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Abstract: Norms of the point evaluation functionals δz( f ) = f (z) on the Zygmund-type spacesZα(D),
where α > 0, with suitably chosen standard weights on the open unit disk D in the complex plane, are
calculated. More precisely, when α = 1 we calculate the norm of the functional δz on the quotient space
Z/P1 for the weight (1 − |z|2)α, whereas when α ∈ (0,+∞) we calculate the norm of the functional
on the quotient space Zα/P1 for the weight (1 − |z|)α, where P1 is the space of linear holomorphic
functions (a two-dimensional linear space). The choice of the weight functions is caused by the fact
that for such chosen weight functions the norms of the point evaluation functionals can be calculated
due to the possibility of calculating some integrals that appear during the calculation of the norms of
the functionals.
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1. Introduction and preliminaries

Throughout the paper the set of positive natural numbers (i.e., the set {1, 2, 3, . . .}) is denoted by N,
by N0 we denote the set N ∪ {0}, the complex plane is denoted by C, by D we denote the open unit
disc in C, that is, the set {z ∈ C : |z| < 1}, by ∂D we denote the boundary of D, by H(D) the linear
space of holomorphic functions onD, whereas by H∞(D) we denote the space of bounded holomorphic
functions on D with the supremum norm

‖ f ‖∞ := sup
z∈D
| f (z)|
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(for some basics on this and other spaces of holomorphic functions, see, e.g., [19]).
If X is a vector space with the norm ‖ · ‖X, then by BX we denote the closed unit ball in X, that is,

the set
{x ∈ X : ‖x‖X ≤ 1}.

Let L : X → Y be a linear operator between normed spaces (X, ‖ · ‖X) and (Y, ‖ · ‖Y). If there is C ≥ 0
such that

‖Lx‖Y ≤ C‖x‖X for x ∈ X,

then it is said that the operator is bounded.
The quantity

‖L‖X→Y := sup
x∈BX

‖Lx‖Y ,

is called the norm of the linear operator L. If Y = C, then the linear operator is a linear functional. If f
is a linear functional on X, then by ‖ f ‖X∗ we denote the norm of the functional f . For some basic facts
on bounded linear operators, see, for example, [8, 19, 20, 32].

Investigation of various spaces of holomorphic functions with some weights [1,22,31] and operators
from or to them has attracted a lot of attention from many authors (see, for example, [10, 13, 24, 30]
and the references cited therein).

The space consisting of all f ∈ H(D) such that

b′α( f ) := sup
z∈D

(1 − |z|2)α| f ′′(z)| < +∞, (1.1)

where α > 0, is called the Zygmund-type space with the standard weight and is denoted by Zα(D) =

Zα. For α = 1, it is the Zygmund space Z(D) = Z (the notation was introduced by the present
author in [15], whereas the notations for the standard and other generalizations of Zygmund spaces
were introduced in later papers of ours on these spaces; see, e.g., [16, 29]; see also [3, 6, 11, 34].

The functional b′α(·) is a semi-norm onZα. A norm on this space can be introduced by

‖ f ‖Zα,1 := | f (0)| + | f ′(0)| + b′α( f ),

as it was the case in [15].
Another semi-norm, which is obviously equivalent to (1.1), can be introduced by

bα( f ) := sup
z∈D

(1 − |z|)α| f ′′(z)|, (1.2)

whereas the corresponding norm onZα is introduced by

‖ f ‖Zα := | f (0)| + | f ′(0)| + bα( f ).

Remark 1. In some cases, it is more suitable to choose the weight function (1− |z|2)α, whereas in some
other cases it is more suitable to choose the weight function (1 − |z|)α. Such situations have already
appeared in some related investigations. For example, in [25] we managed to calculate the norm of the
weighted composition operators from the standard Bloch space B(D) = B to the weighted-type space,
where the norm on the Bloch space was given by

| f (0)| + sup
z∈D

(1 − |z|2)| f ′(z)|,
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whereas in [27] we managed to calculate the norm of the weighted composition operators from the
α-Bloch space Bα(D) = Bα with α ∈ (0,+∞) \ {1}, to the weighted-type space, where the norm on the
α-Bloch space was given by

| f (0)| + sup
z∈D

(1 − |z|)α| f ′(z)|.

The different choice of the weight functions in these two cases is caused by the fact that, for such
chosen weight functions, the norms of the weighted composition operators can be calculated due to the
ability to calculate some integrals that appear during the calculation of the norms. This idea will also
be used in the present investigation.

Note that the semi-norms in (1.1) and (1.2) are norms on the quotient spaceZα/P1, where P1 is the
space of linear holomorphic functions (a two-dimensional linear space).

Zygmund-type spaces and various linear operators from or to them have been studied a lot (beside
the already mentioned papers, see, for instance, [7,9,33]; see also [5,12,13] where the essential norms
of some operators from or to the spaces have been estimated). For some generalizations of the spaces,
see [4, 35].

In some of our papers, we have given some estimates for the point evaluation functionals

δz( f ) = f (z) (1.3)

and

δ′z( f ) = f ′(z), (1.4)

where z is a fixed point in D, on some spaces of holomorphic functions on D.
For example, in [15], we showed that

| f (z)| ≤ ‖ f ‖Z sup
z∈D

(|z| + (1 − |z|) ln(1 − |z|)), (1.5)

for every f ∈ Z.
Let

g(t) := t + (1 − t) ln(1 − t), t ∈ [0, 1).

Then, we have

g(0) = 0 (1.6)

and

g′(t) = − ln(1 − t) > 0, (1.7)

for t ∈ (0, 1).
Now note that from (1.7) it follows that the function g is increasing on the interval (0, 1), from

which, along with (1.6), it follows that g(t) ≥ 0 for t ∈ [0, 1).
From this and since

lim
t→1−0

g(t) = 1,
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we have

0 < g(t) < 1, (1.8)

for t ∈ (0, 1).
From (1.5) and (1.8), we obtain

| f (z)| ≤ ‖ f ‖Z, (1.9)

for each z ∈ D.
Relations (1.3) and (1.9) imply

|δz( f )| ≤ ‖ f ‖Z. (1.10)

From (1.10), we obtain

‖δz‖Z∗ ≤ 1. (1.11)

For the case of the unit ball, see [29]. Note also that from (1.9), it follows that

‖ f ‖∞ ≤ ‖ f ‖Z.

Calculating norms of linear operators between normed vector spaces is one of the basic problems
in operator theory, which is frequently very difficult. Namely, it is a rare situation that the norm of
a linear operator can be calculated in terms of including symbols and parameters. A more frequent
situation is that the norm of a linear operator is estimated by some quantities that include the symbols
and parameters [2, 21]. Beside [2] and [21], the following references [8, 18, 32] contain some of the
classical formulas for the norms of some operators, including some functionals. Beside the already
mentioned papers [25] and [27], some recent formulas for norms of some concrete linear operators can
be found, for example, in [14, 17, 26, 28]. It seems that, besides the spaces with weights, the spaces
of Cauchy transforms are suitable for dealing with the problem [22, 23, 31]. In some of the papers
Hilbert–Schmidt norms of some operators were calculated (see, e.g., [2, 30]).

Motivated by the above-mentioned investigations, in this note, we calculate the norm of some point
evaluation functionals on the Zygmund-type spaces Zα. It should be mentioned that the formulas for
the functionals that we obtained here depend on the choice of the norm that is chosen on the Zygmund-
type space. Namely, when α = 1 we calculate the norm of the point evaluation functional δz on the
quotient space Z/P1 for the weight function (1 − |z|2)α (i.e., for the weight function 1 − |z|2), whereas
when α ∈ (0,+∞), we calculate the norm of the functional on the quotient spaceZα/P1 for the weight
function (1 − |z|)α. The different choice of the weight functions is caused by the fact that for such
chosen weight functions, the norms of the point evaluation functionals can be calculated thanks to the
ability to calculate some integrals that appear during the calculation of the norms.

2. Main results

Here, we formulate and prove our main results. Before this we give some formulas that are used in
the proofs of the main results.
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Note that ∫ z

0

∫ ζ

0
f ′′(u)dudζ = f (z) − f (0) − z f ′(0), (2.1)

for every f ∈ H(D) and z ∈ D.
We also have ∣∣∣∣∣ ∫ z

0

∫ ζ

0
f ′′(u)dudζ

∣∣∣∣∣ =

∣∣∣∣∣ ∫ z

0

∫ 1

0
f ′′(ζt)ζdtdζ

∣∣∣∣∣
=

∣∣∣∣∣z2
∫ 1

0

∫ 1

0
f ′′(zst)dtsds

∣∣∣∣∣
≤|z|2

∫ 1

0

∫ 1

0
| f ′′(zst)|dtsds, (2.2)

for every f ∈ H(D) and z ∈ D.

Theorem 1. Let α > 0. Then, the following statements hold:
(a) if α = 1, then

‖δz‖Z1,1/P1→C =
1
2

∫ |z|

0
ln

1 + s
1 − s

ds; (2.3)

(b) if 1 , α , 2, then

‖δz‖Zα/P1→C =
(1 − |z|)2−α + (2 − α)|z| − 1

(1 − α)(2 − α)
; (2.4)

(c) if α = 2, then

‖δz‖Z2/P1→C = ln
1

1 − |z|
− |z|; (2.5)

(d) if α = 1, then

‖δz‖Z/P1→C = |z| + (1 − |z|) ln(1 − |z|), (2.6)

for z ∈ D.

Proof. Since f ∈ Z1,1/P1, we may assume that

f (0) = f ′(0) = 0. (2.7)

Using (2.7) in (2.1) and combining such obtained relation with the inequality in (2.2), we have

| f (z)| ≤ |z|2
∫ 1

0

∫ 1

0
| f ′′(zst)|dtsds, (2.8)

for every f ∈ H(D) and z ∈ D.
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(a) From (2.8) and the definition of the semi-norm (1.1), we have

| f (z)| ≤b′1( f )
∫ 1

0

∫ 1

0

|z|2

1 − |zŝt|2
dtŝdŝ

=b′1( f )|z|
∫ 1

0

∫ |z|ŝ

0

du
1 − u2 dŝ

=b′1( f )
|z|
2

∫ 1

0
ln

1 + |z|ŝ
1 − |z|ŝ

dŝ

=b′1( f )
1
2

∫ |z|

0
ln

1 + s
1 − s

ds. (2.9)

Now note that the semi-norm (1.1) is a norm on the spaceZ1,1/P1, so from (2.9), we get

‖δz‖Z1,1/P1→C ≤
1
2

∫ |z|

0
ln

1 + s
1 − s

ds. (2.10)

Let

ft(z) =
1
2

∫ z

0
ln

1 + tζ
1 − tζ

dζ, (2.11)

where t ∈ D and z ∈ D.
Then, we have ft(0) = 0 and

f ′t (z) =
1
2

ln
1 + tz
1 − tz

. (2.12)

From (2.12) it follows that
f ′t (0) = 0 and f ′′t (z) =

t
1 − t2z2 .

Hence,

b′1( ft) = sup
z∈D

(1 − |z|2)
|t|

|1 − t2z2|
≤ sup

z∈D
(1 − |z|2)

|t|
(1 − |t2z2|)

≤ |t|. (2.13)

Let
h|t|(z) = (1 − |z|2)

|t|
(1 − |t|2|z|2)

.

Then,

h|t|(0) = |t|. (2.14)

From (2.14), together with (2.13), we obtain

b′α( ft) = |t|. (2.15)

Further, we have

|δz( ft)| =
∣∣∣∣∣12

∫ z

0
ln

1 + tζ
1 − tζ

dζ
∣∣∣∣∣ =

∣∣∣∣∣ z2
∫ 1

0
ln

1 + tŝz
1 − tŝz

dŝ
∣∣∣∣∣. (2.16)
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For t = |t|e−i arg z, from (2.16), we get

|δz( ft)| =
|z|
2

∫ 1

0
ln

1 + |t|ŝ|z|
1 − |t|ŝ|z|

dŝ. (2.17)

Now note that the integrand in (2.17) is an increasing function in variable |t|. By letting |t| → 1 − 0
in (2.17), using Bepo-Levi’s theorem and a change of variables, we get

lim
|t|→1−0

|δz( ft)| = lim
|t|→1−0

|z|
2

∫ 1

0
ln

1 + |t|ŝ|z|
1 − |t|ŝ|z|

dŝ

=
|z|
2

∫ 1

0
ln

1 + ŝ|z|
1 − ŝ|z|

dŝ

=
1
2

∫ |z|

0
ln

1 + s
1 − s

ds. (2.18)

From (2.15) and (2.18), and since |t| < 1, we get

‖δz‖Z1,1/P1→C ≥
1
2

∫ |z|

0
ln

1 + s
1 − s

ds. (2.19)

From (2.10) and (2.19), formula (2.3) follows.
(b) From (2.8) and the definition of the semi-norm (1.2), we have

| f (z)| ≤bα( f )
∫ 1

0

∫ 1

0

|z|2

(1 − |zŝt|)α
dtŝdŝ

=bα( f )|z|
∫ 1

0

∫ |z|ŝ

0

du
(1 − u)α

dŝ (2.20)

=bα( f )
|z|

1 − α

∫ 1

0
(1 − (1 − |z|ŝ)1−α)dŝ

=
bα( f )
1 − α

∫ |z|

0
(1 − (1 − s)1−α)ds (2.21)

=bα( f )
(1 − |z|)2−α + (2 − α)|z| − 1

(1 − α)(2 − α)
. (2.22)

Since the semi-norm (1.2) is a norm on the spaceZα/P1, from (2.22), we get

‖δz‖Zα/P1→C ≤
(1 − |z|)2−α + (2 − α)|z| − 1

(1 − α)(2 − α)
. (2.23)

Let

f̂t(z) =
1

1 − α

∫ z

0
(1 − (1 − tζ)1−α)dζ, (2.24)

where t ∈ D and z ∈ D.
Then, we have f̂t(0) = 0 and

f̂ ′t (z) =
1 − (1 − tz)1−α

1 − α
. (2.25)
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From (2.25), it follows that
f̂ ′t (0) = 0 and f̂ ′′t (z) =

t
(1 − tz)α

.

Hence,

bα( f̂t) = sup
z∈D

(1 − |z|)α
|t|

|1 − tz|α
≤ sup

z∈D
(1 − |z|)α

|t|
(1 − |tz|)α

≤ |t|. (2.26)

Let

ĥ|t|(z) = (1 − |z|)α
|t|

(1 − |t||z|)α
. (2.27)

Then,

ĥ|t|(0) = |t|. (2.28)

From (2.28), together with (2.26), we obtain

bα( f̂t) = |t|. (2.29)

Further, we have

|δz( f̂t)| =
∣∣∣∣∣ ∫ z

0

(1 − (1 − tζ)1−α)
1 − α

dζ
∣∣∣∣∣ =

∣∣∣∣∣z ∫ 1

0

(1 − (1 − tŝz)1−α)
1 − α

dŝ
∣∣∣∣∣. (2.30)

For t = |t|e−i arg z, from (2.30), we get

|δz( f̂t)| = |z|
∫ 1

0

1 − (1 − |t||z|ŝ)1−α

1 − α
dŝ. (2.31)

The integrand in (2.31) is an increasing function in variable |t| for α , 1. So, by letting |t| → 1 − 0
in (2.31), using Bepo-Levi’s theorem and a change of variables, we get

lim
|t|→1−0

|δz( f̂t)| = lim
|t|→1−0

|z|
∫ 1

0

1 − (1 − |t||z|ŝ)1−α

1 − α
dŝ

=|z|
∫ 1

0

1 − (1 − |z|ŝ)1−α

1 − α
dŝ

=

∫ |z|

0

1 − (1 − s)1−α

1 − α
ds. (2.32)

From (2.22), (2.29) and (2.32), and since |t| < 1, we get

‖δz‖Zα/P1→C ≥
(1 − |z|)2−α + (2 − α)|z| − 1

(1 − α)(2 − α)
, (2.33)

when 1 , α , 2.
From (2.23) and (2.33), formula (2.4) follows.
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(c) From (2.21), in this case, we have

| f (z)| ≤ b2( f )
∫ |z|

0

( 1
1 − s

− 1
)
ds = b2( f )

(
ln

1
1 − |z|

− |z|
)
. (2.34)

Since the semi-norm (1.2) with α = 2, is a norm on the spaceZ2/P1, from (2.34), we get

‖δz‖Z2/P1→C ≤ ln
1

1 − |z|
− |z|. (2.35)

Consider the family of functions in (2.24) with α = 2. Then, as in the previous case, we have that
the relations (2.29)–(2.32) also hold for α = 2. Hence, we have

lim
|t|→1−0

|δz( f̂t)| =
∫ |z|

0
((1 − s)−1 − 1)ds. (2.36)

From (2.29) and (2.36), and since |t| < 1, we get

‖δz‖Z2/P1→C ≥ ln
1

1 − |z|
− |z|. (2.37)

From (2.35) and (2.37), formula (2.5) follows.
(d) From (2.20) and some calculations, we have

| f (z)| ≤b1( f )|z|
∫ 1

0

∫ |z|ŝ

0

du
1 − u

dŝ

=b1( f )|z|
∫ 1

0
ln

1
1 − ŝ|z|

dŝ

=b1( f )
∫ |z|

0
ln

1
1 − s

ds

=b1( f )(|z| + (1 − |z|) ln(1 − |z|)). (2.38)

Since the semi-norm (1.2) with α = 1, is a norm on the spaceZ/P1, from (2.38), we get

‖δz‖Z/P1→C ≤ |z| + (1 − |z|) ln(1 − |z|). (2.39)

Let

f̃t(z) =

∫ z

0
ln

1
1 − tζ

dζ, (2.40)

where t ∈ D and z ∈ D.
Then, we have f̃t(0) = 0,

f̃ ′t (z) = ln
1

1 − tz
. (2.41)

From (2.41), it follows that
f̃ ′t (0) = 0 and f̃ ′′t (z) =

t
1 − tz

.
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Hence,

b1( f̃t) = sup
z∈D

(1 − |z|)
|t|

|1 − tz|
≤ sup

z∈D
(1 − |z|)

|t|
(1 − |t||z|)

≤ |t|. (2.42)

By considering the function (2.27) with α = 1, we have that (2.28) also holds in this case, from which,
together with (2.42), we obtain

b1( f̃t) = |t|. (2.43)

Further, we have

|δz( f̃t)| =
∣∣∣∣∣ ∫ z

0
ln

1
1 − tζ

dζ
∣∣∣∣∣ =

∣∣∣∣∣z ∫ 1

0
ln

1
1 − tŝz

dŝ
∣∣∣∣∣. (2.44)

For t = |t|e−i arg z, from (2.44), we get

|δz( f̃t)| = |z|
∫ 1

0
ln

1
1 − |t|ŝ|z|

dŝ. (2.45)

The integrand in (2.45) is an increasing function in variable |t|. So, by letting |t| → 1 − 0 in (2.45),
using Bepo-Levi’s theorem and a change of variables, we get

lim
|t|→1−0

|δz( f̃t)| = lim
|t|→1−0

|z|
∫ 1

0
ln

1
1 − |t|ŝ|z|

dŝ

=|z|
∫ 1

0
ln

1
1 − ŝ|z|

dŝ

=

∫ |z|

0
ln

1
1 − s

ds

=|z| + (1 − |z|) ln(1 − |z|). (2.46)

From (2.43) and (2.46), and since |t| < 1, we get

‖δz‖Z/P1→C ≥ |z| + (1 − |z|) ln(1 − |z|). (2.47)

From (2.39) and (2.47), formula (2.6) follows. �

3. Conclusions

Here, we calculate norms of the point evaluation functionals on the Zygmund-type spaces on the
open unit disc in the complex plane. The norms of the functionals can be calculated thanks to the ability
to calculate some integrals that appear during the calculation of the norms. Such obtained formulas
can be used in some further investigations on the spaces of functions and operators on them, and can
also serve as a motivation for some related investigations.

Use of Generative-AI tools declaration

The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 10, Issue 12, 29582–29594.



29592

Conflict of interest

The author declares no conflicts of interest.

References

1. K. D. Bierstedt, W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J.
Austral. Math. Soc. (Series A), 54 (1993), 70–79. https://doi.org/10.1017/S1446788700036983

2. C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in
Advanced Mathematics, CRC Press, Boca Raton, Fla, USA, 1995.

3. J. Du, S. Li, Weighted composition operators from Zygmund type spaces into Bloch type spaces,
Math. Ineq. Appl., 20 (2017), 247–262. https://doi.org/10.7153/mia-20-19
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