space on the unit disk, Math. Methods Appl. Sci., 47 (2024), 3893–3902. https://doi.org/10.1002/mma.9681 doi: 10.1002/mma.9681
    [32] V. A. Trenogin, B. M. Pisarevskiy, T. S. Soboleva, Zadachi i Uprazhneniya po Funktsional'nomu Analizu, Nauka, Moskva, 1984. (In Russian)
    [33] R. Yang, X. Zhu, Weighted composition operators from weighted Bergman-Orlicz spaces with doubling weights to weighted Zygmund spaces, Math. Inequal. Appl., 27 (2024), 627–645. https://doi.org/10.7153/mia-2024-27-43 doi: 10.7153/mia-2024-27-43
    [34] X. Zhu, A new characterization of the generalized weighted composition operator from $H^\infty$ into the Zygmund space, Math. Inequal. Appl., 18 (2015), 1135–1142. https://doi.org/10.7153/mia-18-87 doi: 10.7153/mia-18-87
    [35] X. Zhu, Weighted composition operators from Dirichlet-Zygmund-type spaces into Stević-type spaces, Georgian Math. J., 30 (2023), 629–637. https://doi.org/10.1515/gmj-2022-2209 doi: 10.1515/gmj-2022-2209
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(342) PDF downloads(27) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog