Statistical models involving bivariate data are among the most important areas of statistical theory. Concomitants of $ k $-record values (CKR) are key topics in statistical theory that have not been extensively studied by researchers. In this paper, we derived the marginal distribution of CKR based on the Huang-Kotz Farlie-Gumbel-Morgenstern type Ⅱ (HK–FGM2) family of bivariate distributions. Additionally, we obtained an expression for past extropy associated with the CKR within the HK–FGM2 family. Three related uncertainty measures (the cumulative residual extropy (CREX), cumulative extropy (CEX), and the negative cumulative extropy (NCEX)), were formulated for CKR based on this family. Furthermore, estimation techniques for CREX and NCEX were explored by employing empirical estimators tailored to CKR using the HK–FGM2 family. Finally, we analyzed a computer series system dataset for illustration purposes, providing significant insights into the behavior of CKR uncertainty measures.
Citation: G. M. Mansour, H. M. Barakat, M. A. Alawady, M. A. Abd Elgawad, H. N. Alqifari, T. S. Taher, A. H. Syam. Uncertainty measures for concomitants of upper $ k $-record values based on the Huang-Kotz-Morgenstern type Ⅱ family[J]. AIMS Mathematics, 2025, 10(12): 29071-29106. doi: 10.3934/math.20251279
Statistical models involving bivariate data are among the most important areas of statistical theory. Concomitants of $ k $-record values (CKR) are key topics in statistical theory that have not been extensively studied by researchers. In this paper, we derived the marginal distribution of CKR based on the Huang-Kotz Farlie-Gumbel-Morgenstern type Ⅱ (HK–FGM2) family of bivariate distributions. Additionally, we obtained an expression for past extropy associated with the CKR within the HK–FGM2 family. Three related uncertainty measures (the cumulative residual extropy (CREX), cumulative extropy (CEX), and the negative cumulative extropy (NCEX)), were formulated for CKR based on this family. Furthermore, estimation techniques for CREX and NCEX were explored by employing empirical estimators tailored to CKR using the HK–FGM2 family. Finally, we analyzed a computer series system dataset for illustration purposes, providing significant insights into the behavior of CKR uncertainty measures.
| [1] |
F. Lad, G. Sanfilippo, G. Agro, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
|
| [2] |
S. M. A. Jahanshahi, H. Zarei, A. H. Khammar, On cumulative residual extropy, Probab. Eng. Inform. Sc., 34 (2020), 605–625. https://doi.org/10.1017/S0269964819000196 doi: 10.1017/S0269964819000196
|
| [3] |
V. Kumar, H. C. Taneja, Dynamic cumulative residual and past inaccuracy measures, J. Stat. Theory Appl., 14 (2015), 399–412. https://doi.org/10.2991/JSTA.2015.14.4.5 doi: 10.2991/JSTA.2015.14.4.5
|
| [4] |
S. Tahmasebi, A. Toomaj, On negative cumulative extropy with applications, Commun. Stat.-Theor. M., 51 (2022), 5025–5047 https://doi.org/10.1080/03610926.2020.1831541 doi: 10.1080/03610926.2020.1831541
|
| [5] |
A. S. Krishnan, S. M. Sunoj, N. U. Nair, Some reliability properties of extropy for residual and past lifetime random variables, J. Korean Stat. Soc., 49 (2020), 457-474. https://doi.org/10.1007/s42952-019-00023-x doi: 10.1007/s42952-019-00023-x
|
| [6] | W. Dziubdziela, W. Kopociński, Limiting properties of the k-th record values, Appl. Math., 15 (1976), 187–190. |
| [7] |
G. Hofmann, N. Balakrishnan, Fisher information in k-records, Ann. Inst. Stat. Math., 56 (2004), 383–396. https://doi.org/10.1007/BF02530552 doi: 10.1007/BF02530552
|
| [8] |
M. Madadi, M. Tata, Shannon information in k-records, Commun. Stat.-Theor. M., 43 (2014), 3286–3301. https://doi.org/10.1080/03610926.2012.697965 doi: 10.1080/03610926.2012.697965
|
| [9] |
S. Tahmasebi, M. Eskandarzadeh, Generalized cumulative entropy based on $k$th lower record values, Stat. Probabil. Lett., 126 (2017), 164–172. https://doi.org/10.1016/j.spl.2017.02.036 doi: 10.1016/j.spl.2017.02.036
|
| [10] |
R. Goel, H. C. Taneja, V. Kumar, Measure of entropy for past lifetime and k-record statistics, Physica A, 503 (2018), 623–631. https://doi.org/10.1016/j.physa.2018.02.200 doi: 10.1016/j.physa.2018.02.200
|
| [11] |
J. Jose, E. I. A. Sathar, Residual extropy of k-record values, Stat. Probabil. Lett., 146 (2019), 1–6. https://doi.org/10.1016/j.spl.2018.10.019 doi: 10.1016/j.spl.2018.10.019
|
| [12] |
M. A. A. Elgawad, H. M. Barakat, M. A. Alawady, D. A. A. El-Rahman, I. A. Husseiny, A. F. Hashem, et al., Extropy and some of its more recent related measures for concomitants of k-record values in an extended FGM family, Mathematics, 11 (2023), 4934. https://doi.org/10.3390/math11244934 doi: 10.3390/math11244934
|
| [13] |
M. A. Alawady, H. M. Barakat, T. S. Taher, I. A. Husseiny, Measures of extropy for k-record values and their concomitants based on Cambanis family, J. Stat. Theory Pract., 19 (2025), 11. https://doi.org/10.1007/s42519-024-00423-1 doi: 10.1007/s42519-024-00423-1
|
| [14] |
M. A. Alawady, H. M. Barakat, G. M. Mansour, I. A. Husseiny, Information measures and concomitants of $k-$record values based on Sarmanov family of bivariate distributions, Bull. Malays. Math. Sci. Soc., 46 (2023), 9. https://doi.org/10.1007/s40840-022-01396-9 doi: 10.1007/s40840-022-01396-9
|
| [15] |
M. Berred, K-Record values and the extreme-value index, J. Stat. Plan. Infer., 45 (1995), 49–63. https://doi.org/10.1016/0378-3758(94)00062-X doi: 10.1016/0378-3758(94)00062-X
|
| [16] |
M. Fashandi, J. Ahmadi, Characterizations of symmatric distributions based on Renyi entropy, Stat. Probabil. Lett., 82 (2012), 798–804. https://doi.org/10.1016/j.spl.2012.01.004 doi: 10.1016/j.spl.2012.01.004
|
| [17] |
N. Arrar, F. Z. Seghier, H. Zeghdoudi, R. Vinoth, Bivariate Poisson-X-Lindley distribution and its application in sport, Lobachevskii J. Math., 45 (2024), 4026–4033. https://doi.org/10.1134/S1995080224604788 doi: 10.1134/S1995080224604788
|
| [18] |
A. Haddari, H. Zeghdoudi, R. Vinoth, Modified bivariate Poisson–Lindley model: Properties and applications in soccer, International Journal of Computer Science in Sport, 23 (2024), 22–34. https://doi.org/10.2478/ijcss-2023-0009 doi: 10.2478/ijcss-2023-0009
|
| [19] |
G. M. Mansour, M. A. A. Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, et al., Bivariate Epanechnikov–Weibull distribution based on Sarmanov copula: properties, simulation, and uncertainty measures with applications, AIMS Mathematics, 10 (2025), 12689–12725. https://doi.org/10.3934/math.2025572 doi: 10.3934/math.2025572
|
| [20] |
A. M. Al-Zaydi, On concomitants of generalized order statistics arising from bivariate generalized Weibull distribution and its application in estimation, AIMS Mathematics, 9 (2024), 22002–22021. https://doi.org/10.3934/math.20241069 doi: 10.3934/math.20241069
|
| [21] |
J. S. Huang, S. Kotz, Modifications of the Farlie-Gumbel-Morgenstern distributions, A tough hill to climb, Metrika, 49 (1999), 135–145. https://doi.org/10.1007/s001840050030 doi: 10.1007/s001840050030
|
| [22] |
M. A. A. Elgawad, M. A. Alawady, H. M. Barakat, S. W. Xiong, Concomitants of generalized order statistics from Huang-Kotz Farlie-Gumbel-Morgenstern bivariate distribution: some information measures, Bull. Malays. Math. Sci. Soc., 43 (2020), 2627–2645. https://doi.org/10.1007/s40840-019-00822-9 doi: 10.1007/s40840-019-00822-9
|
| [23] |
I. Bairamov, S. Kotz, Dependence structure and symmetry of Huang-Kotz FGM distributions and their extensions, Metrika, 56 (2002), 55–72. https://doi.org/10.1007/s001840100158 doi: 10.1007/s001840100158
|
| [24] |
H. M. Barakat, E. M. Nigm, A. H. Syam, Concomitants of ordered variables from Huang-Kotz-FGM type bivariate-generalized exponential distribution, Bull. Malays. Math. Sci. Soc., 42 (2019), 337–353. https://doi.org/10.1007/s40840-017-0489-5 doi: 10.1007/s40840-017-0489-5
|
| [25] |
M. Fischer, I. Klein, Constructing generalized FGM copulas by means of certain univariate distributions, Metrika, 65 (2007), 243–260. https://doi.org/10.1007/s00184-006-0075-6 doi: 10.1007/s00184-006-0075-6
|
| [26] |
H. M. Barakat, A. H. Syam, Comparison between the two Huang-Kotz FGM types by some information measures in generalized order statistics and their concomitants, Filomat, 37 (2023), 3999–4016. https://doi.org/10.2298/FIL2312999B doi: 10.2298/FIL2312999B
|
| [27] | O. M. Bdair, M. Z. Raqab, Mean residual life of kth records under double monitoring, Bull. Malays. Math. Soc., 37 (2014), 457–464. |
| [28] |
M. Chacko, M. S. Mary, Concomitants of k-record values arising from morgenstern family of distributions and their applications in parameter estimation, Statist. Papers, 54 (2013), 21–46. https://doi.org/10.1007/s00362-011-0409-y doi: 10.1007/s00362-011-0409-y
|
| [29] |
W. H. Su, L. T. Xu, S. Xu, J. B. Wang, Z. Q. Wang, Uncertainty for fatigue life of low carbon alloy steel based on improved bootstrap method, Fatigue Fract. Eng. M., 46 (2023), 3858–3871. https://doi.org/10.1111/ffe.14109 doi: 10.1111/ffe.14109
|
| [30] |
X. T. Liu, X. G. Yu, J. C. Tong, X. Wang, X. L. Wang, Mixed uncertainty analysis for dynamic reliability of mechanical structures considering residual strength, Reliab. Eng. Syst. Safe., 209 (2021), 107472. https://doi.org/10.1016/j.ress.2021.107472 doi: 10.1016/j.ress.2021.107472
|
| [31] |
H. M. Barakat, M. A. Alawady, I. A. Husseiny, G. M. Mansour, Sarmanov family of bivariate distributions: statistical properties-concomitants of order statistics-information measures, Bull. Malays. Math. Sci. Soc., 45 (2022), 49–83. https://doi.org/10.1007/s40840-022-01241-z doi: 10.1007/s40840-022-01241-z
|
| [32] |
K. N. Chandler, The distribution and frequency of record values, J. R. Stat. Soc. B, 14 (1952), 220–228. https://doi.org/10.1111/j.2517-6161.1952.tb00115.x doi: 10.1111/j.2517-6161.1952.tb00115.x
|
| [33] |
R. Pyke, Spacings, J. R. Stat. Soc. B, 27 (1965), 395–436. https://doi.org/10.1111/j.2517-6161.1965.tb00602.x doi: 10.1111/j.2517-6161.1965.tb00602.x
|
| [34] | A. W. Van der Vaart, Asymptotic statistics, Cambridge: Cambridge University Press, 1998. https://doi.org/10.1017/CBO9780511802256 |
| [35] |
R. P. Oliveira, J. A. Achcar, J. Mazucheli, W. Bertoli, A new class of bivariate Lindley distributions based on stress and shock models and some of their reliability properties, Reliab. Eng. Syst. Safe., 211 (2021), 107528. https://doi.org/10.1016/j.ress.2021.107528 doi: 10.1016/j.ress.2021.107528
|
| [36] |
A. Fayomi, E. M. Almetwally, M. E. Qura, A novel bivariate Lomax-G family of distributions: Properties, inference, and applications to environmental, medical, and computer science data, AIMS Mathematics, 8 (2023), 17539–17584. https://doi.org/10.3934/math.2023896 doi: 10.3934/math.2023896
|
| [37] |
T. N. Sindhu, A. Atangana, M. B. Riaz, T. A. Abushal, Bivariate entropy-transformed Weibull distribution for modelling bivariate system-simulated data from a computer series: Mathematical features and applied results, Alex. Eng. J., 117 (2025), 593–608. https://doi.org/10.1016/j.aej.2024.12.107 doi: 10.1016/j.aej.2024.12.107
|
| [38] | M. Elgarhy, G. S. S. Abdalla, A. S. Hassan, E. M. Almetwally, Bayesian and non-bayesian analysis of the novel unit inverse exponentiated Lomax distribution using progressive censoring schemes with optimal scheme and data application, Computational Journal of Mathematical and Statistical Sciences, 4 (2025), 1–31. |
| [39] | S. Tyagi, A study on bivariate inverse Topp-Leone model to counter heterogeneous gata: properties, dependence studies, classical and Bayesian estimation, Thail. Statist., 23 (2025), 181–198. |
| [40] |
R. A. R. Bantan, M. Elgarhy, C. Chesneau, F. Jamal, Estimation of entropy for inverse Lomax distribution under multiple censored data, Entropy, 22 (2020), 601. https://doi.org/10.3390/e22060601 doi: 10.3390/e22060601
|
| [41] |
H. M. Barakat, M. A. Alawady, T. S. Taher, I. A. Husseiny, Second-order concomitants of order statistics from bivariate Cambanis family: some information measures-estimation, Commun. Stat.-Simul. C., 54 (2025), 3195–3221. https://doi.org/10.1080/03610918.2024.2344023 doi: 10.1080/03610918.2024.2344023
|
| [42] |
M. A. Alawady, H. M. Barakat, G. M. Mansour, I. A. Husseiny, Uncertainty measures and concomitants of generalized order statistics in the Sarmanov family, Filomat, 39 (2025), 3463–3487. https://doi.org/10.2298/FIL2510463A doi: 10.2298/FIL2510463A
|