Clifford analysis is a fundamental framework for extending complex function theory to high-dimensional spaces, where $ k $-monogenic functions (high-order generalizations of monogenic functions) play a pivotal role in geometric function theory and partial differential equations. However, there is a paucity of research findings regarding the Möbius transformations of $ k $-monogenic functions for arbitrary $ k $. In this paper, we first derived that the composite function constructed from a $ k $-monogenic function and a Möbius transformation remains $ k $-monogenic when $ k = 2, \, 3, \, 4 $, and was generalized to the general case. Then, as applications, we proved the Schwarz-Pick-type lemma for harmonic functions using a new method, and we gave a version of the Schwarz-Pick-type lemma for inframonogenic functions. This work fills the gap in the transformation theory of $ k $-monogenic functions, enriches the family of Schwarz-Pick-type lemmas in Clifford analysis, and provides theoretical tools to solve research related to high-dimensional geometric function theory.
Citation: Xiaotong Liang, Chunxue Duan, Zihan Su, Yonghong Xie. $ k $-monogenic functions and Möbius transformations[J]. AIMS Mathematics, 2025, 10(12): 29132-29150. doi: 10.3934/math.20251281
Clifford analysis is a fundamental framework for extending complex function theory to high-dimensional spaces, where $ k $-monogenic functions (high-order generalizations of monogenic functions) play a pivotal role in geometric function theory and partial differential equations. However, there is a paucity of research findings regarding the Möbius transformations of $ k $-monogenic functions for arbitrary $ k $. In this paper, we first derived that the composite function constructed from a $ k $-monogenic function and a Möbius transformation remains $ k $-monogenic when $ k = 2, \, 3, \, 4 $, and was generalized to the general case. Then, as applications, we proved the Schwarz-Pick-type lemma for harmonic functions using a new method, and we gave a version of the Schwarz-Pick-type lemma for inframonogenic functions. This work fills the gap in the transformation theory of $ k $-monogenic functions, enriches the family of Schwarz-Pick-type lemmas in Clifford analysis, and provides theoretical tools to solve research related to high-dimensional geometric function theory.
| [1] | J. Shi, T. Liu, Complex function (China), Hefei: University of Science and Technology of China Press, 1998. |
| [2] | L. Ahlfors, Möbius transformations and Clifford numbers, In: Differential geometry and complex analysis, Berlin: Springer, 1985, 65–73. https://doi.org/10.1007/978-3-642-69828-6_5 |
| [3] |
S. L. Eriksson, H. Leutwiler, Hypermonogenic functions and Möbius transformations, AACA, 11 (2001), 67–76. https://doi.org/10.1007/BF03219123 doi: 10.1007/BF03219123
|
| [4] |
Y. Xie, X. Zhang, X. Tang, Some properties of $k$-hypergenic functions in Clifford analysis, Complex Var. Elliptic, 61 (2016), 1614–1626. https://doi.org/10.1080/17476933.2016.1193492 doi: 10.1080/17476933.2016.1193492
|
| [5] |
Z. Zhang, The Schwarz lemma for functions with values in $C(V_{n, 0})$, J. Math. Anal. Appl., 443 (2016), 1130–1141. https://doi.org/10.1016/j.jmaa.2016.05.069 doi: 10.1016/j.jmaa.2016.05.069
|
| [6] |
H. Wang, X. Bian, H. Liu, Möbius transformation and a version of Schwarz lemma in octonionic analysis, Math. Method. Appl. Sci., 44 (2021), 27–42. https://doi.org/10.1002/mma.6706 doi: 10.1002/mma.6706
|
| [7] | F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Boston: Pitman Books Limited, 1982. |
| [8] |
R. Blaya, J. Reyes, A. García, T. García, A Cauchy integral formula for infrapolymonogenic functions in Clifford analysis, AACA, 30 (2020), 21. https://doi.org/10.1007/s00006-020-1049-x doi: 10.1007/s00006-020-1049-x
|
| [9] |
Z. Zhang, The Schwarz lemma in Clifford analysis, Proc. Amer. Math. Soc., 142 (2014), 1237–1248. https://doi.org/10.1090/S0002-9939-2014-11854-5 doi: 10.1090/S0002-9939-2014-11854-5
|
| [10] |
Z. Xu, T. Yu, Q. Huo, Schwarz lemma for harmonic functions in the unit ball, Proc. Edinburgh Math. Soc., 68 (2025), 616–633. https://doi.org/10.1017/S0013091524000798 doi: 10.1017/S0013091524000798
|
| [11] |
A. García, T. García, R. Blaya, Comparing harmonic and inframonogenic functions in Clifford analysis, Mediterr. J. Math., 19 (2022), 33. https://doi.org/10.1007/s00009-021-01957-5 doi: 10.1007/s00009-021-01957-5
|