Research article Special Issues

Bell polynomial-based semi-discretization approach for the extended Fisher-Kolmogorov equations

  • Published: 12 December 2025
  • MSC : 41A10, 41A58, 65L60, 65M12

  • This work introduces an integrated numerical framework for obtaining numerical approximations to the extended Fisher-Kolmogorov (EFK) equation model. The methodology entails a two-stage process: initial linearization of the governing equation through a Taylor series approach, followed by the application of a spectral collocation method utilizing Bell polynomials to resolve the resultant linear system. Comprehensive theoretical considerations, including a detailed error estimate in the weighted $ L^2 $-norm, are established. The numerical investigation, comprising three illustrative test cases, confirms the scheme's computational efficiency and demonstrates a marked improvement in accuracy when compared to current state-of-the-art results and exact solutions.

    Citation: M. J. Huntul. Bell polynomial-based semi-discretization approach for the extended Fisher-Kolmogorov equations[J]. AIMS Mathematics, 2025, 10(12): 29263-29284. doi: 10.3934/math.20251286

    Related Papers:

  • This work introduces an integrated numerical framework for obtaining numerical approximations to the extended Fisher-Kolmogorov (EFK) equation model. The methodology entails a two-stage process: initial linearization of the governing equation through a Taylor series approach, followed by the application of a spectral collocation method utilizing Bell polynomials to resolve the resultant linear system. Comprehensive theoretical considerations, including a detailed error estimate in the weighted $ L^2 $-norm, are established. The numerical investigation, comprising three illustrative test cases, confirms the scheme's computational efficiency and demonstrates a marked improvement in accuracy when compared to current state-of-the-art results and exact solutions.



    加载中


    [1] P. Coullet, C. Elphick, D. Repaux, Nature of spatial chaos, Phys. Rev. Lett., 58 (1987), 431–434. http://doi.org/10.1103/PhysRevLett.58.431 doi: 10.1103/PhysRevLett.58.431
    [2] W. Van Saarloos, Dynamical velocity selection: Marginal stability, Phys. Rev. Lett., 58 (1987), 2571–2574. http://doi.org/10.1103/PhysRevLett.58.2571 doi: 10.1103/PhysRevLett.58.2571
    [3] W. Van Saarloos, Front propagation into unstable states. Ⅱ. Linear versus nonlinear marginal stability and rate of convergence, Phys. Rev. A, 39 (1989), 6367–6390. http://doi.org/10.1103/PhysRevA.39.6367 doi: 10.1103/PhysRevA.39.6367
    [4] G. T. Dee, W. van Saarloos, Bistable systems with propagating fronts leading to pattern formation, Phys. Rev. Lett., 60 (1988), 2641–2644. http://doi.org/10.1103/PhysRevLett.60.2641 doi: 10.1103/PhysRevLett.60.2641
    [5] L. A. Peletier, W. C. Troy, A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation, Topol. Method. Nonlin., 6 (1995), 331–355.
    [6] P. Danumjaya, A. K. Pani, Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation, J. Comput. Appl. Math., 174 (2005), 101–117. http://doi.org/10.1016/j.cam.2004.04.002 doi: 10.1016/j.cam.2004.04.002
    [7] P. C. Carriao, L. F. O. Faria, O. H. Miyagaki, Periodic solutions for extended Fisher-Kolmogorov and Swift-Hohenberg equations by truncature techniques, Nonlinear Anal. Theor., 67 (2007), 3076–3083. http://doi.org/10.1016/j.na.2006.09.061 doi: 10.1016/j.na.2006.09.061
    [8] T. Kadri, K. Omrani, A second-order accurate difference scheme for an extended Fisher-Kolmogorov equation, Comput. Math. Appl., 61 (2011), 451–459. http://doi.org/10.1016/j.camwa.2010.11.022 doi: 10.1016/j.camwa.2010.11.022
    [9] R. C. Mittal, S. Dahiya, A study of quintic B-spline based differential quadrature method for a class of semi-linear Fisher-Kolmogorov equations, Alex. Eng. J., 55 (2016), 2893–2899. https://doi.org/10.1016/j.aej.2016.06.019 doi: 10.1016/j.aej.2016.06.019
    [10] M. Ilati, M. Dehghan, Direct local boundary integral equation method for numerical solution of extended Fisher-Kolmogorov equation, Eng. Comput., 34 (2018), 203–213. http://doi.org/10.1007/s00366-017-0530-1 doi: 10.1007/s00366-017-0530-1
    [11] I. Celik, Gegenbauer wavelet collocation method for the extended Fisher-Kolmogorov equation in two dimensions, Math. Method. Appl. Sci., 43 (2020), 5615–5628. http://doi.org/10.1002/mma.6300 doi: 10.1002/mma.6300
    [12] M. Ilati, Analysis and application of the interpolating element-free Galerkin method for extended Fisher-Kolmogorov equation which arises in brain tumor dynamics modeling, Numer. Algor., 85 (2020), 485–502. http://doi.org/10.1007/s11075-019-00823-6 doi: 10.1007/s11075-019-00823-6
    [13] L. J. Doss, N. Kousalya, A finite pointset method for extended Fisher-Kolmogorov equation based on mixed formulation, Int. J. Comp. Meth., 18 (2021), 2050019. http://doi.org/10.1142/S021987622050019X doi: 10.1142/S021987622050019X
    [14] K. Ismail, N. Atouani, K. Omrani, A three-level linearized high-order accuracy difference scheme for the extended Fisher-Kolmogorov equation, Eng. Comput., 38 (2022), 1215–1225. http://doi.org/10.1007/s00366-020-01269-4 doi: 10.1007/s00366-020-01269-4
    [15] S. Li, D. Xu, J. Zhang, C. Sun, A new three-level fourth-order compact finite difference scheme for the extended Fisher-Kolmogorov equation, Appl. Numer. Math., 178 (2022), 41–51. http://doi.org/10.1016/j.apnum.2022.03.010 doi: 10.1016/j.apnum.2022.03.010
    [16] Q. Sun, B. Ji, L. Zhang, A convex splitting BDF2 method with variable time-steps for the extended Fisher-Kolmogorov equation, Comput. Math. Appl., 114 (2022), 73–82. http://doi.org/10.1016/j.camwa.2022.03.017 doi: 10.1016/j.camwa.2022.03.017
    [17] L. Pei, C. Zhang, D. Shi, Unconditional superconvergence analysis of two-grid nonconforming FEMs for the fourth order nonlinear extended Fisher-Kolmogorov equation, Appl. Math. Comput., 471 (2024), 128602. http://doi.org/10.1016/j.amc.2024.128602 doi: 10.1016/j.amc.2024.128602
    [18] Shallu, V. K. Kukreja, Numerical solution and analysis of extended Fisher-Kolmogorov equation using an improved collocation algorithm, Int. J. Comput. Math., 102 (2025), 415–434. http://doi.org/10.1080/00207160.2024.2415701 doi: 10.1080/00207160.2024.2415701
    [19] S. R. Thottoli, M. Tamsir, M. Z. Meetei, A. H. Msmali, Numerical investigation of nonlinear extended Fisher-Kolmogorov equation via quintic trigonometric B-spline collocation technique, AIMS Math., 9 (2024), 17339–17358. http://doi.org/10.3934/math.2024843 doi: 10.3934/math.2024843
    [20] M. J. Huntul, M. Tamsir, A. A. H. Ahmadini, S. R. Thottoli, A novel collocation technique for parabolic partial differential equations, Ain Shams Eng. J., 13 (2022), 101497. http://doi.org/10.1016/j.asej.2021.05.011 doi: 10.1016/j.asej.2021.05.011
    [21] H. Han, C. Zhang, One-parameter Galerkin finite element methods for neutral reaction-diffusion equations with piecewise continuous arguments, J. Sci. Comput., 90 (2022), 91. http://doi.org/10.1007/s10915-022-01769-z doi: 10.1007/s10915-022-01769-z
    [22] M. Shafiq, M. Abbas, K. M. Abualnaja, M. J. Huntul, A. Majeed, T. Nazir, An efficient technique based on cubic B-spline functions for solving time-fractional advection diffusion equation involving Atangana–Baleanu derivative, Eng. Comput., 38 (2022), 901–917. http://doi.org/10.1007/s00366-021-01490-9 doi: 10.1007/s00366-021-01490-9
    [23] M. Tamsir, M. J. Huntul, N. Dhiman, S. Singh, Redefined quintic B-spline collocation technique for nonlinear higher order PDEs, Comput. Appl. Math., 41 (2022), 413. http://doi.org/10.1007/s40314-022-02127-3 doi: 10.1007/s40314-022-02127-3
    [24] W. Qu, Y. Gu, C. M. Fan, A stable numerical framework for long-time dynamic crack analysis, Int. J. Solids Struct., 293 (2024), 112768. http://doi.org/10.1016/j.ijsolstr.2024.112768 doi: 10.1016/j.ijsolstr.2024.112768
    [25] W. Sun, W. Qu, Y. Gu, S. Zhao, Dynamic analysis of bi-material interfacial cracks by the high-order GFDM with an enhanced Krylov deferred correction technique, Int. J. Solids Struct., 318 (2025), 113451. http://doi.org/10.1016/j.ijsolstr.2025.113451 doi: 10.1016/j.ijsolstr.2025.113451
    [26] M. A. Rufai, A. A. Kosti, Z. A. Anastassi, B. Carpentieri, A new two-step hybrid block method for the FitzHugh-Nagumo model equation, Mathematics, 12 (2024), 51. http://doi.org/10.3390/math12010051 doi: 10.3390/math12010051
    [27] M. J. Huntul, D. Lesnic, Time-dependent reaction coefficient identification problems with a free boundary, Int. J. Comput. Method. Eng. Sci. Mech., 20 (2019), 99–114. http://doi.org/10.1080/15502287.2019.1568619 doi: 10.1080/15502287.2019.1568619
    [28] M. Xia, X. Li, Q. Shen, T. Chou, Learning unbounded-domain spatiotemporal differential equations using adaptive spectral methods, J. Appl. Math. Comput., 70 (2024), 4395–4421. http://doi.org/10.1007/s12190-024-02131-2 doi: 10.1007/s12190-024-02131-2
    [29] B. V. Rathish Kumar, M. Mehra, Time-accurate solutions of Korteweg-de Vries equation using wavelet Galerkin method, Appl. Math. Comput., 162 (2005), 447–460. http://doi.org/10.1016/j.amc.2003.12.10 doi: 10.1016/j.amc.2003.12.10
    [30] I. Dağ, A. Canıvar, A. Şahin, Taylor-Galerkin and Taylor-collocation methods for the numerical solutions of Burgers' equation using B-splines, Commun. Nonlinear Sci., 16 (2011), 2696–2708. http://doi.org/10.1016/j.cnsns.2010.10.009 doi: 10.1016/j.cnsns.2010.10.009
    [31] M. Izadi, Numerical approximation of Hunter-Saxton equation by an efficient accurate approach on long time domains, U.P.B. Sci. Bull. Ser. A, 83 (2021), 291–300.
    [32] J. Donea, H. Laval, S. Guiliani, L. Quartapelle, Taylor-Galerkin method for time-dependent transport problems, In: Transactions of the 7th International Conference on Structural Mechanics in Reactor Technology, B (1983), 77–82.
    [33] M. Torabi, M. M. Hosseini, A new efficient method for the numerical solution of linear time-dependent partial differential equations, Axioms, 7 (2018), 70. http://doi.org/10.3390/axioms7040070 doi: 10.3390/axioms7040070
    [34] M. Izadi, P. Roul, Spectral semi-discretization algorithm for a class of nonlinear parabolic PDEs with applications, Appl. Math. Comput., 429 (2022), 127226. http://doi.org/10.1016/j.amc.2022.127226 doi: 10.1016/j.amc.2022.127226
    [35] E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258–277. http://doi.org/10.2307/1968431 doi: 10.2307/1968431
    [36] M. Mihoubi, M. S. Maamra, Touchard polynomials, partial Bell polynomials and polynomials of binomial type, J. Integer Seq., 14 (2011), 3.
    [37] S. Yüzbaşı, Fractional Bell collocation method for solving linear fractional integro-differential equations, Math. Sci., 18 (2024), 29–40. http://doi.org/10.1007/s40096-022-00482-0 doi: 10.1007/s40096-022-00482-0
    [38] P. Yadav, S. Jahan, K. S. Nisar, A new generalized Bell wavelet and its applications for solving linear and nonlinear integral equations, Comput. Appl. Math., 44 (2025), 40. http://doi.org/10.1007/s40314-024-02999-7 doi: 10.1007/s40314-024-02999-7
    [39] L. Comtet, Advanced combinatorics: The art of finite and infinite expansions, Dordrecht: Springer, 1974. https://doi.org/10.1007/978-94-010-2196-8
    [40] K. Parand, H. Yousefi, M. Fotouhifar, M. Delkhosh, M. Hosseinzadeh, Shifted Boubaker Lagrangian approach for solving biological systems, Int. J. Biomath., 11 (2018), 1850039. http://doi.org/10.1142/S1793524518500390 doi: 10.1142/S1793524518500390
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(335) PDF downloads(16) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog