Carlitz' multiple sums involving cyclically symmetric products of binomial coefficients are extended by introducing weight monomials of $ m $-variables. By making use of recursive reductions and the Lagrange expansion formula, we determine, in closed form, the related rational generating functions that significantly generalize the classical result discovered by Carlitz in 1965. Several novel applications are presented as consequences.
Citation: Marta Na Chen, Wenchang Chu. Multiple sums for cyclically symmetric products of binomial coefficients[J]. AIMS Mathematics, 2025, 10(12): 29236-29262. doi: 10.3934/math.20251285
Carlitz' multiple sums involving cyclically symmetric products of binomial coefficients are extended by introducing weight monomials of $ m $-variables. By making use of recursive reductions and the Lagrange expansion formula, we determine, in closed form, the related rational generating functions that significantly generalize the classical result discovered by Carlitz in 1965. Several novel applications are presented as consequences.
| [1] |
K. Adegoke, R. Frontczak, T. Goy, Binomial sum relations involving Fibonacci and Lucas numbers, Appl. Math., 3 (2023), 851–881. https://doi.org/10.3390/appliedmath3040046 doi: 10.3390/appliedmath3040046
|
| [2] |
H. Akkus, E. Özkan, On the $k$-Vieta-Pell and $k$-Vieta-Pell-Lucas sequences, J. Eng. Technology Appl. Sci., 101 (2025), 115–128. https://doi.org/10.30931/jetas.1562212 doi: 10.30931/jetas.1562212
|
| [3] |
I. Akkus, The eigenvectors of a combinatorial matrix, Commun. Fac. Sci. Univ. Ank., 60 (2011), 9–14. https://doi.org/10.1501/Commua1_0000000665 doi: 10.1501/Commua1_0000000665
|
| [4] | A. T. Benjamin, J. A. Rouse, Recounting binomial Fibonacci identities, In: F. T. Howard, Applications of Fibonacci numbers, Springer: Dordrecht, 2004, 25–28. https://doi.org/10.1007/978-0-306-48517-6_4 |
| [5] |
D. Callan, H. Prodinger, An involutory matrix of eigenvectors, Fibonacci Quart., 41 (2003), 105–107. https://doi.org/10.1080/00150517.2003.12428585 doi: 10.1080/00150517.2003.12428585
|
| [6] |
L. Carlitz, The characteristic polynomial of a certain matrix of binomial coefficients, Fibonacci Quart., 3 (1965), 81–89. https://doi.org/10.1080/00150517.1965.12431433 doi: 10.1080/00150517.1965.12431433
|
| [7] |
M. N. Chen, W. Chu, Multiple sums of circular binomial products, Mathematics, 12 (2024), 1855. https://doi.org/10.3390/math12121855 doi: 10.3390/math12121855
|
| [8] |
W. Chu, Derivative inverse series relations and Lagrange expansion formula, Int J. Number Theory, 9 (2013), 1001–1013. https://doi.org/10.1142/S1793042113500103 doi: 10.1142/S1793042113500103
|
| [9] |
W. Chu, Bell polynomials and nonlinear inverse relations, Electron. J. Comb., 28 (2021), P4.24. https://doi.org/10.37236/10390 doi: 10.37236/10390
|
| [10] |
W. Chu, Circular sums of binomial coefficients, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 115 (2021), 92. https://doi.org/10.1007/s13398-021-01039-x doi: 10.1007/s13398-021-01039-x
|
| [11] |
W. Chu, Alternating circular sums of binomial coefficients, Bull. Aust. Math. Soc., 106 (2022), 385–395. https://doi.org/10.1017/S0004972722000351 doi: 10.1017/S0004972722000351
|
| [12] | L. Comtet, Advanced combinatorics, The Art of Finite and Infinite Expansions, Springer Dordrecht, 1974. https://doi.org/10.1007/978-94-010-2196-8 |
| [13] |
S. Koparal, N. Ömür, C. D. Colak, On binomial sums with the terms of sequences $\{g_kn\}$ and $\{h_kn\}$, Facta Univ. (NIS): Ser. Math. Inform., 36 (2021), 31–42. https://doi.org/10.22190/FUMI191227003K doi: 10.22190/FUMI191227003K
|
| [14] | T. Koshy, Fibonacci and Lucas numbers with applications, John Wiley & Sons, Inc., 2001. https://doi.org/10.1002/9781118033067 |
| [15] |
N. N. Li, W. Chu, Symmetric sums of binomial coefficients, Appl. Anal. Discrete Math., 18 (2024), 325–332. https://doi.org/10.2298/AADM211204008L doi: 10.2298/AADM211204008L
|
| [16] | J. C. Mason, D. C. Handscomb, Chebyshev polynomials, 1 Ed., Chapman and Hall/CRC, 2002. https://doi.org/10.1201/9781420036114 |
| [17] |
R. S. Melham, C. Cooper, The eigenvectors of a certain matrix of binomial coefficients, Fibonacci Quart., 38 (2000), 123–126. https://doi.org/10.1080/00150517.2000.12428808 doi: 10.1080/00150517.2000.12428808
|
| [18] |
J. Mikić, A proof of the curious binomial coefficient identity which is connected with the Fibonacci numbers, Open Access J. Math. Theor. Phys., 1 (2017), 1–7. https://doi.org/10.15406/oajmtp.2017.01.00001 doi: 10.15406/oajmtp.2017.01.00001
|
| [19] | O. K. Pashaev, M. Özvatan, Golden binomials and Carlitz characteristic polynomials, arXiv, 2020. https://doi.org/10.48550/arXiv.2012.11001 |
| [20] | H. S. Wilf, Generatingfunctionology, 2 Eds., Academic Press, 1994. |