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1. Introduction and outline

In mathematics, physics, and applied sciences, Fibonacci and Lucas numbers play important roles
(cf. Koshy [14]). They are defined as follows:

• Initial conditions
F0 = 0, F1 = 1 and L0 = 2, L1 = 1.

• Recurrence relations (n ≥ 2)

Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2.

• Generating functions

∞∑
n=0

ynFn =
y

1 − y − y2 and
∞∑

n=0

ynLn =
2 − y

1 − y − y2 .
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• Binet formulae (α, β = 1±
√

5
2 )

Fn =
αn − βn

α − β
and Ln = αn + βn.

• Explicit formulae

Fn =

b n
2 c∑

k=0

(
n − k − 1

k

)
and Ln =

b n
2 c∑

k=0

n
n − k

(
n − k

k

)
.

Here and forth, bxc and dxe stand, respectively, for the greatest integer ≤ x and the smallest integer
≥ x for a real number x.

It is classically well-known (cf. Koshy [14, Example 3.1]) that Fm+2 (and Lm) counts the number
of subsets (including the null set) of the set [1,m] (consisting of the first m natural numbers) such
that consecutive numbers in [1,m] are not allowed if these m elements are arranged in a line (and in a
circle).

There exist numerous binomial sums involving Fibonacci and Lucas numbers in the mathematical
literature (for example, [1,4,15] on closed formulae, and [2,13] about k-recursive sums). However, the
related multiple sums are rare.

Denote by N the set of natural numbers with N0 = N ∪ {0}. For n ∈ N, consider the binomial
matrix

[(
i

n− j

)]
0≤i, j≤n

. When determining its characteristic polynomial

n+1∑
k=0

(−1)(
k+1

2 )
(
n + 1

k

)
F

x1+n−k, where
(
m
k

)
F

=
FmFm−1 · · · Fm−k+1

F1F2 · · · Fk
.

Carlitz [6] discovered the following beautiful formula for the circular sums:

∑
k∈[0,n]m

(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
=

Fmn+m

Fm
.

For different proofs and related works, the reader can consult [3, 5, 17] for the matrix approach, [18]
for the induction principle, and [7, 10, 19] for “the recursive construction method”.

The objective of the present paper is to investigate its generalization weighted by characterizing
monomials (which serve as encoding the summands)

Ωm
n
(
xι|[1,m]

)
=

∑
k∈[0,n]m

xkm
m

(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
xki

i ,

where for i, j ∈ N0 subject to i ≤ j, we use notations, for brevity, [i, j] for the integers from i to j
and (xι|[i, j]) for the variables {xι}

j
ι=i. The generating function is shown to be related to Fibonacci and

Lucas polynomials through subset enumerations without consecutive elements. This provides a deep
generalization of the aforementioned formula due to Carlitz [6].

As preliminaries, we introduce, in the next section, the enumerative functions of the Fibonacci
and Lucas subsets by identifying each subset with its enumerator (a multivariate monomial). Then
in Section 3, the rational generating function for multiple sums Ωm

n (xι|[1,m]) will be established by
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making use of recursive reductions and the Lagrange expansion formula. When the m variables
(xι|[1,m]) are cyclically generated by cycles 〈x〉, 〈u, v〉 and 〈u, v,w〉 of lengths “1”, “2” and “3”,
respectively, we shall examine, in Section 4, three classes of corresponding multiples sums, that yield
several remarkable summation formulae, including a few known ones. Finally, the paper will end with
Section 5, where further challenging problems are proposed.

2. Subsets of M = (xι|[1, m])

LetM be the finite set (xι|[1,m]). We are going to enumerate the subsets (including the empty one)
ofM, when the elements ofM are arranged in a line and in a circle. For any subset S ⊂ M, denote its
enumerator by

σ(S) =


1, S = ∅;∏
x∈S

x, S , ∅.

2.1. Subsets of linear M = (xι|[1, m])

When the elements of M are arranged in a line, consider the subsets F(M) (including the null set)
such that in each given subset S ⊂ F(M), the consecutive elements in the linearM are not allowed. Let
Fm stand for the enumerative function

Fm := Fm(M) = Fm(xι|[1,m]) =
∑

S∈F(M)

σ(S).

Then it follows directly from the definition that

F0 = 1,
F1 = 1 + x1,

F2 = 1 + x1 + x2,

F3 = 1 + x1 + x2 + x3 + x1x3,

F4 = 1 + x1 + x2 + x3 + x4 + x1x3 + x1x4 + x2x4,

F5 = 1 + x1 + x2 + x3 + x4 + x5 + x1x3 + x1x4 + x1x5 + x2x4 + x2x5 + x3x5 + x1x3x5,

F6 = 1 + x1 + x2 + x3 + x4 + x5 + x6 + x1x3 + x1x4 + x1x5 + x1x6 + x2x4

+ x2x5 + x2x6 + x3x5 + x3x6 + x4x6 + x1x3x5 + x1x3x6 + x1x4x6 + x2x4x6.

For each subset S ∈ F(M), we have xm ∈ S or xm < S. Then all the subsets F(M) subject to xm < S
are enumerated by Fm−1 := Fm−1(xι|[1,m − 1]) and the remaining subsets of F(M) with xm ∈ S by
xmFm−2 := xmFm−2(xι|[1,m − 2]). Consequently, we find the following recurrence relation:

Fm = Fm−1 + xmFm−2 for m ≥ 2. (2.1)

This corresponds exactly to the recursion of the classical Fibonacci sequence.

AIMS Mathematics Volume 10, Issue 12, 29236–29262.



29239

2.2. Subsets of circular M = (xι|[1, m])

When the elements of M are arranged in a circle, consider the subsets L(M) (including the empty
set) such that for each given subset S ∈ L(M), any pair of its elements are not consecutive in the circular
M. Let Lm stand for the enumerative function

Lm := Lm(M) = Lm(xι|[1,m]) =
∑

S∈L(M)

σ(S).

Define for convention the initial two functions:

L0 = 2 and L1 = 1.

Then it is not hard to determine the next five functions:

L2 = 1 + x1 + x2,

L3 = 1 + x1 + x2 + x3,

L4 = 1 + x1 + x2 + x3 + x4 + x1x3 + x2x4,

L5 = 1 + x1 + x2 + x3 + x4 + x5 + x1x3 + x1x4 + x2x4 + x2x5 + x3x5,

L6 = 1 + x1 + x2 + x3 + x4 + x5 + x6 + x1x3 + x1x4 + x1x5 + x2x4

+ x2x5 + x2x6 + x3x5 + x3x6 + x4x6 + x1x3x5 + x2x4x6.

For each subset S ∈ L(M), it holds that xm ∈ S or xm < S. Then all the subsets L(M) subject to
xm < S are enumerated by Fm−1(xι|[1,m − 1]) and the remaining subsets of L(M) with xm ∈ S by
xmFm−3(xι|[2,m − 2]). Consequently, we deduce the following expression:

Lm(xι|[1,m]) = Fm−1(xι|[1,m − 1]) + xmFm−3(xι|[2,m − 2]). (2.2)

Alternatively, the subsets of L(M) subject to xm < S are enumerated by

Lm−1(xι|[1,m − 1]) + x1xm−1Fm−5(xι|[3,m − 3]),

and the remaining subsets of L(M) with xm ∈ S by

xmLm−2(xι|[1,m − 2]) − x1xmFm−5(xι|[3,m − 3]).

Consequently, we find the following relation, which differs from the usual recursion of the classical
Lucas sequence:

Lm = Lm−1 + xmLm−2 (m > 2) (2.3)

+


0, m = 3;
x1(x3 − x4), m = 4;
x1(xm−1 − xm)Fm−5(xι|[3,m − 3]), m > 4.

These polynomials Fm andLm will serve as natural combinatorial tools in the recursive construction
for the generating function of multiple circular sums Ωm

n (M). When x1 = x2 = · · · = xm = 1, it is almost
obvious that Fm and Lm become the usual Fibonacci and Lucas numbers Fm+2 and Lm, respectively.

AIMS Mathematics Volume 10, Issue 12, 29236–29262.



29240

3. Generating functions of multiple sums Ωm
n (M)

By making use of recursive reductions and the Lagrange expansion formula, we shall establish
the rational generating function for multiple circular sums Ωm

n (M). We observe that there exists
an unexpected hidden connection between the multiple circular sums Ωm

n (M) and the enumerative
functions Lm, which is crucial in our recursive construction of the generating function (Theorem 2).

3.1. Another Fibonacci-like sequence

In order to proceed smoothly with our derivation, we introduce another Fibonacci-like sequence Fm

(a variant of Fm) defined by the recurrence relation

Fm = Fm−1 + xmFm−2 : Fm = Fm(x1 → T x1)

with the initial values below:
F0 = 1 and F1 = 1 + T x1.

The next five terms are given by

F2 = 1 + x2 + T x1,

F3 = 1 + x2 + x3 + T x1(1 + x3),
F4 = 1 + x2 + x3 + x4 + x2x4 + T x1(1 + x3 + x4),
F5 = 1 + x2 + x3 + x4 + x5 + x2x4 + x2x5 + x3x5 + T x1(1 + x3 + x4 + x5 + x3x5),
F6 = 1 + x2 + x3 + x4 + x5 + x6 + x2x4 + x2x5 + x2x6 + x3x5 + x3x6 + x4x6

+ x2x4x6 + T x1(1 + x3 + x4 + x5 + x6 + x3x5 + x3x6 + x4x6).

We explicitly write Fm as a linear function of T :

Fm = Fm(x1 → T x1) = Um + T x1Vm,

where Um and Vm are given by

U0 = 1, V0 = 0,
U1 = 1, V1 = 1,
U2 = 1 + x2, V2 = 1,
U3 = 1 + x2 + x3, V3 = 1 + x3,

U4 = 1 + x2 + x3 + x4 + x2x4, V4 = 1 + x3 + x4,

U5 = 1 + x2 + x3 + x4 + x5 + x2x4 + x2x5 + x3x5, V5 = 1 + x3 + x4 + x5 + x3x5,

U6 = 1 + x2 + x3 + x4 + x5 + x6 + x2x4 + x2x5 V6 = 1 + x3 + x4 + x5 + x6

+ x2x6 + x3x5 + x3x6 + x4x6 + x2x4x6; + x3x5 + x3x6 + x4x6.

Then it is not difficult to show that

Um = Um−1 + xmUm−2 = Fm−1(xι|[2,m]) : U0 = 1,U1 = 1;
Vm = Vm−1 + xmVm−2 = Fm−2(xι|[3,m]) : V0 = 0, V1 = 1.

Therefore, we find that

Fm = Fm(x1 → T x1) = Fm−1(xι|[2,m]) + T x1Fm−2(xι|[3,m]).
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3.2. Recursive construction for the generating function

Recall the binomial relations

xk1
1

(
n − k2

k1

)
= [T k1](1 + x1T )n−k2 ,(

n − k1

km

)
= [T n−k1]

T km

(1 − T )km+1 ,

where [T k]φ(T ) denotes the coefficient of T k in the formal power series φ(T ). We can first deal with
the binomial sum with respect to k1:

∆1
n =

n∑
k1=0

xk1
1

(
n − k2

k1

)(
n − k1

km

)

=

n∑
k1=0

[T k1](1 + x1T )n−k2[T n−k1]
T km

(1 − T )km+1

= [T n]
T km(1 + x1T )n

(1 − T )km+1(1 + x1T )k2

= [T n]
T kmFn

1

(1 − T )km+1 ×
Fk2

0

Fk2
1

.

Next, we can treat the binomial sum with respect to k2:

∆2
n =

n∑
k2=0

xk2
2

(
n − k3

k2

)
∆1

n

= [T n]
T km(1 + x1T )n

(1 − T )km+1

n∑
k2=0

(
n − k3

k2

)
xk2

2

(1 + x1T )k2

= [T n]
T km(1 + x1T )n

(1 − T )km+1

{1 + x1T + x2

1 + x1T

}n−k3

= [T n]
T kmFn

2

(1 − T )km+1 ×
Fk3

1

Fk3
2

.

Analogously, the sum with respect to k3 reads as

∆3
n =

n∑
k3=0

xk3
3

(
n − k4

k3

)
∆2

n

= [T n]
T km(1 + x1T + x2)n

(1 − T )km+1

n∑
k3=0

(
n − k4

k3

){ x3(1 + x1T )
1 + x1T + x2

}k3

= [T n]
T km(1 + x1T + x2)n

(1 − T )km+1

{1 + x2 + x3 + x1T + x1x3T
1 + x1T + x2

}n−k4

= [T n]
T kmFn

3

(1 − T )km+1 ×
Fk4

2

Fk4
3

.
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By the induction principle, we can proceed with summing over k` (1 < ` < m):

∆`
n =

n∑
k`=0

xk`
`

(
n − k`+1

k`

)
∆`−1

n = [T n]
T kmFn

`

(1 − T )km+1 ×
Fk`+1
`−1

Fk`+1
`

.

Finally, we can determine the sum with respect to km:

Ωm
n (M) = ∆m

n =

n∑
km=0

xkm
m ∆m−1

n = [T n]
Fn

m−1

1 − T

∞∑
km=0

{ T xmFm−2

(1 − T )Fm−1

}km

,

which simplifies into the algebraic expression in terms of coefficient T n.

Lemma 1 (Algebraic generating function).

Ωm
n (M) = [T n]

Fn+1
m−1

(1 − T )Fm−1 − T xmFm−2
.

3.3. Generating function via the Lagrange expansion formula

To evaluate Ωm
n (M) explicitly, the Lagrange expansion formula will be crucial, which is reproduced

as follows (cf. Chu [8, 9], Comtet [12, §3.8] and Wilf [20, §5.1]). For a formal power series ϕ(T )
subject to the condition ϕ(0) , 0, the functional equation y = T/ϕ(T ) determines T as an implicit
function of y. Then, for another formal power series Φ(T ) in the variable T , the following expansions
hold for both composite series:

Φ(T (y)) = Φ(0) +

∞∑
n=1

yn

n
[T n−1]

{
Φ′(T )ϕn(T )

}
, (3.1)

Φ(T (y))
1 − Tϕ′(T )/ϕ(T )

=

∞∑
n=0

yn[T n]
{
Φ(T )ϕn(T )

}
. (3.2)

By specifying the functions

ϕ(T ) = Fm−1 = Fm−2(xι|[2,m − 1]) + x1TFm−3(xι|[3,m − 1]),

Φ(T ) =
Fm−1

(1 − T )Fm−1 − xmTFm−2

=
Fm−2(xι|[2,m − 1]) + x1TFm−3(xι|[3,m − 1]){ (1 − T )

[
Fm−2(xι|[2,m − 1]) + x1TFm−3(xι|[3,m − 1])

]
−xmT

[
Fm−3(xι|[2,m − 2]) + x1TFm−4(xι|[3,m − 2])

] } ;

we can deduce that

y = y(T ) = T/ϕ(T ) =⇒ T = T (y) =
yFm−2(xι|[2,m − 1])

1 − x1yFm−3(xι|[3,m − 1])
.

According to the Lagrange expansion formula displayed in (3.2), we can express

Ωm
n (M) = [T n]

Fn+1
m−1

(1 − T )Fm−1 − xmTFm−2
= [T n]Φ(T )ϕn(T ) = [yn]

Φ(T )
1 − Tϕ′(T )/ϕ(T )

.

AIMS Mathematics Volume 10, Issue 12, 29236–29262.



29243

After some simplifications, we arrive at the following rational generating function:

Ωm
n (M) = [yn]

1
1 − yAm + y2Bm

,

where the two coefficients Am and Bm are given explicitly by

Am = Fm−2(xι|[2,m − 1]) + x1Fm−3(xι|[3,m − 1]) + xmFm−3(xι|[2,m − 2]),

Bm = x1xm

{
Fm−3(xι|[3,m − 1])Fm−3(xι|[2,m − 2])

− Fm−2(xι|[2,m − 1])Fm−4(xι|[3,m − 2])
}
.

Now, it remains to simplify the coefficients Am and Bm. By examining the positions of x1 and then
xm, we can first reduce Am as below:

Am = Fm−1(xι|[1,m − 1]) + xmFm−3(xι|[2,m − 2]) = Lm(M).

Then by looking at the position of x2, we can reformulate Bm as

Bm

x1xm
= Fm−3(xι|[3,m − 1])

{
Fm−4(xι|[3,m − 2])

+x2 Fm−5(xι|[4,m − 2])

}
− Fm−4(xι|[3,m − 2])

{
Fm−3(xι|[3,m − 1])

+x2 Fm−4(xι|[4,m − 1])

}
= x2Fm−3(xι|[3,m − 1])Fm−5(xι|[4,m − 2])
− x2Fm−4(xι|[4,m − 1])Fm−4(xι|[3,m − 2]).

Analogously, by considering the position of x3, we obtain

Bm

x1xm
= x2x3Fm−5(xι|[5,m − 1])Fm−5(xι|[4,m − 2])

− x2x3Fm−4(xι|[4,m − 1])Fm−6(xι|[5,m − 2]).

Repeating this process (m − 4) times, we arrive at

Bm

x1xm
=

m−3∏
k=2

(−xk) × F1(xι|[m − 1,m − 1])F1(xι|[m − 2,m − 2])

−

m−3∏
k=2

(−xk) × F0(∅)F2(xι|[m − 1,m − 2])

=

m−3∏
k=2

(−xk)
{
(1 + xm−1)(1 + xm−2) − (1 + xm−1 + xm−2)

}
,

which leads us to the simpler formula

Bm =

m∏
k=1

(−xk) = (−1)m
m∏

k=1

xk.
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This is a deep generalization of Cassini’s formula for Fibonacci numbers

F2
n+1 − FnFn+2 = (−1)n.

Summing up, the following important theorem has been established.

Theorem 2 (Generating function).

Ωm
n (M) = Ωm

n (xι|[1,m]) = [yn]
1

1 − yLm(M) + (−1)my2 ∏m
k=1 xk

.

In particular, when n = 1, we have the following interesting fact:

Lm(M) = Ωm
1 (M) for m ∈ N.

The first five generating functions are recorded below:

Ω1
n
(
xι|[1, 1]

)
= [yn]

1
1 − y − y2(x1)

,

Ω2
n
(
xι|[1, 2]

)
= [yn]

1
1 − y(1 + x1 + x2) + y2(x1x2)

,

Ω3
n
(
xι|[1, 3]

)
= [yn]

1
1 − y(1 + x1 + x2 + x3) − y2(x1x2x3)

,

Ω4
n
(
xι|[1, 4]

)
= [yn]

1
1 − y(1 + x1 + x2 + x3 + x4 + x1x3 + x2x4) + y2(x1x2x3x4)

,

Ω5
n
(
xι|[1, 5]

)
= [yn]

1{1 − y2(x1x2x3x4x5) − y(1 + x1 + x2 + x3 + x4 + x5

+ x1x3 + x1x4 + x2x4 + x2x5 + x3x5)

} .
4. Closed formulae of multiple sums Ωm

n (M)

After having presented the theoretical basis, we shall concretely evaluate, in this section, Ωm
n (M)

by examining three particular cases when M is generated by 〈x〉, 〈u, v〉 and 〈u, v,w〉. Several unusual
properties (such as algebraic structures, symmetries and periodicities) will emerge from the outcome
of our computations, which may serve as inspirations for further investigations, particularly from the
combinatorial point of view.

In order to shorten lengthy expressions, we denote, for m ∈ N and k = (k1, k2, · · · , km) ∈ Nm
0 , by bk|,

|ke and |k| the three linear sums

bk| =
dm

2 e∑
i=1

k2i−1, |ke =

bm
2 c∑

i=1

k2i and |k| =
m∑

i=1

ki = bk| + |ke.

4.1. M = {〈x〉}

Let xι → x for 1 ≤ ι ≤ m, equivalently, M = {〈x〉}. In this case, write Fm(M) and Lm(M) shortly
by Fm(x) and Lm(x), respectively. The corresponding generating function for Fibonacci polynomials
becomes

∞∑
m=0

ymFm(x) =
1 + xy

1 − y − xy2 =
1

α1(x) − β1(x)

{ α2
1(x)

1 − yα1(x)
−

β2
1(x)

1 − yβ1(x)

}
,
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where

α1(x) =
1 +
√

1 + 4x
2

and β1(x) =
1 −
√

1 + 4x
2

(4.1)

subject to the conditions

α1(x) + β1(x) = 1 and α1(x)β1(x) = −x.

This leads us to the Binet formula

Fm(x) =
αm+2

1 (x) − βm+2
1 (x)

α1(x) − β1(x)
,

as well as the binomial expression

Fm(x) =

dm
2 e∑

k=0

(
m − k + 1

k

)
xk.

For the corresponding Lucas polynomials, they satisfy the recurrence relation

Lm(x) = Lm−1(x) + xLm−2(x), m ≥ 2;

and the generating function
∞∑

m=0

ymLm(x) =
2 − y

1 − y − xy2 =
1

1 − yα1(x)
+

1
1 − yβ1(x)

.

This leads us to the Binet formula
Lm(x) = αm

1 (x) + βm
1 (x),

and the binomial expression

Lm(x) =

bm
2 c∑

k=0

m
m − k

(
m − k

k

)
xk.

The initial terms of the Fibonacci and Lucas polynomials are recorded below:

F0(x) = 1,
F1(x) = 1 + x,

F2(x) = 1 + 2x,

F3(x) = 1 + 3x + x2,

F4(x) = 1 + 4x + 3x2,

F5(x) = 1 + 5x + 6x2 + x3,

F6(x) = 1 + 6x + 10x2 + 4x3;

L0(x) = 2,
L1(x) = 1,
L2(x) = 1 + 2x,

L3(x) = 1 + 3x,

L4(x) = 1 + 4x + 2x2,

L5(x) = 1 + 5x + 5x2,

L6(x) = 1 + 6x + 9x2 + 2x3.

According to Theorem 2, we have the formulae as in the theorem below, where the Binet form
expression follows by the partial fraction decomposition:

1
1 − yLm(x) + (−1)my2xm =

1
1 − y(αm

1 (x) + βm
1 (x)) + y2αm

1 (x)βm
1 (x)

=
1

αm
1 (x) − βm

1 (x)

{
αm

1 (x)
1 − yαm

1 (x)
−

βm
1 (x)

1 − yβm
1 (x)

}
.
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Theorem 3. Assume α1(x) and β1(x) as in (4.1). Then the multiple sums Ωm
n (x) admit the rational

generating function

Ωm
n (x) =

∑
k∈[0,n]m

x|k|
(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
= [yn]

1
1 − yLm(x) + (−1)my2xm ,

as well as the Binet form expression

Ωm
n (x) =

αmn+m
1 (x) − βmn+m

1 (x)
αm

1 (x) − βm
1 (x)

.

When n = 1, this theorem results in the following curious fact:

Ωm
1 (x) = Lm(x) for m ∈ N.

Theorem 3 itself extends and unifies substantially the known formulae due to Carlitz [6] and
Chu [10] as shown in the following interesting particular cases.

4.1.1. x→ 1

In this case, the golden ratio comes out

α1(1) = α =
1 +
√

5
2

and β1(1) = β =
1 −
√

5
2

.

Then we recover from Theorem 3 the following important formula.

Corollary 4 (Carlitz [6]).

∑
k∈[0,n]m

(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
=
αmn+m − βmn+m

αm − βm =
Fmn+m

Fm
.

4.1.2. x→ −1

Analogously, we can write explicitly

α1(−1) = e
πi
3 =

1 + i
√

3
2

= cos
(π
3

)
+ i sin

(π
3

)
,

β1(−1) = e−
πi
3 =

1 − i
√

3
2

= cos
(π
3

)
− i sin

(π
3

)
.

Denoting by Un(x) the Chebyshev polynomial (cf. [16]) of the second kind, we deduce from
Theorem 3 another formula.

Corollary 5 (Chu [11]).

∑
k∈[0,n]m

(−1)|k|
(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
= Un

(
cos

mπ
3

)
=
αmn+m

1 (−1) − βmn+m
1 (−1)

αm
1 (−1) − βm

1 (−1)
.

AIMS Mathematics Volume 10, Issue 12, 29236–29262.



29247

4.1.3. x→ τ(1 + τ)

Furthermore, by using parametric expressions

α1(τ(1 + τ)) = 1 + τ and β1(τ(1 + τ)) = −τ,

we deduce the following more general formula with a free variable τ.

Corollary 6.

∑
k∈[0,n]m

{
τ(1 + τ)

}|k|(n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
=

(1 + τ)mn+m − (−τ)mn+m

(1 + τ)m − (−τ)m .

4.2. M = {〈u, v〉}

WhenM = {〈u, v〉} is given by

x2ı−1 → u for 1 ≤ ı ≤ dm
2 e,

x2  → v for 1 ≤  ≤ bm
2 c;

the corresponding Fm(M) and Lm(M) are abbreviated to Fm(〈u, v〉) and Lm(〈u, v〉), respectively. When
the elements ofM = {〈u, v〉} are arranged in a line, the first enumerative functions Fm(〈u, v〉) read as

F0(〈u, v〉) = 1,
F1(〈u, v〉) = 1 + u,

F2(〈u, v〉) = 1 + u + v,

F3(〈u, v〉) = 1 + 2u + v + u2,

F4(〈u, v〉) = 1 + 2u + 2v + u2 + uv + v2,

F5(〈u, v〉) = 1 + 3u + 2v + 3u2 + 2uv + v2 + u3,

F6(〈u, v〉) = 1 + 3u + 3v + 3u2 + 4uv + 3v2 + u3 + u2v + uv2 + v3.

By classifying the subsets of the linear M = {〈u, v〉} with respect to the ultimate element v and u, we
can derive the recurrence relations

F2n(〈u, v〉) = F2n−1(〈u, v〉) + vF2n−2(〈u, v〉),
F2n+1(〈u, v〉) = F2n(〈u, v〉) + uF2n−1(〈u, v〉).

For the generating functions defined by

P(y) =

∞∑
n=0

ynF2n(〈u, v〉) and Q(y) =

∞∑
n=0

ynF2n+1(〈u, v〉),

they can be manipulated as follows:

P(y) = 1 + yQ(y) + yvP(y),
Q(y) = u + P(y) + yuQ(y).
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Resolving this linear system gives explicit generating functions:

P(y) =
1

1 − y(1 + u + v) + y2uv
and Q(y) =

1 + u − uvy
1 − y(1 + u + v) + y2uv

.

Both P and Q can be decomposed into partial fractions:

P(y) =
1

(1 − yα2)(1 − yβ2)
=

1
α2 − β2

{
α2

1 − yα2
−

β2

1 − yβ2

}
,

Q(y) =
1 + u − uvy

(1 − yα2)(1 − yβ2)
=

1
α2 − β2

{ (α2 − v)α2

1 − yα2
−

(β2 − v)β2

1 − yβ2

}
;

where
α2 := α2(u, v) =

1
2

{
1 + u + v +

√
(1 + u + v)2 − 4uv

}
,

β2 := β2(u, v) =
1
2

{
1 + u + v −

√
(1 + u + v)2 − 4uv

}
;

(4.2)

subject to the conditions

α2 + β2 = 1 + u + v and α2β2 = uv.

Therefore, we deduce the following Binet form expressions:

F2n(〈u, v〉) = [yn]P(y) =
αn+1

2 − βn+1
2

α2 − β2
,

F2n+1(〈u, v〉) = [yn]Q(y) =
(α2 − v)αn+1

2 − (β2 − v)βn+1
2

α2 − β2
.

Alternatively, by means of binomial expansions, we can also derive polynomial expressions

F2n(〈u, v〉) = [yn]P(y) = [yn]
1

1 − y(1 + u + v) + y2uv

= [yn]
n∑

k=0

yn−k(1 + u + v − uvy)n−k

=

b n
2 c∑

k=0

(
n − k

k

)
(−uv)k(1 + u + v)n−2k,

F2n+1(〈u, v〉) = [yn]Q(y) = [yn]
1 + u − uvy

1 − y(1 + u + v) + y2uv

= [yn](1 + u)
n∑

k=0

yn−k(1 + u + v − uvy)n−k

− [yn](uv)
n∑

k=0

y1+n−k(1 + u + v − uvy)n−k

=

d n
2 e∑

k=0

(1 + u)(1 + n − k) + kv
1 + n − k

(
1 + n − k

k

)
(−uv)k(1 + u + v)n−2k.
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When the elements ofM = {〈u, v〉} are arranged in a circle, the enumerative function Lm(〈u, v〉) can
also be calculated. The initial terms read as

L0(〈u, v〉) = 2,
L1(〈u, v〉) = 1,
L2(〈u, v〉) = 1 + u + v,

L3(〈u, v〉) = 1 + 2u + v,

L4(〈u, v〉) = 1 + 2u + 2v + u2 + v2,

L5(〈u, v〉) = 1 + 3u + 2v + 2u2 + 2uv + v2,

L6(〈u, v〉) = 1 + 3u + 3v + 3u2 + 3uv + 3v2 + u3 + v3.

Recalling (2.2), we can write

L2n(〈u, v〉) = F2n−1(〈u, v〉) + vF2n−3(u
 v),
L2n+1(〈u, v〉) = F2n(〈u, v〉) + uF2n−2(u
 v).

Then the generating functions can be determined by

P̃(y) =

∞∑
n=0

ynL2n(〈u, v〉) = 2 + y + yQ(y) + y2vQ(y|u
 v)

= 2 + yv +
y(1 + u − uvy)

1 − y(1 + u + v) + uvy2 +
y2v(1 + v − uvy)

1 − y(1 + u + v) + uvy2

=
2 − (1 + u + v)y

1 − y(1 + u + v) + uvy2 ,

Q̃(y) =

∞∑
n=0

ynL2n+1(〈u, v〉) = P(y) + yuP(y|u
 v)

=
1

1 − y(1 + u + v) + uvy2 +
yu

1 − y(1 + u + v) + uvy2

=
1 + yu

1 − y(1 + u + v) + uvy2 .

Since α2(u, v), β2(u, v) and F2n(〈u, v〉) are symmetric in u and v, the following Binet form formulae
hold:

L2n(〈u, v〉) = F2n(〈u, v〉) − uvF2n−4(〈u, v〉)

=
αn+1

2 − βn+1
2

α2 − β2
− α2β2

αn−1
2 − βn−1

2

α2 − β2

= αn
2 + βn

2,

L2n+1(〈u, v〉) = F2n(〈u, v〉) + uF2n−2(〈u, v〉)

=
αn+1

2 − βn+1
2

α2 − β2
+ u

αn
2 − β

n
2

α2 − β2
;
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as well as the binomial sum expressions

L2n(〈u, v〉) = F2n(〈u, v〉) − uvF2n−4(〈u, v〉)

=

b n
2 c∑

k=0

n
n − k

(
n − k

k

)
(−uv)k(1 + u + v)n−2k,

L2n+1(〈u, v〉) = F2n(〈u, v〉) + uF2n−2(〈u, v〉)

=

b n
2 c∑

k=0

(n − k)(1 + 2u + v) − ku
(n − k)(1 + u + v)

(
n − k

k

)
(−uv)k(1 + u + v)n−2k.

For even m, taking into account also the partial fractions

1
1 − yL2m(〈u, v〉) + y2umvm =

1
1 − y(αm

2 + βm
2 ) + y2αm

2 β
m
2

=
1

αm
2 − β

m
2

{
αm

2

1 − yαm
2
−

βm
2

1 − yβm
2

}
,

and then applying Theorem 2, we derive the following formulae.

Theorem 7. Assume α2(u, v) and β2(u, v) as in (4.2). Then the multiple sums Ωm
n
(
〈u, v〉

)
admit the

rational generating function

Ωm
n
(
〈u, v〉

)
=

∑
k∈[0,n]m

ubk|v|ke
(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
= [yn]

1
1 − yLm(〈u, v〉) + (−1)my2ud

m
2 evb

m
2 c
,

as well as the Binet form expression

Ω2m
n

(
〈u, v〉

)
=
αmn+m

2 (u, v) − βmn+m
2 (u, v)

αm
2 (u, v) − βm

2 (u, v)
.

We remark that there is an interesting coincidence:

Ω2
n(〈u, v〉) = [yn]

1
1 − yL2(〈u, v〉) + y2uv

= [yn]
1

1 − y(1 + u + v) + y2uv
= [yn]P(y) = F2n(〈u, v〉).

For odd m, three initial formulae are shown below as examples:

Ω1
n(〈u, v〉) = [yn]

1
1 − y − y2u

,

Ω3
n(〈u, v〉) = [yn]

1
1 − y(1 + 2u + v) − y2u2v

,
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Ω5
n(〈u, v〉) = [yn]

1
1 − y(1 + 3u + 2v + 2u2 + 2uv + v2) − y2u3v2 .

When u = v = x, it is not hard to check that

α2(x, x) = α2
1(x) and β2(x, x) = β2

1(x),

as well as
Lm(〈x, x〉) = αm

1 (x) + βm
1 (x) = Lm(x).

From this, we recover the formulae in Theorem 3.

4.2.1. u = −v = x

In this case, the multiple sums Ωm
n (〈x,−x〉) become

Ωm
n (〈x,−x〉) =

∑
k∈[0,n]m

(−1)|kex|k|
(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
.

Writing explicitly

L2m(〈x,−x〉) = [ym]
2 − y

1 − y − x2y2 ,

L2m+1(〈x,−x〉) = [ym]
1 + xy

1 − y − x2y2 ;

we can show, from Theorem 7, the generating function.

Proposition 8 (Generating function).

Ωm
n (〈x,−x〉) = [yn]

1
1 − yLm(〈x,−x〉) + (−1)d

m
2 ey2xm

.

For even m, observe that

L2m(〈x,−x〉) =
[ym]

α2 − β2

{2α2 − 1
1 − yα2

−
2β2 − 1
1 − yβ2

}
= αm

2 + βm
2 ,

where

α2(x,−x) =
1 +
√

1 + 4x2

2
and β2(x,−x) =

1 −
√

1 + 4x2

2
.

We derive the following formulae of Binet form.

Proposition 9. Assume α2(x,−x) and β2(x,−x) as above. Then

Ω2m
n (〈x,−x〉) =

αmn+m
2 (x,−x) − βmn+m

2 (x,−x)
αm

2 (x,−x) − βm
2 (x,−x)

.

Instead, for odd m, three initial generating functions are displayed below:

Ω1
n(〈x,−x〉) = [yn]

1
1 − y − y2x

,

Ω3
n(〈x,−x〉) = [yn]

1
1 − y(1 + x) + y2x3 ,

Ω5
n(〈x,−x〉) = [yn]

1
1 − y(1 + x + x2) − y2x5 .
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4.2.2. u = −v = 1

In this case, Ωm
n (〈1,−1〉) becomes

Ωm
n (〈1,−1〉) =

∑
k∈[0,n]m

(−1)|ke
(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
= [yn]

1
1 − yLm(〈1,−1〉) + (−1)d

m
2 ey2

.

In view of

L2m(〈1,−1〉) = [ym]
2 − y

1 − y − y2 = Lm,

L2m+1(〈1,−1〉) = [ym]
1 + y

1 − y − y2 = Fm + Fm+1 = Fm+2,

α2(1,−1) = α and β2(1,−1) = β,

then from Propositions 8 and 9, the multiple sums Ωm
n (〈1,−1〉) are evaluated by the corollary below.

Corollary 10 (Chu [11]).

Ω2m
n (〈1,−1〉) = [yn]

1
1 − yLm + (−1)my2 =

αmn+m − βmn+m

αm − βm =
Fmn+m

Fm
,

Ω2m+1
n (〈1,−1〉) = [yn]

1
1 − yFm+2 − (−1)my2 =

b n
2 c∑

k=0

(−1)mk

(
n − k

k

)
Fn−2k

m+2 .

The first five formulae for odd m are displayed as examples:

Ω1
n(〈1,−1〉) = [yn]

1
1 − y − y2 = Fn+1,

Ω3
n(〈1,−1〉) = [yn]

1
1 − 2y + y2 = n + 1,

Ω5
n(〈1,−1〉) = [yn]

1
1 − 3y − y2 =

b n
2 c∑

k=0

(
n − k

k

)
3n−2k,

Ω7
n(〈1,−1〉) = [yn]

1
1 − 5y + y2 =

b n
2 c∑

k=0

(−1)k

(
n − k

k

)
5n−2k,

Ω9
n(〈1,−1〉) = [yn]

1
1 − 8y − y2 =

b n
2 c∑

k=0

(
n − k

k

)
8n−2k.

4.2.3. v = −u = 1

In this case, Ωm
n (〈−1, 1〉) becomes

Ωm
n (〈−1, 1〉) =

∑
k∈[0,n]m

(−1)bk|
(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
= [yn]

1
1 − yLm(〈−1, 1〉) + (−1)b

m
2 cy2

.
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In view of

L2m(〈−1, 1〉) = [ym]
2 − y

1 − y − y2 = Lm,

L2m+1(〈−1, 1〉) = [ym]
1 − y

1 − y − y2 = Fm+1 − Fm = Fm−1,

α2(−1, 1) = α and β2(−1, 1) = β,

then from Propositions 8 and 9, the multiple sums Ωm
n (〈−1, 1〉) are evaluated by the corollary below.

Corollary 11 (Chu [11]).

Ω2m
n (〈−1, 1〉) = [yn]

1
1 − yLm + (−1)my2 =

Fmn+m

Fm
,

Ω2m+1
n (〈−1, 1〉) = [yn]

1
1 − yFm−1 + (−1)my2 =

b n
2 c∑

k=0

(−1)mk+k

(
n − k

k

)
Fn−2k

m−1 .

The first five formulae for odd m are displayed as examples:

Ω1
n(〈−1, 1〉) = [yn]

1
1 − y + y2 = (−1)b

n+1
3 cχ(n .3 2),

Ω3
n(〈−1, 1〉) = [yn]

1
1 − y2 =

1 + (−1)n

2
,

Ω5
n(〈−1, 1〉) = [yn]

1
1 − y + y2 = (−1)b

n+1
3 cχ(n .3 2),

Ω7
n(〈−1, 1〉) = [yn]

1
1 − y − y2 = Fn+1,

Ω9
n(〈−1, 1〉) = [yn]

1
1 − 2y + y2 = n + 1.

4.2.4. u→ ω, v→ ω2 : ω = e2πi/3

In this case, Ωm
n (〈ω,ω2〉) becomes

Ωm
n (〈ω,ω2〉) =

∑
k∈[0,n]m

ω|k|+|ke
(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
= [yn]

1

1 − yLm(〈ω,ω2〉) + (−1)mωb
3m
2 cy2

.

Writing explicitly

L2m(〈ω,ω2〉) = [ym]
2

1 + y2 = 2(−1)b
m
2 cχ(m ≡2 0),

L2m+1(〈ω,ω2〉) = [ym]
1 + yω
1 + y2 = (−1)b

m
2 cχ(m ≡2 0) + ω(−1)b

m
2 cχ(m ≡2 1);

we evaluate the multiple sums Ωm
n (〈ω,ω2〉) as in the following corollary.
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Corollary 12 (Generating functions and explicit formulae).

Ω4m
n (〈ω,ω2〉) = [yn]

1
1 − yL4m(〈ω,ω2〉) + (−1)4mω6my2

= [yn]
1

1 − 2y(−1)m + y2 = (−1)mn(n + 1),

Ω4m+1
n (〈ω,ω2〉) = [yn]

1
1 − yL4m+1(〈ω,ω2〉) + (−1)4m+1ω6m+1y2

= [yn]
1

1 − y(−1)m − ωy2 = (−1)mn
b n

2 c∑
k=0

(
n − k

k

)
ωk,

Ω4m+2
n (〈ω,ω2〉) = [yn]

1
1 − yL4m+2(〈ω,ω2〉) + (−1)4m+2ω6m+3y2

= [yn]
1

1 + y2 = (−1)b
n
2 cχ(n ≡2 0),

Ω4m+3
n (〈ω,ω2〉) = [yn]

1
1 − yL4m+3(〈ω,ω2〉) + (−1)4m+3ω6m+4y2

= [yn]
1

1 + ωy(−1)m − ωy2 = (−1)mn
b n

2 c∑
k=0

(
n − k

k

)
ωn−k.

4.3. M = {〈u, v,w〉}

In this case,M = {〈u, v,w〉} is determined by

x3ı−2 → u for 1 ≤ ı ≤ bm+2
3 c,

x3 −1 → v for 1 ≤  ≤ bm+1
3 c,

x3κ → w for 1 ≤ κ ≤ bm
3 c.

When the elements ofM = {〈u, v,w〉} are arranged in a line, the first enumerative functionsFm(〈u, v,w〉)
read as

F0(〈u, v,w〉) = 1,
F1(〈u, v,w〉) = 1 + u,

F2(〈u, v,w〉) = 1 + u + v,

F3(〈u, v,w〉) = 1 + u + v + w + uw,

F4(〈u, v,w〉) = 1 + 2u + v + w + uw + u2 + uv,

F5(〈u, v,w〉) = 1 + 2u + 2v + w + u2 + v2 + 2uv + uw + vw + uvw,

F6(〈u, v,w〉) = 1 + 2u + 2v + 2w + u2 + v2 + w2

+ 2uv + 3uw + 2vw + 2uvw + uw2 + u2w.

By classifying the subsets of M = {〈u, v,w〉} with respect to the ultimate elements w, u and v, we can
derive the recurrence relations

F3n(〈u, v,w〉) = F3n−1(〈u, v,w〉) + wF3n−2(〈u, v,w〉),
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F3n+1(〈u, v,w〉) = F3n(〈u, v,w〉) + uF3n−1(〈u, v,w〉),
F3n+2(〈u, v,w〉) = F3n+1(〈u, v,w〉) + vF3n(〈u, v,w〉).

For the generating functions defined by

P(y) =

∞∑
n=0

ynF3n(〈u, v,w〉),

Q(y) =

∞∑
n=0

ynF3n+1(〈u, v,w〉),

R(y) =

∞∑
n=0

ynF3n+2(〈u, v,w〉),

they can be manipulated as follows:

P(y) = 1 + yR(y) + wyQ(y),
Q(y) = u + P(y) + uyR(y),
R(y) = Q(y) + vP(y).

Resolving this linear system gives explicit generating functions:

P(y) =
1 + uwy

1 − (1 + u + v + w)y − uvwy2 ,

Q(y) =
1 + u

1 − (1 + u + v + w)y − uvwy2 ,

R(y) =
1 + u + v + uvwy

1 − (1 + u + v + w)y − uvwy2 .

All three P, Q and R can be decomposed into partial fractions:

P(y) =
1 + uwy

(1 − α3y)(1 − β3y)
=

1
α3 − β3

{
α3 + uw
1 − α3y

−
β3 + uw
1 − β3y

}
,

Q(y) =
1 + u

(1 − α3y)(1 − β3y)
=

1 + u
α3 − β3

{
α3

1 − α3y
−

β3

1 − β3y

}
,

R(y) =
1 + u + v + uvwy
(1 − α3y)(1 − β3y)

=
1

α3 − β3

{
(α3 − w)α3

1 − α3y
−

(β3 − w)β3

1 − β3y

}
;

where

α3 := α3(u, v,w) =
1
2

{
1 + u + v + w +

√
(1 + u + v + w)2 + 4uvw

}
,

β3 := β3(u, v,w) =
1
2

{
1 + u + v + w −

√
(1 + u + v + w)2 + 4uvw

}
;

with
α3 + β3 = 1 + u + v + w and α3β3 = −uvw.
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Therefore, we deduce the following Binet form expressions:

F3n(〈u, v,w〉) = [yn]P(y) =
αn+1

3 − βn+1
3

α3 − β3
+

uw(αn
3 − β

n
3)

α3 − β3
,

F3n+1(〈u, v,w〉) = [yn]Q(y) =
1 + u
α3 − β3

(αn+1
3 − βn+1

3 ),

F3n+2(〈u, v,w〉) = [yn]R(y) =
(α − w)αn+1

3 − (β − w)βn+1
3

α3 − β3
.

When the elements ofM = {〈u, v,w〉} are arranged in a circle, the enumerative functionLm(〈u, v,w〉)
can also be determined. Its initial functions read as

L0(〈u, v,w〉) = 2,
L1(〈u, v,w〉) = 1,
L2(〈u, v,w〉) = 1 + u + v,

L3(〈u, v,w〉) = 1 + u + v + w,

L4(〈u, v,w〉) = 1 + 2u + v + w + uv + uw,

L5(〈u, v,w〉) = 1 + 2u + 2v + w + u2 + v2 + uv + uw + vw,

L6(〈u, v,w〉) = 1 + 2u + 2v + 2w + u2 + v2 + w2 + 2uv + 2uw + 2vw + 2uvw.

Recalling (2.2), we can write

L3n(〈u, v,w〉) = F3n−1(〈u, v,w〉) + wF3n−3(u→ v, v→ w,w→ u),
L3n+1(〈u, v,w〉) = F3n(〈u, v,w〉) + uF3n−2(u→ v, v→ w,w→ u),
L3n+2(〈u, v,w〉) = F3n+1(〈u, v,w〉) + vF3n−1(u→ v, v→ w,w→ u).

Then the generating functions can be determined by

P̃(y) =

∞∑
n=0

ynL3n = 2 + yR(y) + ywP(y|u→ v, v→ w,w→ u)

=
2 − (1 + u + v + w)y

1 − (1 + u + v + w)y − uvwy2 ,

Q̃(y) =

∞∑
n=0

ynL3n+1 = P(y) + yuQ(y|u→ v, v→ w,w→ u)

=
1 + (1 + v + w)uy

1 − (1 + u + v + w)y − uvwy2 ,

R̃(y) =

∞∑
n=0

ynL3n+2 = v + Q(y) + yvR(y|u→ v, v→ w,w→ u)

=
1 + u + v − uvy

1 − (1 + u + v + w)y − uvwy2 .

By decomposing P̃, Q̃, and R̃ into partial fractions, we derive the Binet form formulae:
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L3n(〈u, v,w〉) = [yn]P̃(y) =
[yn]

α3 − β3

{2α3 − (1 + u + v + w)
1 − yα3

−
2β3 − (1 + u + v + w)

1 − yβ3

}
=

[yn]
α3 − β3

{α3 − β3

1 − yα3
−
β3 − α3

1 − yβ3

}
= αn

3 + βn
3,

L3n+1(〈u, v,w〉) = [yn]Q̃(y) =
[yn]

α3 − β3

{α3 + u(1 + v + w)
1 − yα3

−
β3 + u(1 + v + w)

1 − yβ3

}
=
αn+1

3 − βn+1
3

α3 − β3
+

u(1 + v + w)
α3 − β3

(αn
3 − β

n
3),

L3n+2(〈u, v,w〉) = [yn]R̃(y) =
[yn]

α3 − β3

{α3(1 + u + v) − uv
1 − yα3

−
β3(1 + u + v) − uv

1 − yβ3

}
=

1 + u + v
α3 − β3

(αn+1
3 − βn+1

3 ) − uv
αn

3 − β
n
3

α3 − β3
.

Consequently, the multiple sums Ωm
n (〈u, v,w〉) can be evaluated as below.

Theorem 13. Defining for simplicity

λ(k) :=
bm+2

3 c∑
ı=1

k3ı−2, µ(k) :=
bm+1

3 c∑
=1

k3 −1, ν(k) :=
bm

3 c∑
κ=1

k3κ−2,

we have the following generating function:

Ωm
n (〈u, v,w〉) =

∑
k∈[0,n]m

uλ(k)vµ(k)wν(k)
(
n − k1

km

) m−1∏
i=1

(
n − ki+1

ki

)
= [yn]

1

1 − yLm(〈u, v,w〉) + (−1)my2ub
m+2

3 cvb
m+1

3 cwb
m
3 c
.

In particular, there is the Binet form expression

Ω3m
n (〈u, v,w〉) = [yn]

1
1 − y(αm

3 + βm
3 ) + y2αm

3 β
m
3

=
αmn+m

3 (u, v,w) − βmn+m
3 (u, v,w)

αm
3 (u, v,w) − βm

3 (u, v,w)
.

There is an interesting coincidence:

(1 + u)Ω3
n(〈u, v,w〉) = [yn]

1 + u
1 − yL3(〈u, v,w〉) − y2uvw

= [yn]
1 + u

1 − y(1 + u + v + w) − y2uvw
= [yn]Q(y) = F3n+1(〈u, v,w〉).

By specifying u, v,w with concrete values, we deduce the following remarkable formulae.
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4.3.1. u = 1, v = ω & w = ω2 : ω = e2πi/3

It is not hard to determine

L3m(〈1, ω, ω2〉) = [ym]
2 − y

1 − y − y2 = Lm,

L3m+1(〈1, ω, ω2〉) = [ym]
1

1 − y − y2 = Fm+1.

Then we have the following summation formulae.

Corollary 14.

Ω3m
n (〈1, ω, ω2〉) = [yn]

1
1 − yLm + (−1)my2 =

b n
2 c∑

k=0

(−1)mk+k

(
n − k

k

)
Ln−2k

m ,

Ω3m+1
n (〈1, ω, ω2〉) = [yn]

1
1 − yFm+1 − (−1)my2 =

b n
2 c∑

k=0

(−1)mk

(
n − k

k

)
Fn−2k

m+1 .

4.3.2. u = ω, v = ω2 & w = 1 : ω = e2πi/3

It is routine to check that

L3m(〈ω,ω2, 1〉) = [ym]
2 − y

1 − y − y2 = Lm,

L3m+2(〈ω,ω2, 1〉) = [ym]
−y

1 − y − y2 = −Fm.

From them, we deduce the two summation formulae below.

Corollary 15.

Ω3m
n (〈ω,ω2, 1〉) = [yn]

1
1 − yLm + (−1)my2 =

b n
2 c∑

k=0

(−1)mk+k

(
n − k

k

)
Ln−2k

m ,

Ω3m+2
n (〈ω,ω2, 1〉) = [yn]

1
1 + yFm + (−1)my2 =

b n
2 c∑

k=0

(−1)n+mk+k

(
n − k

k

)
Fn−2k

m .

We remark that there is also a common Binet form expression

Ω3m
n (〈1, ω, ω2〉) = Ω3m

n (〈ω,ω2, 1〉) =
αmn+n − βmn+n

αm − βm .

4.3.3. u = i, v = i2,w = i3 : α3, β3 = ±i

It is not difficult to compute

L3m(〈i, i2, i3〉) = [ym]P̃(y) = [ym]
2

1 + y2 = 2(−1)b
m
2 cχ(m ≡2 0),
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L3m+1(〈i, i2, i3〉) = [ym]Q̃(y) = [ym]
1 + y
1 + y2 = (−1)b

m
2 c,

L3m+2(〈i, i2, i3〉) = [ym]R̃(y) = [ym]
i(1 + y)
1 + y2 = (−1)b

m
2 ci.

Thus, we deduce six interesting summation formulae, suggesting that the related sums possess the
periodicity with respect to m of the same parity.

Corollary 16.

Ω6m
n (〈i, i2, i3〉) = [yn]

1
1 − 2(−1)my + y2 = (−1)mn(n + 1),

Ω6m+3
n (〈i, i2, i3〉) = [yn]

1
1 + y2 = (−1)b

n
2 cχ(n ≡2 0),

Ω6m+1
n (〈i, i2, i3〉) = [yn]

1
1 − (−1)my − iy2 = (−1)mn

b n
2 c∑

k=0

(
n − k

k

)
ik,

Ω6m+4
n (〈i, i2, i3〉) = [yn]

1
1 − (−1)my − iy2 = (−1)mn

b n
2 c∑

k=0

(
n − k

k

)
ik,

Ω6m+2
n (〈i, i2, i3〉) = [yn]

1
1 − (−1)miy − iy2 = (−1)mn

b n
2 c∑

k=0

(
n − k

k

)
in−k,

Ω6m+5
n (〈i, i2, i3〉) = [yn]

1
1 − (−1)miy − iy2 = (−1)mn

b n
2 c∑

k=0

(
n − k

k

)
in−k.

5. Conclusions and further problems

By introducing the enumerative functions for the subsets (without consecutive elements) of the
given linear and circular set M, we examined Carlitz’ multiple sums weighted by characterizing
monomials. The rational generating function is established (Theorem 2) which provides a deep
generalization of Carlitz’ classical result. During the course of studying related applications, we
came across the following remarkable phenomena, where the underlying relations hidden behind these
coincidences have not been well-understood till now.

• Observation 1. According to Corollaries 10 and 11, the following two equalities hold, which
simply interchange two cyclic parameters {1,−1}:

Ω2m
n (〈1,−1〉) = Ω2m

n (〈−1, 1〉) =
Fmn+m

Fm
,

Ω2m+1
n (〈1,−1〉) = Ω2m+7

n (〈−1, 1〉) =

b n
2 c∑

k=0

(−1)mk

(
n − k

k

)
Fn−2k

m+2 .
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• Observation 2. By comparing the formulae stated in Corollaries 14 and 15, we found two identities
that permute three cyclic parameters {1, ω, ω2}:

Ω3m
n (〈1, ω, ω2〉) = Ω3m

n (〈ω,ω2, 1〉) =

b n
2 c∑

k=0

(−1)mk+k

(
n − k

k

)
Ln−2k

m ,

Ω3m+1
n (〈1, ω, ω2〉) = (−1)nΩ3m+5

n (〈ω,ω2, 1〉) =

b n
2 c∑

k=0

(−1)mk

(
n − k

k

)
Fn−2k

m+1 .

• Observation 3. In view of Corollaries 12 and 16, we deduce the following two surprising equalities,
which relate expressions involving the third roots of unity {ω,ω2} to those involving the fourth roots
{i, i2, i3}:

Ω4m
n (〈ω,ω2〉) = Ω6m

n (〈i, i2, i3〉) = (−1)mn(n + 1),

Ω4m+2
n (〈ω,ω2〉) = Ω6m+3

n (〈i, i2, i3〉) = (−1)b
n
2 cχ(n ≡2 0).

It is noteworthy that the values for the two multiple sums on the second line are independent upon
m, while those on the first line depend on the parity of m only.

• Observation 4. Finally, Corollary 16 immediately implies two further equalities with their resulting
expressions being independent upon m:

(−1)mnΩ6m+1
n (〈i, i2, i3〉) = (−1)mnΩ6m+4

n (〈i, i2, i3〉) =

b n
2 c∑

k=0

(
n − k

k

)
ik,

(−1)mnΩ6m+2
n (〈i, i2, i3〉) = (−1)mnΩ6m+5

n (〈i, i2, i3〉) =

b n
2 c∑

k=0

(
n − k

k

)
in−k.

Among these eight equalities, the first one can easily be justified by reversing the order of multiple
sums. However, it is difficult to show the remaining seven identities by directly manipulating the sums
or through combinatorial construction.

For Carlitz’ original identity, there is a combinatorial proof by Benjamin and Rouse [4] through the
domino tiling and an inductive proof. It would be interesting to construct similar proofs for the four
pairs of just-mentioned identities.
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