Research article Special Issues

Hamiltonian analysis and dynamical behavior of bright, dark and other multiple soliton solutions of the Katugampola-fractional reduced spin Hirota-Maxwell-Bloch system

  • Published: 15 December 2025
  • MSC : 34G20, 35A20, 35A22, 35R11

  • In this research, we investigated the integrable fractional reduced spin Hirota-Maxwell-Bloch system with Katugampola fractional derivatives, a crucial model for analyzing the femtosecond pulses transmitted within an erbium-doped fiber. The modified unified method and the $ (G'/G) $-expansion techniques were employed to acquire analytical soliton solutions comprising bright soliton, mix dark-bright soliton, dark soliton, perturbed dark and bright soliton, multi-soliton, and periodic dark-bright soliton. The fundamental mechanics of the model was revealed by dynamically displaying some of the found solutions using 2D and 3D graphs. The $ \rho $-derivative framework was used to analyze the effect of the space-fractional derivative on the supplied model, offering a more dynamic and applicable way to improve the accuracy of the findings. Additionally, a range of graphical representations were used to show the perturbed system's time series plots and the planar system's phase portraits under the Hamiltonian analysis to emphasize the model's significance and dynamic behavior in erbium-doped fiber. Our findings of this study are expected to have important ramifications for soliton theory, erbium-doped fiber, optical fibers, physical engineering, and nonlinear dynamics. Additionally, the study shows that the $ (\frac{G'}{G}) $-expansion method and the modified unified approach are simple, robust, and efficient methods that produce many soliton solutions for a range of nonlinear fractional partial differential equations in the mathematical sciences.

    Citation: Meshari Alesemi. Hamiltonian analysis and dynamical behavior of bright, dark and other multiple soliton solutions of the Katugampola-fractional reduced spin Hirota-Maxwell-Bloch system[J]. AIMS Mathematics, 2025, 10(12): 29522-29551. doi: 10.3934/math.20251297

    Related Papers:

  • In this research, we investigated the integrable fractional reduced spin Hirota-Maxwell-Bloch system with Katugampola fractional derivatives, a crucial model for analyzing the femtosecond pulses transmitted within an erbium-doped fiber. The modified unified method and the $ (G'/G) $-expansion techniques were employed to acquire analytical soliton solutions comprising bright soliton, mix dark-bright soliton, dark soliton, perturbed dark and bright soliton, multi-soliton, and periodic dark-bright soliton. The fundamental mechanics of the model was revealed by dynamically displaying some of the found solutions using 2D and 3D graphs. The $ \rho $-derivative framework was used to analyze the effect of the space-fractional derivative on the supplied model, offering a more dynamic and applicable way to improve the accuracy of the findings. Additionally, a range of graphical representations were used to show the perturbed system's time series plots and the planar system's phase portraits under the Hamiltonian analysis to emphasize the model's significance and dynamic behavior in erbium-doped fiber. Our findings of this study are expected to have important ramifications for soliton theory, erbium-doped fiber, optical fibers, physical engineering, and nonlinear dynamics. Additionally, the study shows that the $ (\frac{G'}{G}) $-expansion method and the modified unified approach are simple, robust, and efficient methods that produce many soliton solutions for a range of nonlinear fractional partial differential equations in the mathematical sciences.



    加载中


    [1] M. A. S. Murad, S. S. Mahmood, H. Emadifar, W. W. Mohammed, K. K. Ahmed, Optical soliton solution for dual-mode time-fractional nonlinear Schrödinger equation by generalized exponential rational function method, Results Eng., 27 (2025), 105591. https://doi.org/10.1016/j.rineng.2025.105591 doi: 10.1016/j.rineng.2025.105591
    [2] I. Alraddadi, F. Alsharif, S. Malik, H. Ahmad, T. Radwan, K. K. Ahmed, Innovative soliton solutions for a (2+1)-dimensional generalized KdV equation using two effective approaches, AIMS Math., 9 (2024), 34966–34980. https://doi.org/10.3934/math.20241664 doi: 10.3934/math.20241664
    [3] N. Alam, M. S. Ullah, J. Manafian, K. H. Mahmoud, A. S. A. Alsubaie, H. M. Ahmed, et al., Bifurcation analysis, chaotic behaviors, and explicit solutions for a fractional two-mode Nizhnik-Novikov-Veselov equation in mathematical physics, AIMS Math., 10 (2025), 4558–4578. https://doi.org/10.3934/math.2025211 doi: 10.3934/math.2025211
    [4] I. Samir, H. M. Ahmed, H. Emadifar, K. K. Ahmed, Traveling and soliton waves and their characteristics in the extended (3+1)-dimensional Kadomtsev-Petviashvili equation in fluid, Partial Differ. Equ. Appl. Math., 14 (2025), 101146. https://doi.org/10.1016/j.padiff.2025.101146 doi: 10.1016/j.padiff.2025.101146
    [5] A. Khalifa, H. Ahmed, K. K. Ahmed, Construction of exact solutions for a higher-order stochastic modified Gerdjikov-Ivanov model using the Imetf method, Phys. Scr., 2024. https://doi.org/10.1088/1402-4896/ada321 doi: 10.1088/1402-4896/ada321
    [6] J. R. M. Borhan, E. I. Hassan, A. Dawood, K. Aldwoah, A. I. A. Sayed, A. Albaity, et al., Chaotic behaviour, sensitivity assessment, and new analytical investigation to find novel optical soliton solutions of M-fractional Kuralay-Ⅱ equation, Mathematics, 13 (2025), 2207. https://doi.org/10.3390/math13132207 doi: 10.3390/math13132207
    [7] U. N. Katugampola, A new fractional derivative with classical properties, arXiv Preprint, 2014. https://doi.org/10.48550/arXiv.1410.6535
    [8] C. Qiao, X. Long, L. Yang, Y. Zhu, W. Cai, Calculation of a dynamical substitute for the real Earth-Moon system based on Hamiltonian analysis, Astrophys. J., 991 (2025), 46. https://doi.org/10.3847/1538-4357/adf73a doi: 10.3847/1538-4357/adf73a
    [9] Z. Chong, C. Wang, H. Zhang, S. Zhang, Sine-transform-based dual-memristor hyperchaotic map and analog circuit implementation, IEEE Trans. Instrum. Meas., 74 (2025), 1–14. https://doi.org/10.1109/TIM.2025.3570347 doi: 10.1109/TIM.2025.3570347
    [10] W. Sun, Y. Jin, G. Lu, Y. Liu, Stabilizer testing and central limit theorem, Phys. Rev. A, 111 (2025), 032421. https://doi.org/10.1103/PhysRevA.111.032421 doi: 10.1103/PhysRevA.111.032421
    [11] X. Guo, J. Zhang, X. Meng, Z. Li, X. Wen, P. Girard, et al., HALTRAV: design of a high-performance and area-efficient latch with triple-node-upset recovery and algorithm-based verifications, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 44 (2025), 2367–2377. https://doi.org/10.1109/TCAD.2024.3511335 doi: 10.1109/TCAD.2024.3511335
    [12] R. Ali, Z. Zhang, H. Ahmad, Exploring soliton solutions in nonlinear spatiotemporal fractional quantum mechanics equations: an analytical study, Opt. Quant. Electron., 56 (2024), 838. https://doi.org/10.1007/s11082-024-06370-2 doi: 10.1007/s11082-024-06370-2
    [13] G. Akram, M. Sadaf, S. Arshed, R. Latif, M. Inc, A. S. M. Alzaidi, Exact traveling wave solutions of (2+1)-dimensional extended Calogero-Bogoyavlenskii-Schiff equation using extended trial equation method and modified auxiliary equation method, Opt. Quant. Electron., 56 (2024), 424. https://doi.org/10.1007/s11082-023-05900-8 doi: 10.1007/s11082-023-05900-8
    [14] K. Suwais, N. Mlaiki, S. Barak, R. Ali, Novel quasi-periodic type optical solitons and the formation of fractal structures in non-integrable nonlinear Helmholtz equations with phase portraits and chaotic analysis, Eur. J. Pure Appl. Math., 18 (2025), 6764–6764. https://doi.org/10.29020/nybg.ejpam.v18i4.6764 doi: 10.29020/nybg.ejpam.v18i4.6764
    [15] I. Samir, H. M. Ahmed, W. Rabie, W. Abbas, O. Mostafa, Construction optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods, AIMS Math., 10 (2025), 3392–3407. https://doi.org/10.3934/math.2025157 doi: 10.3934/math.2025157
    [16] A. Farooq, M. I. Khan, W. X. Ma, Exact solutions for the improved mKdv equation with conformable derivative by using the Jacobi elliptic function expansion method, Opt. Quant. Electron., 56 (2024), 542. https://doi.org/10.1007/s11082-023-06258-7 doi: 10.1007/s11082-023-06258-7
    [17] K. A. Gepreel, T. A. Nofal, A. A. Alasmari, Exact solutions for nonlinear integro-partial differential equations using the generalized Kudryashov method, J. Egypt. Math. Soc., 25 (2017), 438–444. https://doi.org/10.1016/j.joems.2017.09.001 doi: 10.1016/j.joems.2017.09.001
    [18] N. M. Tuan, N. H. Son, Hirota bilinear performance on Hirota-Satsuma-Ito equation using bilinear neural network method, Int. J. Appl. Comput. Math., 11 (2025), 121. https://doi.org/10.1007/s40819-025-01933-7 doi: 10.1007/s40819-025-01933-7
    [19] Z. Aydın, F. Tascan, Application of new Kudryashov method to Sawada-Kotera and Kaup-Kupershmidt equations, Comput. Methods Differ. Equ., 13 (2025), 608–617. https://doi.org/10.22034/cmde.2024.60001.2558 doi: 10.22034/cmde.2024.60001.2558
    [20] S. Behera, Analysis of traveling wave solutions of two space-time nonlinear fractional differential equations by the first-integral method, Mod. Phys. Lett. B, 38 (2024), 2350247. https://doi.org/10.1142/S0217984923502470 doi: 10.1142/S0217984923502470
    [21] A. M. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures, Appl. Math. Comput., 159 (2004), 559–576. https://doi.org/10.1016/j.amc.2003.08.136 doi: 10.1016/j.amc.2003.08.136
    [22] E. M. E. Zayed, A. G. Al-Nowehy, The modified simple equation method, the exp-function method, and the method of soliton ansatz for solving the long-short wave resonance equations, Z. Naturforsch. A, 71 (2016), 103–112. https://doi.org/10.1515/zna-2015-0414 doi: 10.1515/zna-2015-0414
    [23] E. J. Parkes, Observations on the tanh-coth expansion method for finding solutions to nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 1749–1754. https://doi.org/10.1016/j.amc.2009.11.037 doi: 10.1016/j.amc.2009.11.037
    [24] A. R. Alharbi, M. B. Almatrafi, New exact and numerical solutions with their stability for Ito integro-differential equation via Riccati–Bernoulli sub-ODE method, J. Taibah Univ. Sci., 14 (2020), 1447–1456. https://doi.org/10.1080/16583655.2020.1827853 doi: 10.1080/16583655.2020.1827853
    [25] S. Noor, A. S. Alshehry, A. Shafee, R. Shah, Families of propagating soliton solutions for (3+1)-fractional Wazwaz-BenjaminBona-Mahony equation through a novel modification of modified extended direct algebraic method, Phys. Scr., 99 (2024), 045230. https://doi.org/10.1088/1402-4896/ad23b0 doi: 10.1088/1402-4896/ad23b0
    [26] M. B. Almatrafi, Solitary wave solutions to a fractional-order Fokas equation via the improved modified extended tanh-function approach, Mathematics, 13 (2025), 109. https://doi.org/10.3390/math13010109 doi: 10.3390/math13010109
    [27] R. Ali, S. Barak, A. Altalbe, Analytical study of soliton dynamics in the realm of fractional extended shallow water wave equations, Phys. Scr., 99 (2024), 065235. https://doi.org/10.1088/1402-4896/ad4784 doi: 10.1088/1402-4896/ad4784
    [28] H. Khan, S. Barak, P. Kumam, M. Arif, Analytical solutions of fractional Klein-Gordon and gas dynamics equations, via the (G'/G)-expansion method, Symmetry, 11 (2019), 566. https://doi.org/10.3390/sym11040566 doi: 10.3390/sym11040566
    [29] N. Raza, M. H. Rafiq, M. Kaplan, S. Kumar, Y. M. Chu, The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations, Results Phys., 22 (2021), 103979. https://doi.org/10.1016/j.rinp.2021.103979 doi: 10.1016/j.rinp.2021.103979
    [30] A. J. A. M. Jawad, M. D. Petkovic, A. Biswas, Modified simple equation method for nonlinear evolution equations, Appl. Math. Comput., 217 (2010), 869–877. https://doi.org/10.1016/j.amc.2010.06.030 doi: 10.1016/j.amc.2010.06.030
    [31] S. A. El-Tantawy, H. A. Alyousef, R. T. Matoog, R. Shah, On the optical soliton solutions to the fractional complex structured (1+1)-dimensional perturbed Gerdjikov-Ivanov equation, Phys. Scr., 99 (2024), 035249. https://doi.org/10.1088/1402-4896/ad241b doi: 10.1088/1402-4896/ad241b
    [32] H. Yasmin, A. W. Alrowaily, M. Areshi, R. Shah, S. A. El-Tantawy, On the analytical soliton-like solutions to (2+1)-dimensional fractional asymmetric Nizhnik-Novikov-Veselov system arising in incompressible fluids, Front. Phys., 12 (2024), 1443986. https://doi.org/10.3389/fphy.2024.1443986 doi: 10.3389/fphy.2024.1443986
    [33] N. Iqbal, W. W. Mohammed, A. E. Hamza, S. Hussain, Y. Jawarneh, R. Shah, Fractals and chaotic solitons phenomena in conformable coupled Higgs system, Discrete Dyn. Nat. Soc., 2025 (2025), 1–16. https://doi.org/10.1155/ddns/8384630 doi: 10.1155/ddns/8384630
    [34] Z. Li, Optical solutions of the nonlinear Kodama equation with the M-truncated derivative via the extended (G'/G)-expansion method, Fractal Fract., 9 (2025), 300. https://doi.org/10.3390/fractalfract9050300 doi: 10.3390/fractalfract9050300
    [35] S. Behera, Optical solitons for the Hirota-Ramani equation via improved ($\frac{G'}{G}$)-expansion method, Mod. Phys. Lett. B, 39 (2025), 2450403. https://doi.org/10.1142/S0217984924504037 doi: 10.1142/S0217984924504037
    [36] T. Aydemir, Comparative analysis of the generalized unified method with some exact solution methods and general solutions of the Biswas-Milovic equation, Theor. Math. Phys., 222 (2025), 119–130. https://doi.org/10.1134/S004057792501009X doi: 10.1134/S004057792501009X
    [37] N. Raza, M. H. Rafiq, M. Kaplan, S. Kumar, Y. M. Chu, The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations, Results Phys., 22 (2021), 103979. https://doi.org/10.1016/j.rinp.2021.103979 doi: 10.1016/j.rinp.2021.103979
    [38] X. H. Wu, Y. T. Gao, X. Yu, L. Q. Li, C. C. Ding, Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber, Nonlinear Dyn., 111 (2023), 5641–5653. https://doi.org/10.1007/s11071-022-08058-2 doi: 10.1007/s11071-022-08058-2
    [39] L. Salmela, N. Tsipinakis, A. Foi, C. Billet, J. M. Dudley, G. Genty, Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network. Nat. Mach. Intell., 3 (2021), 344–354. https://doi.org/10.1038/s42256-021-00297-z doi: 10.1038/s42256-021-00297-z
    [40] J. Zhao, J. Dai, B. Braverman, X. C. Zhang, R. W. Boyd, Compressive ultrafast pulse measurement via time-domain single-pixel imaging, Optica, 8 (2021), 1176–1185. https://doi.org/10.1364/OPTICA.431455 doi: 10.1364/OPTICA.431455
    [41] X. H. Wu, Y. T. Gao, Generalized Darboux transformation and solitons for the Ablowitz-Ladik equation in an electrical lattice, Appl. Math. Lett., 137 (2023), 108476. https://doi.org/10.1016/j.aml.2022.108476 doi: 10.1016/j.aml.2022.108476
    [42] S. A. El-Tantawy, A. H. Salas, H. A. Alyousef, M. R. Alharthi, Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma, Chaos, Soliton. Fract., 163 (2022), 112612. https://doi.org/10.1016/j.chaos.2022.112612 doi: 10.1016/j.chaos.2022.112612
    [43] M. Tlidi, M. Taki, Rogue waves in nonlinear optics, Adv. Opt. Photonics, 14 (2022), 87–147. https://doi.org/10.1364/AOP.438025 doi: 10.1364/AOP.438025
    [44] J. Guo, X. Hu, J. Ma, L. Zhao, D. Shen, D. Tang, Anti-dark solitons in a single mode fiber laser, Phys. Lett. A, 395 (2021), 127226. https://doi.org/10.1016/j.physleta.2021.127226 doi: 10.1016/j.physleta.2021.127226
    [45] S. K. Hazra, P. K. Pathak, T. N. Dey, Self-induced transparency in a semiconductor quantum dot medium at ultracold temperatures, Phys. Rev. B, 107 (2023), 235409. https://doi.org/10.1103/PhysRevB.107.235409 doi: 10.1103/PhysRevB.107.235409
    [46] A. Pakhomov, M. Arkhipov, N. Rosanov, R. Arkhipov, Self-starting coherent mode locking in a two-section laser with identical gain and absorber media, Phys. Rev. A, 107 (2023), 013510. https://doi.org/10.1103/PhysRevA.107.013510 doi: 10.1103/PhysRevA.107.013510
    [47] X. Q. Cui, B. J. Zhang, X. Y. Wen, Bright-dark soliton solutions and their elastic interaction analysis for a reduced integrable spin Hirota-Maxwell-Bloch equation, Chinese J. Phys., 82 (2023), 95–104. https://doi.org/10.1016/j.cjph.2023.01.006 doi: 10.1016/j.cjph.2023.01.006
    [48] B. Ceesay, M. W. Yasin, N. Ahmed, M. Z. Baber, E. Bittaye, Revealing homoclinic breather waves, periodic lump waves and other waves forms of an integrable reduced spin Hirota-Maxwell-Bloch system, Sci. Rep., 15 (2025), 1–17. https://doi.org/10.1038/s41598-025-95093-9 doi: 10.1038/s41598-025-95093-9
    [49] G. H. Tipu, K. Anwar, F. Yao, U. Younas, Analytical exploration of optical structures in an integrable reduced spin Hirota-Maxwell-Bloch system, 2025. https://doi.org/10.21203/rs.3.rs-6778005/v1
    [50] J. Wang, Z. Li, The impact of standard Wiener process on the qualitative analysis and traveling wave solutions of stochastic nonlinear Kodama equation in the Stratonovich sense, AIMS Math., 10 (2025), 24997–25010. https://doi.org/10.3934/math.20251107 doi: 10.3934/math.20251107
    [51] Z. Li, Traveling wave solutions, numerical simulation and phase portraits for the conformable space-time fractional diffusive predator-prey system, Phys. Lett. A, 561 (2025), 130995. https://doi.org/10.1016/j.physleta.2025.130995 doi: 10.1016/j.physleta.2025.130995
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(331) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog