Research article

Reliable analytical approach to solving delay differential equations with combined proportional and constant delays

  • Published: 11 December 2025
  • MSC : 34K06, 34K07, 65L03

  • The investigation of delay differential equations (DDEs) spans a diverse array of practical applications. In the realm of applied sciences, DDEs typically involve either constant/pure delays or proportional delays, each posing significant analytical challenges. The task of deriving exact solutions becomes increasingly intricate when both types of delays are integrated within a single model. This paper derives an explicit unified analytical solution for a DDE with combined delays using the method of steps (MoS). A unified solution formula is presented, applicable across any sub-interval of the problem's domain. Additionally, the theoretical properties of the solution and its derivative—such as continuity and the presence of discontinuities at specific points—are meticulously examined. The proposed methodology also encompasses existing findings in the literature, with applications extending to fields including astronomy and railway electrification.

    Citation: Essam R. El-Zahar, Abdelhalim Ebaid, Laila F. Seddek, Mona D. Aljoufi. Reliable analytical approach to solving delay differential equations with combined proportional and constant delays[J]. AIMS Mathematics, 2025, 10(12): 29037-29053. doi: 10.3934/math.20251277

    Related Papers:

  • The investigation of delay differential equations (DDEs) spans a diverse array of practical applications. In the realm of applied sciences, DDEs typically involve either constant/pure delays or proportional delays, each posing significant analytical challenges. The task of deriving exact solutions becomes increasingly intricate when both types of delays are integrated within a single model. This paper derives an explicit unified analytical solution for a DDE with combined delays using the method of steps (MoS). A unified solution formula is presented, applicable across any sub-interval of the problem's domain. Additionally, the theoretical properties of the solution and its derivative—such as continuity and the presence of discontinuities at specific points—are meticulously examined. The proposed methodology also encompasses existing findings in the literature, with applications extending to fields including astronomy and railway electrification.



    加载中


    [1] Y. Kuang, Delay differential equations: with applications in population dynamics, Academic Press, 1993.
    [2] V. Kolmanovskii, A. Myshkis, Introduction to the theory and applications of functional differential equations, 1 Ed., Vol. 463, Springer Dordrecht, The Netherlands, 1999. https://doi.org/10.1007/978-94-017-1965-0
    [3] T. Erneux, Applied delay differential equations, Vol. 3, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-74372-1
    [4] H. Smith, An introduction to delay differential equations with applications to the life sciences, Vol. 57, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-7646-8
    [5] W. E. Schiesser, Time delay ODE/PDE models: applications in biomedical science and engineering, 1 Ed., CRC Press, 2020. https://doi.org/10.1201/9780367427986
    [6] F. Rodríguez, J. C. Cortés, M. A. Castro, Models of delay differential equations, MDPI, 2021. https://doi.org/10.3390/books978-3-0365-0933-4
    [7] E. R. El-Zahar, A. Ebaid, Analytical and numerical simulations of a delay model: the Pantograph delay equation, Axioms, 11 (2022), 741. https://doi.org/10.3390/axioms11120741 doi: 10.3390/axioms11120741
    [8] H. I. Andrews, Third paper: calculating the behaviour of an overhead catenary system for railway electrification, Proc. Inst. Mech. Eng., 179 (1964), 809–846. https://doi.org/10.1243/PIME_PROC_1964_179_050_02 doi: 10.1243/PIME_PROC_1964_179_050_02
    [9] G. Gilbert, H. E. H. Davtcs, Pantograph motion on a nearly uniform railway overhead line, Proc. Inst. Electr. Eng., 113 (1966), 485–492. https://doi.org/10.1049/piee.1966.0078 doi: 10.1049/piee.1966.0078
    [10] P. M. Caine, P. R. Scott, Single-wire railway overhead system, Proc. Inst. Electr. Eng., 116 (1969), 1217–1221. https://doi.org/10.1049/piee.1969.0226 doi: 10.1049/piee.1969.0226
    [11] M. R. Abbott, Numerical method for calculating the dynamic behaviour of a trolley wire overhead contact system for electric railways, Comput. J., 13 (1970), 363–368. https://doi.org/10.1093/comjnl/13.4.363 doi: 10.1093/comjnl/13.4.363
    [12] J. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [13] L. Fox, D. Mayers, J. R. Ockendon, A. B. Tayler, On a functional differential equation, IMA J. Appl. Math., 8 (1971), 271–307. https://doi.org/10.1093/imamat/8.3.271 doi: 10.1093/imamat/8.3.271
    [14] T. Kato, J. B. McLeod, The functional-differential equation $y'(x) = ay(\lambda x)+by(x)$, Bull. Am. Math. Soc., 77 (1971), 891–935.
    [15] A. Iserles, On the generalized pantograph functional-differential equation, Eur. J. Appl. Math., 4 (1993), 1–38. https://doi.org/10.1017/S0956792500000966 doi: 10.1017/S0956792500000966
    [16] V. A. Ambartsumian, On the fluctuation of the brightness of the milky way, Dokl. Akad. Nauk USSR, 44 (1994), 223–226.
    [17] J. Patade, S. Bhalekar, On analytical solution of Ambartsumian equation, Natl. Acad. Sci. Lett., 40 (2017), 291–293. https://doi.org/10.1007/s40009-017-0565-2 doi: 10.1007/s40009-017-0565-2
    [18] D. Kumar, J. Singh, D. Baleanu, S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259. https://doi.org/10.1140/epjp/i2018-12081-3 doi: 10.1140/epjp/i2018-12081-3
    [19] S. S. Das, D. K. Dalaia, P. C. Nayak, Delay differential equations using market equilibrium, Int. J. Creative Res. Thoughts, 6 (2018), 562–576.
    [20] S. M. Garba, A. B. Gumel, A. S. Hassan, J. M. S Lubuma, Switching from exact scheme to nonstandard finite difference scheme for linear delay differential equation, Appl. Math. Comput., 258 (2015), 388–403. https://doi.org/10.1016/j.amc.2015.01.088 doi: 10.1016/j.amc.2015.01.088
    [21] M. A. García, M. A. Castro, J. A. Martín, F. Rodríguez, Exact and nonstandard numerical schemes for linear delay differential models, Appl. Math. Comput., 338 (2018), 337–345. https://doi.org/10.1016/j.amc.2018.06.029 doi: 10.1016/j.amc.2018.06.029
    [22] G. Adomian, Solving frontier problems of physics: the decomposition method, 1 Ed., Vol. 60, Springer Dordrecht, 1994. https://doi.org/10.1007/978-94-015-8289-6
    [23] A. M. Wazwaz, Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput., 166 (2005), 652–663. https://doi.org/10.1016/j.amc.2004.06.059 doi: 10.1016/j.amc.2004.06.059
    [24] J. S. Duan, R. Rach, A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations, Appl. Math. Comput., 218 (2011), 4090–4118. https://doi.org/10.1016/j.amc.2011.09.037 doi: 10.1016/j.amc.2011.09.037
    [25] W. Li, Y. Pang, Application of Adomian decomposition method to nonlinear systems, Adv. Differ. Equ., 2020 (2020), 67. https://doi.org/10.1186/s13662-020-2529-y doi: 10.1186/s13662-020-2529-y
    [26] Z. Ayati, J. Biazar, On the convergence of homotopy perturbation method, J. Egypt. Math. Soc., 23 (2015), 424–428. https://doi.org/10.1016/j.joems.2014.06.015 doi: 10.1016/j.joems.2014.06.015
    [27] S. M. Khaled, Exact solution of the one-dimensional neutron diffusion kinetic equation with one delayed precursor concentration in Cartesian geometry, AIMS Math., 7 (2022), 12364–12373. https://doi.org/10.3934/math.2022686 doi: 10.3934/math.2022686
    [28] R. Alrebdi, H. K. Al-Jeaid, Accurate solution for the Pantograph delay differential equation via Laplace transform, Mathematics, 11 (2023), 2031. https://doi.org/10.3390/math11092031 doi: 10.3390/math11092031
    [29] N. A. M. Alshomrani, A. Ebaid, F. Aldosari, M. D. Aljoufi, On the exact solution of a scalar differential equation via a simple analytical approach, Axioms, 13 (2024), 129. https://doi.org/10.3390/axioms13020129 doi: 10.3390/axioms13020129
    [30] V. Kac, P. Cheung, Quantum calculus, New York: Springer, 2002. https://doi.org/10.1007/978-1-4613-0071-7
    [31] A. Ebaid, A. Al-Enazi, B. Z. Albalawi, M. D. Aljoufi, Accurate approximate solution of Ambartsumian delay differential equation via decomposition method, Math. Comput. Appl., 24 (2019), 7. https://doi.org/10.3390/mca24010007 doi: 10.3390/mca24010007
    [32] W. G. Alharbi, Analysis of a first-order delay model under a history function with discontinuity, Math. Comput. Appl., 29 (2024), 72. https://doi.org/10.3390/mca29050072 doi: 10.3390/mca29050072
    [33] M. M. Raja, V. Vijayakumar, K. C. Veluvolu, Higher-order caputo fractional integrodifferential inclusions of Volterra–Fredholm type with impulses and infinite delay: existence results, J. Appl. Math. Comput., 71 (2025), 4849–4874. https://doi.org/10.1007/s12190-025-02412-4 doi: 10.1007/s12190-025-02412-4
    [34] M. M. Raja, V. Vijayakumar, K. C. Veluvolu, An analysis on approximate controllability results for impulsive fractional differential equations of order $1 < r < 2$ with infinite delay using sequence method, Math. Methods Appl. Sci., 47 (2024), 336–351. https://doi.org/10.1002/mma.9657 doi: 10.1002/mma.9657
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(482) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog