Research article Topical Sections

Model-independent multi-target tracking of networked marine surface vehicles with predefined-time convergence performance

  • Published: 11 December 2025
  • MSC : 34D20, 93B52, 93C10, 93C85

  • This paper mainly focuses on the model-independent multi-target tracking problem of the networked marine surface vehicles (NMSVs) while requiring that the settling time is limited to a predefined one. For addressing such a complex problem, a hierarchical control framework is employed, consisting of a predefined-time distributed estimator (PDE) algorithm and a model-independent predefined-time local tracking (MPLT) algorithm. To be specific, the PDE algorithm aims to estimate the virtual leaders states in a distributed fashion within a predefined time, so that each vehicle obtains its corresponding leaders' information. Based on these estimations, the MPLT algorithm is designed to achieve predefined-time multi-target tracking of the NMSVs. By conducting a rigorous Lyapunov stability analysis, the sufficient conditions guaranteeing the predefined-time stability of the closed-loop system are derived. Subsequently, simulation studies are presented to demonstrate the feasibility and superiority of the proposed approach.

    Citation: Xionghua Liu, Yang Zhang, Kai-Lun Huang, Jing-Zhe Xu, Chang-Duo Liang. Model-independent multi-target tracking of networked marine surface vehicles with predefined-time convergence performance[J]. AIMS Mathematics, 2025, 10(12): 29107-29131. doi: 10.3934/math.20251280

    Related Papers:

  • This paper mainly focuses on the model-independent multi-target tracking problem of the networked marine surface vehicles (NMSVs) while requiring that the settling time is limited to a predefined one. For addressing such a complex problem, a hierarchical control framework is employed, consisting of a predefined-time distributed estimator (PDE) algorithm and a model-independent predefined-time local tracking (MPLT) algorithm. To be specific, the PDE algorithm aims to estimate the virtual leaders states in a distributed fashion within a predefined time, so that each vehicle obtains its corresponding leaders' information. Based on these estimations, the MPLT algorithm is designed to achieve predefined-time multi-target tracking of the NMSVs. By conducting a rigorous Lyapunov stability analysis, the sufficient conditions guaranteeing the predefined-time stability of the closed-loop system are derived. Subsequently, simulation studies are presented to demonstrate the feasibility and superiority of the proposed approach.



    加载中


    [1] Y. Qiao, J. Yin, W. Wang, F. Duarte, J. Yang, C. Ratti, Survey of deep learning for autonomous surface vehicles in marine environments, IEEE Trans. Intell. Transp. Syst., 24 (2023), 3678–3701. https://doi.org/10.1109/TITS.2023.3235911 doi: 10.1109/TITS.2023.3235911
    [2] R. Pellegrini, S. Ficini, A. Odetti, A. Serani, M. Caccia, M. Diez, Multi-fidelity hydrodynamic analysis of an autonomous surface vehicle at surveying speed in deep water subject to variable payload, Ocean Eng., 271 (2023), 113529. https://doi.org/10.1016/j.oceaneng.2022.113529 doi: 10.1016/j.oceaneng.2022.113529
    [3] J. P. Martinez-Esteso, F. J. Castellanos, A. Rosello, J. Calvo-Zaragoza, A. J. Gallego, On the use of synthetic data for body detection in maritime search and rescue operations, Eng. Appl. Artif. Intell., 139 (2025), 109586. https://doi.org/10.1016/j.engappai.2024.109586 doi: 10.1016/j.engappai.2024.109586
    [4] J. Li, Y. Zhang, H. W. J. Lee, Y. Wang, Fuzzy tracking control of singular multi-agent systems under switching topology, AIMS Math., 9 (2024), 29718–29735. https://doi.org/10.3934/math.20241440 doi: 10.3934/math.20241440
    [5] X. Gong, Z. Zhang, Y. Cui, S. Liang, Observer-based secure consensus tracking of positive multi-agent systems under periodic denial-of-service attacks, J. Franklin Inst., 361 (2024), 106716. https://doi.org/10.1016/j.jfranklin.2024.106716 doi: 10.1016/j.jfranklin.2024.106716
    [6] X. Wu, S. Ding, H. Wang, N. Xu, X. Zhao, W. Wang, Dual-channel event-triggered prescribed performance adaptive fuzzy time-varying formation tracking control for nonlinear multi-agent systems, Fuzzy Sets Syst., 498 (2025), 109140. https://doi.org/10.1016/j.fss.2024.109140 doi: 10.1016/j.fss.2024.109140
    [7] Z. Feng, G. Hu, X. Dong, J. Lu, Discrete-time adaptive distributed output observer for time-varying formation tracking of heterogeneous multi-agent systems, Automatica, 160 (2024), 111400. https://doi.org/10.1016/j.automatica.2023.111400 doi: 10.1016/j.automatica.2023.111400
    [8] L. Shi, Z. Ma, S. Yan, T. Ao, Flocking dynamics for cooperation-antagonism multi-agent networks subject to limited communication resources, IEEE Trans. Circuits Syst. Ⅰ, 71 (2024), 1396–1405. https://doi.org/10.1109/TCSI.2023.3347073 doi: 10.1109/TCSI.2023.3347073
    [9] O. Artime, M. Grassia, M. D. Domenico, J. P. Gleeson, H. A. Makse, G. Mangioni, et al., Robustness and resilience of complex networks, Nat. Rev. Phys., 6 (2024), 114–131.
    [10] Y. Li, W. Du, P. Yang, T. Wu, J. Zhang, D. Wu, et al., A satisficing conflict resolution approach for multiple UAVs, IEEE Int. Things J., 6 (2019), 1866–1878. https://doi.org/10.1109/JIOT.2018.2885147 doi: 10.1109/JIOT.2018.2885147
    [11] D. Zeng, B. Zeng, Y. Liu, J. Zhao, C. Cai, Practical prescribed-time trajectory tracking control for marine surface vehicles, IEEE Trans. Circuits and Syst. Ⅱ, 71 (2024), 4899–4903. https://doi.org/10.1109/TCSII.2024.3410466 doi: 10.1109/TCSII.2024.3410466
    [12] J. Ning, Y. Wang, E. Wang, L. Liu, C. P. Chen, S. Tong, Fuzzy trajectory tracking control of under-actuated unmanned surface vehicles with ocean current and input quantization, IEEE Trans. Syst. Man Cybern., 55 (2025), 63–72. https://doi.org/10.1109/TSMC.2024.3460370 doi: 10.1109/TSMC.2024.3460370
    [13] X. Hu, Y. Xiong, Z. Zhang, C. Li, Consensus of a new multi-agent system via multi-task, multi-control mechanism and multi-consensus strategy, Neurocomputing, 584 (2024), 127586. https://doi.org/10.1016/j.neucom.2024.127586 doi: 10.1016/j.neucom.2024.127586
    [14] F. Cacace, M. Mattioni, S. Monaco, D. Normand-Cyrot, Consensus and multi-consensus for discrete-time LTI systems, Automatica, 166 (2024), 111718. https://doi.org/10.1016/j.automatica.2024.111718 doi: 10.1016/j.automatica.2024.111718
    [15] Y. Huang, X. Xiang, C. Yan, H. Xu, T. Hu, H. Zhou, Self-organized multitarget pursuit in multi-unmanned aerial vehicle systems via hierarchical probabilistic graphical models, Adv. Intell. Syst., 7 (2025), 2401110. https://doi.org/10.1002/aisy.202401110 doi: 10.1002/aisy.202401110
    [16] H. V. Nguyen, B. N. Vo, B. T. Vo, H. Rezatofighi, D. C. Ranasinghe, Multi-objective multi-agent planning for discovering and tracking multiple mobile objects, IEEE Trans. Signal Process., 72 (2024), 3669–3685. https://doi.org/10.1109/TSP.2024.3423755 doi: 10.1109/TSP.2024.3423755
    [17] J. Li, T. Han, B. Xiao, Q. Yang, H. Yan, Observer-based time-varying group formation tracking for one-sided Lipschitz nonlinear second-order multi-agent systems, Trans. Inst. Meas. Control, 45 (2023), 3011–3019. https://doi.org/10.1177/01423312231162896 doi: 10.1177/01423312231162896
    [18] Y. Wang, Z. Wang, H. Zhang, H. Yan, Group formation tracking of heterogeneous multi-agent systems using reinforcement learning, IEEE Trans. Control Network Syst., 12 (2025), 497–509. https://doi.org/10.1109/TCNS.2024.3487653 doi: 10.1109/TCNS.2024.3487653
    [19] K. L. Huang, C. D. Liang, X. Zhan, T. Han, L. Yan, M. F. Ge, Bipartite formation-containment of networked marine surface vehicles via hierarchical finite-time fuzzy control scheme, IEEE Trans. Veh. Technol., 2025. https://doi.org/10.1109/TVT.2025.3610078
    [20] Y. Zhu, J. Zhang, L. Chen, X. Chen, C. Y. Su, Learning observer based fault estimation for a class of unmanned marine vehicles: The switched system approach, IEEE Trans. Autom. Sci. Eng., 21 (2024), 5665–5676. https://doi.org/10.1109/TASE.2023.3314757 doi: 10.1109/TASE.2023.3314757
    [21] J. Qin, J. Du, J. Li, Adaptive finite-time trajectory tracking event-triggered control scheme for underactuated surface vessels subject to input saturation, IEEE Trans. Intell. Transp. Syst., 24 (2023), 8809–8819. https://doi.org/10.1109/TITS.2023.3256094 doi: 10.1109/TITS.2023.3256094
    [22] J. Ning, Y. Wang, C. P. Chen, T. Li, Neural network observer based adaptive trajectory tracking control strategy of unmanned surface vehicle with event-triggered mechanisms and signal quantization, IEEE Trans. Emerging Top. Comput. Intell., 9 (2025), 3136–3146. https://doi.org/10.1109/TETCI.2025.3526333 doi: 10.1109/TETCI.2025.3526333
    [23] Z. Peng, Y. Jiang, L. Liu, Y. Shi, Path-guided model-free flocking control of unmanned surface vehicles based on concurrent learning extended state observers, IEEE Trans. Syst. Man Cybern., 53 (2023), 4729–4739. https://doi.org/10.1109/TSMC.2023.3256371 doi: 10.1109/TSMC.2023.3256371
    [24] H. Y. Park, J. H. Kim, Model-free control approach to uncertain Euler-Lagrange equations with a Lyapunov-based $L_\infty$-gain analysis, AIMS Math., 8 (2023), 17666–17686. https://doi.org/10.3934/math.2023902 doi: 10.3934/math.2023902
    [25] E. A. Basso, H. M. Schmidt-Didlaukies, K. Y. Pettersen, A. J. Sorensen, Global asymptotic tracking for marine vehicles using adaptive hybrid feedback, Trans. Automa. Control, 68 (2022), 1584–1599. https://doi.org/10.1109/TAC.2022.3161372 doi: 10.1109/TAC.2022.3161372
    [26] D. Zhang, H. Chen, Q. Lu, C. Deng, G. Feng, Finite-time cooperative output regulation of heterogeneous nonlinear multi-agent systems under switching DoS attacks, Automatica, 173 (2025), 112062. https://doi.org/10.1016/j.automatica.2024.112062 doi: 10.1016/j.automatica.2024.112062
    [27] J. Zhang, S. Yu, Y. Yan, Y. Zhao, Fixed-time sliding mode trajectory tracking control for marine surface vessels with input saturation and prescribed performance constraints, Nonlinear Dyn., 112 (2024), 17169–17181. https://doi.org/10.1007/s11071-024-09918-9 doi: 10.1007/s11071-024-09918-9
    [28] X. Yue, H. Zhang, J. Ma, Predefined-time safe cooperative control for multiagent systems with privacy preservation and unknown disturbances, IEEE Trans. Cybern., 2025. https://doi.org/10.1109/TCYB.2025.3611950
    [29] H. Wang, Q. Liu, J. H. Park, Predefined-time fuzzy adaptive optimal secure consensus control for multi-agent systems with unknown follower dynamics, IEEE Trans. Fuzzy Syst., 33 (2025), 2122–2135. https://doi.org/10.1109/TFUZZ.2025.3552050 doi: 10.1109/TFUZZ.2025.3552050
    [30] J. X. Zhang, T. Chai, Singularity-free continuous adaptive control of uncertain underactuated surface vessels with prescribed performance, IEEE Trans. Syst. Man Cybern., 52 (2022), 5646–5655. https://doi.org/10.1109/TSMC.2021.3129798 doi: 10.1109/TSMC.2021.3129798
    [31] J. X. Zhang, T. Yang, T. Chai, Neural network control of underactuated surface vehicles with prescribed trajectory tracking performance, IEEE Trans. Neural Networks Learn. Syst., 35 (2024), 8026–8039. https://doi.org/10.1109/TNNLS.2022.3223666 doi: 10.1109/TNNLS.2022.3223666
    [32] C. D. Liang, M. F. Ge, Z. W. Liu, G. Ling, X. W. Zhao, A novel sliding surface design for predefined-time stabilization of Euler-Lagrange systems, Nonlinear Dyn., 106 (2021), 445–458. https://doi.org/10.1007/s11071-021-06826-0 doi: 10.1007/s11071-021-06826-0
    [33] C. D. Liang, M. F. Ge, Z. W. Liu, L. Wang, J. H. Park, Model-free cluster formation control of NMSVs with bounded inputs: a predefined-time estimator-based approach, IEEE Trans. Intell. Veh., 8 (2022), 1731–1741. https://doi.org/10.1109/TIV.2022.3182992 doi: 10.1109/TIV.2022.3182992
    [34] G. Chen, Z. Y. Li, Distributed fixed-time optimization control for multi-agent systems with set constraints, ACTA Automa. Sin., 48 (2022), 2254–2264. https://doi.org/10.16383/j.aas.c190416 doi: 10.16383/j.aas.c190416
    [35] J. A. Moreno, M. Osorio, Strict Lyapunov functions for the super super-twisting algorithm, IEEE Trans. Automa. Control, 57 (2012), 1035–1040. https://doi.org/10.1109/TAC.2012.2186179 doi: 10.1109/TAC.2012.2186179
    [36] C. D. Liang, M. F. Ge, Z. W. Liu, G. Ling, F. Liu, Predefined-time formation tracking control of networked marine surface vehicles, Control Eng. Pract., 107 (2021), 104682. https://doi.org/10.1016/j.conengprac.2020.104682 doi: 10.1016/j.conengprac.2020.104682
    [37] C. D. Liang, K. L. Huang, X. S. Zhan, T. Han, Q. Chen, M. F. Ge, Fault-tolerant formation of interlinked marine surface vehicles based on fixed-time distributed optimization, IEEE Int. Things J., in press. https://doi.org/10.1109/JIOT.2025.3631953
    [38] Q. Chen, M. F. Ge, C. D. Liang, Z. W. Gu, J. Liu, Distributed optimization of networked marine surface vehicles: a fixed-time estimator-based approach, Ocean Eng., 284 (2023), 115275. https://doi.org/10.1016/j.oceaneng.2023.115275 doi: 10.1016/j.oceaneng.2023.115275
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(297) PDF downloads(16) Cited by(0)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog