In light of recent advances, this paper introduces a novel class of multimappings within the framework of metric spaces that aims to deepen the understanding of the structure and interplay of symmetric commuting tuples of mappings. A central focus of our study is the analysis of the product of two symmetric commuting tuples of mappings (c.t.m): Specifically, we consider an $(m, q)$-symmetric c.t.m ${{\bf N}} = (\mathcal{N}_1, \dots, \mathcal{N}_p)$ and an $(n, q)$-symmetric c.t.m ${\bf W} = (\mathcal{W}_1, \dots, \mathcal{W}_r)$, and establish the precise conditions under which their product ${\bf N} \odot {\bf W}$ yields an $(m+n-1, q)$-symmetric c.t.m. In addition, we investigate the behavior of $(m, q)$-isometric commuting tuples under composition ${\bf N} \cdot {\bf W}$, deriving new results that generalize existing theorems in the literature, most notably extending of Theorem 2.14 in Bermúdez et al., J. Operat. Theor., 72(2) (2014), 313–329 to a broader setting. The analysis of mappings in metric spaces is inherently complex, as these spaces often lack algebraic structures such as vector addition or scalar multiplication, making the study of nonlinear and multimappings particularly challenging. Our findings contribute to this area by elucidating the subtle relationships among symmetry, isometry, and commutativity in mapping tuples, thereby enabling more structured approaches to higher-dimensional problems within this framework.
Citation: Sid Ahmed Ould Ahmed Mahmoud, Nura Alotaibi, Sid Ahmed Ould Beinane. Investigations into $ (n, q) $-symmetry in nonlinear multimappings acting on a metric space[J]. AIMS Mathematics, 2025, 10(12): 29054-29070. doi: 10.3934/math.20251278
In light of recent advances, this paper introduces a novel class of multimappings within the framework of metric spaces that aims to deepen the understanding of the structure and interplay of symmetric commuting tuples of mappings. A central focus of our study is the analysis of the product of two symmetric commuting tuples of mappings (c.t.m): Specifically, we consider an $(m, q)$-symmetric c.t.m ${{\bf N}} = (\mathcal{N}_1, \dots, \mathcal{N}_p)$ and an $(n, q)$-symmetric c.t.m ${\bf W} = (\mathcal{W}_1, \dots, \mathcal{W}_r)$, and establish the precise conditions under which their product ${\bf N} \odot {\bf W}$ yields an $(m+n-1, q)$-symmetric c.t.m. In addition, we investigate the behavior of $(m, q)$-isometric commuting tuples under composition ${\bf N} \cdot {\bf W}$, deriving new results that generalize existing theorems in the literature, most notably extending of Theorem 2.14 in Bermúdez et al., J. Operat. Theor., 72(2) (2014), 313–329 to a broader setting. The analysis of mappings in metric spaces is inherently complex, as these spaces often lack algebraic structures such as vector addition or scalar multiplication, making the study of nonlinear and multimappings particularly challenging. Our findings contribute to this area by elucidating the subtle relationships among symmetry, isometry, and commutativity in mapping tuples, thereby enabling more structured approaches to higher-dimensional problems within this framework.
| [1] |
A. A. D. Abeer, O. A. M. S. Ahmed, Class of operators related to a $(m, C)$-isometric tuple of commuting operators, J. Inequal. Appl., 2022 (2022), 105. https://doi.org/10.1186/s13660-022-02835-8 doi: 10.1186/s13660-022-02835-8
|
| [2] |
J. Agler, M. Stankus, $m$-isometric transformations of Hilbert space, Ⅰ, Integr. Equat. Oper. Th., 21 (1995), 383–429. https://doi.org/10.1007/BF01222016 doi: 10.1007/BF01222016
|
| [3] |
J. Agler, M. Stankus, $m$-isometric transformations of Hilbert spaces, Ⅱ, Integr. Equat. Oper. Th., 23 (1995), 1–48. https://doi.org/10.1007/BF01261201 doi: 10.1007/BF01261201
|
| [4] |
J. Agler, M. Stankus, $m$-isometric transformations of Hilbert spaces, Ⅲ, Integr. Equat. Oper. Th., 24 (1996), 379–421. https://doi.org/10.1007/BF01191619 doi: 10.1007/BF01191619
|
| [5] |
M. A. A. A. Aydah, $(m, q)$-complex symmetric transformations on a complex valued dpace, Adv. Math. Sci. J., 10 (2021), 295–309. https://doi.org/10.37418/amsj.10.1.30 doi: 10.37418/amsj.10.1.30
|
| [6] |
H. O. Alshammari, A. O. Alshammari, A study of $(m, q)$-isometric multimappings in the context of $\mathcal{G}$-metric spaces, AIMS Math., 10 (2025), 11369–11381. https://doi.org/10.3934/math.2025517 doi: 10.3934/math.2025517
|
| [7] |
H. O. Alshammar, Higher order $(n, m)$-Drazin normal operators, J. Inequal. Appl., 2024 (2024), 18. https://doi.org/10.1186/s13660-024-03095-4 doi: 10.1186/s13660-024-03095-4
|
| [8] |
H. O. Alshammari, Higher order hyperexpansivity and higher order hypercontractivity, AIMS Math., 8 (2023), 27227–27240. https://doi.org/10.3934/math.20231393 doi: 10.3934/math.20231393
|
| [9] |
T. Bermúdez, A. Martinón, V. Müller, $(m, q)$-isometries on metric spaces, J. Operat. Theor., 72 (2014), 313–329. https://doi.org/10.7900/jot.2013jan29.1996 doi: 10.7900/jot.2013jan29.1996
|
| [10] |
T. Bermúdez, A. Martinón, J. Noda, Products of $m$-isometries, Linear Algebra Appl., 438 (2013), 80–86. https://doi.org/10.1016/j.laa.2012.07.011 doi: 10.1016/j.laa.2012.07.011
|
| [11] |
O. B. Almutairi1, O. A. M, S, Ahmed, $M$-hyponormality in several variables, J. Inequal. Appl., 2024 (2024), 102. https://doi.org/10.1186/s13660-024-03182-6 doi: 10.1186/s13660-024-03182-6
|
| [12] | M. Chō, H. Motoyoshi, B. N. Nastovska, On the joint spectra of commuting tuples of operators and a conjugation, Funct. Anal. Approx. Comput., 9 (2017), 21–26. |
| [13] |
J. W. Helton, Jordan operators in infinite dimensions and Surm Liouville conjugate point theory, B. Am. Math. Soc., 78 (1972), 57–61. https://doi.org/10.1090/S0002-9904-1972-12850-7 doi: 10.1090/S0002-9904-1972-12850-7
|
| [14] |
P. H. W. Hoffmann, M. Mackey, $(m, p)$-isometric and $(m, \infty)$-isometric operator tuples on normed spaces, Asian-Eur. J. Math., 8 (2015), 1550022. https://doi.org/10.1142/S1793557115500229 doi: 10.1142/S1793557115500229
|
| [15] |
J. Gleason, S. Richter, $m$-isometric commuting tuples of operators on a Hilbert space, Integr. Equat. Oper. Th., 56 (2006), 181–196. https://doi.org/10.1007/s00020-006-1424-6 doi: 10.1007/s00020-006-1424-6
|
| [16] |
O. A. M. S. Ahmed, M. Chō, J. E. Lee, On $(m, C)$-isometric commuting tuples of operators on a Hilbert space, Results Math., 73 (2018), 51. https://doi.org/10.1007/s00025-018-0810-0 doi: 10.1007/s00025-018-0810-0
|
| [17] |
O. A. M. S. Ahmed, M. Chō, J. E. Lee, $(m, q)$-isometric and $(m, \infty)$-isometric tuples of commutative mappings on a metric space, Filomat, 34 (2020), 2425–2437. https://doi.org/10.2298/FIL2007425M doi: 10.2298/FIL2007425M
|
| [18] | O. A. M. S. Ahmed, On $(m, p)$-(Hyper)expansive and $(m, p)$-(Hyper) contractive mappings on a metric space, J. Inequal. Spec. Funct., 7 (2016), 73–87. |
| [19] |
O. A. M. S. Ahmed, On $(m, p)$-hyperexpansive mappings in metric spaces, Note Mat., 35 (2015), 17–37. https://doi.org/10.1285/i15900932v35n2p17 doi: 10.1285/i15900932v35n2p17
|
| [20] |
J. Nader, Some results on higher order $(A, m)$-symmetric commuting tuples of operators on a Hilbert space, Rend. Circ. Mat. Palerm., 74 (2025), 166. https://doi.org/10.1007/s12215-025-01284-8 doi: 10.1007/s12215-025-01284-8
|
| [21] |
N. J. Nader, R. Rabaoui, On $(A, m)$-symmetric operators in a Hilbert space, Results Math., 74 (2019), 124. https://doi.org/10.1007/s00025-019-1049-0 doi: 10.1007/s00025-019-1049-0
|
| [22] |
R. Rabaouia, On skew $(A, m)$-symmetric operators in a Hilbert space, Filomat, 36 (2022), 3261–3278. https://doi.org/10.2298/FIL2210261R doi: 10.2298/FIL2210261R
|
| [23] |
R. Rabaoui, Some results on $(A; (m, n))$-isosymmetric operators on a Hilbert space, B. Iran. Math. Soc., 48 (2021), 1619–1648. https://doi.org/10.1007/s41980-021-00602-x doi: 10.1007/s41980-021-00602-x
|
| [24] |
M. Salehi, K. Hedayatian, On higher order selfadjoint operators, Linear Algebra Appl, 587 (2020), 358–386. https://doi.org/10.1016/j.laa.2019.11.009 doi: 10.1016/j.laa.2019.11.009
|