This work examined the two-dimensional, steady-state flow of a non-Newtonian nanofluid past an impermeable stretching sheet, incorporating temperature-dependent density, nonlinear rheology, nanoparticle transport mechanisms (thermophoresis/Brownian motion), and thermal radiation. The model was formed by nonlinear equations for mass, momentum, heat, and particle transport, and the surface heating condition was applied before using similarity transformations to reduce the system to ordinary differential equations. The numerical solution employs an innovative approach using merged Fibonacci-Lucas polynomials combined with least squares approximation, transforming the equations into algebraic form solved via the Newton iteration method. Rigorous convergence testing and error analysis verified the method's precision and reliability. The findings demonstrate that higher density and convection parameters substantially improve all transport processes, with heat transfer rates increasing by more than double. However, the Williamson parameter and Brownian motion show opposing influences, in which they decrease both surface friction and thermal transfer while simultaneously enhancing mass transport efficiency. Further, elevating the density parameter from 0.0 to 1.0 increases the skin-friction coefficient from 0.96084 to 1.18692 while simultaneously boosting both reduced Nusselt and Sherwood numbers. Conversely, augmenting the Williamson parameter from 0.0 to 0.6 reduces the skin-friction coefficient from 1.12885 to 0.96097, accompanied by moderate variations in heat and mass transfer rates. Extensive benchmarking against published numerical results demonstrated the scheme's accuracy, with close matching to existing solutions substantiating the reliability of our proposed approach.
Citation: M. M. Khader, M. Adel, M. M. Babatin, A. Alaidrous. Williamson nanofluid flow and thermal transfer generated by a convectively heated stretched sheet via Fibonacci-Lucas polynomials[J]. AIMS Mathematics, 2025, 10(12): 29012-29036. doi: 10.3934/math.20251276
This work examined the two-dimensional, steady-state flow of a non-Newtonian nanofluid past an impermeable stretching sheet, incorporating temperature-dependent density, nonlinear rheology, nanoparticle transport mechanisms (thermophoresis/Brownian motion), and thermal radiation. The model was formed by nonlinear equations for mass, momentum, heat, and particle transport, and the surface heating condition was applied before using similarity transformations to reduce the system to ordinary differential equations. The numerical solution employs an innovative approach using merged Fibonacci-Lucas polynomials combined with least squares approximation, transforming the equations into algebraic form solved via the Newton iteration method. Rigorous convergence testing and error analysis verified the method's precision and reliability. The findings demonstrate that higher density and convection parameters substantially improve all transport processes, with heat transfer rates increasing by more than double. However, the Williamson parameter and Brownian motion show opposing influences, in which they decrease both surface friction and thermal transfer while simultaneously enhancing mass transport efficiency. Further, elevating the density parameter from 0.0 to 1.0 increases the skin-friction coefficient from 0.96084 to 1.18692 while simultaneously boosting both reduced Nusselt and Sherwood numbers. Conversely, augmenting the Williamson parameter from 0.0 to 0.6 reduces the skin-friction coefficient from 1.12885 to 0.96097, accompanied by moderate variations in heat and mass transfer rates. Extensive benchmarking against published numerical results demonstrated the scheme's accuracy, with close matching to existing solutions substantiating the reliability of our proposed approach.
| [1] |
S. U. S. Choi, Enhancing thermal conductivity of fluid with nanoparticles, ASME FED, 231 (1995), 99–105. http://doi.org/10.1115/IMECE1995-0926 doi: 10.1115/IMECE1995-0926
|
| [2] |
U. Rashid, D. Baleanu, A. Iqbal, M. Abbas, Shape effect of nanosize particles on magnetohydrodynamic nanofluid flow and heat transfer over a stretching sheet with entropy generation, Entropy, 22 (2020), 1171. http://doi.org/10.3390/e22101171 doi: 10.3390/e22101171
|
| [3] |
E. Alali, A. M. Megahed, MHD dissipative Casson nanofluid liquid film flow due to an unsteady stretching sheet with radiation influence and slip velocity phenomenon, Nanotechnol. Rev., 11 (2022), 463–472. http://doi.org/10.1515/ntrev-2022-0031 doi: 10.1515/ntrev-2022-0031
|
| [4] |
W. Abbas, M. A. Ibrahim, O. Mokhtar, A. M. Megahed, A. A. M. Said, Numerical analysis of MHD nanofluid flow characteristics with heat and mass transfer over a vertical cone subjected to thermal radiation and chemical reaction, J. Nonlinear Math. Phys., 30 (2023), 1540–1566. http://doi.org/10.1007/s44198-023-00142-4 doi: 10.1007/s44198-023-00142-4
|
| [5] |
M. Garvandha, N. Gajjeia, V. Naria, D. Kumar, Thermodynamic entropy of a magnetized nanofluid flow over an inclined stretching cylindrical surface, J. Therm. Eng., 10 (2024), 1253–1265. http://dx.doi.org/10.14744/thermal.0000865 doi: 10.14744/thermal.0000865
|
| [6] |
A. M. Amer, Nourhan I. Ghoneim, A. M. Megahed, Investigation of dissipation phenomenon of non-Newtonian nanofluid due to a horizontal stretching rough sheet through a Darcy porous medium, Appl. Eng. Sci., 17 (2024), 100171. http://doi.org/10.1016/j.apples.2023.100171 doi: 10.1016/j.apples.2023.100171
|
| [7] |
L. Ali, R. Apsari, A. Abbas, P. Tak, Entropy generation on the dynamics of volume fraction of nanoparticles and Coriolis force impacts on mixed convective nanofluid flow with significant magnetic effect, Numer. Heat Trans.r, Part A: Appl., 86 (2025), 8509–8524. http://doi.org/10.1080/10407782.2024.2360652 doi: 10.1080/10407782.2024.2360652
|
| [8] |
A. Mishra, G. Pathak, Thermal-flow characteristics of an Ellis hybrid nanofluid containing polytetrafluoroethylene-SWCNTs over a stretching/shrinking cylinder with slip effect, Nano-Struct. Nano-Objects, 43 (2025), 101515. http://doi.org/10.1016/j.nanoso.2025.101515 doi: 10.1016/j.nanoso.2025.101515
|
| [9] |
A. Mishra, Analysis of radiative Ellis hybrid nanofluid flow over a stretching/shrinking cylinder embedded in a porous medium with slip condition, Multiscale Multi. Mod., 8 (2025), 282. http://doi.org/10.1007/s41939-025-00871-7 doi: 10.1007/s41939-025-00871-7
|
| [10] |
M. A. A. Hamad, M. J. Uddin, A. M. Ismail, Radiation effects on heat and mass transfer in MHD stagnation-point flow over a permeable flat plate with convective boundary condition, Nucl. Eng. Des., 242 (2012), 194–200. http://doi.org/10.1016/j.nucengdes.2011.09.005 doi: 10.1016/j.nucengdes.2011.09.005
|
| [11] |
M. M. Khader, A. M. Megahed, Differential transformation method for flow and heat transfer due to a stretching sheet embedded in a porous medium, Appl. Math. Mech., 35 (2014), 1387–1400. http://doi.org/10.1007/s10483-014-1870-7 doi: 10.1007/s10483-014-1870-7
|
| [12] |
A. Hamid, M. Khan, Unsteady mixed convective flow of Williamson nanofluid in the presence of variable thermal conductivity and magnetic field, J. Mol. Liq., 260 (2018), 436–446. http://doi.org/10.1016/j.molliq.2018.03.079 doi: 10.1016/j.molliq.2018.03.079
|
| [13] |
S. U. Jan, U. Khan, M. Abd El-Rahman, S. Islam, A. M. Hassan, A. Ullah, Effect of variable thermal conductivity of ternary hybrid nanofluids over a stretching sheet with convective boundary conditions and magnetic field, Results Eng., 20 (2023), 101531. http://doi.org/10.1016/j.rineng.2023.101531 doi: 10.1016/j.rineng.2023.101531
|
| [14] |
T. S. Khaleque, A. Hossain, M. D. Shamshuddin, M. Ferdows, S. O. Salawu, S. Sun, Soret and Dufour impacts on radiative power-law fluid flow via a continuously stretchable surface with varying viscosity and thermal conductivity, Sci. Rep., 14 (2024), 23152. http://doi.org/10.1038/s41598-024-73426-4 doi: 10.1038/s41598-024-73426-4
|
| [15] |
A. M. Salem, M. Abd El-Aziz, E. M. Abo-Eldahab, I. Abd-Elfatah, Effect of variable density on hydromagnetic mixed convection flow of non-Newtonian fluid, Commun Nonlinear Sci. Numer. Simul., 15 (2010), 1485–1493. http://doi.org/10.1016/j.cnsns.2009.06.005 doi: 10.1016/j.cnsns.2009.06.005
|
| [16] |
S. Siddiqa, S. Asghar, M. A. Hossain, Radiation effects in mixed convection flow with temperature-dependent density, J. Eng. Phys. Thermophys., 85 (2012), 339–348. http://doi.org/10.1007/s10891-012-0658-1 doi: 10.1007/s10891-012-0658-1
|
| [17] |
S. Siddiqa, M. A. Hossain, R. S. R. Gorla, Temperature-dependent density effects on natural convection flow over a horizontal circular disk, J. Thermophys. Heat Trans., 30 (2016), 890–896. http://doi.org/10.2514/1.T4941 doi: 10.2514/1.T4941
|
| [18] |
Z. Ullah, N. Jabeen, M. U. Khan, Oscillatory heat transfer and current density along a nonconducting cylinder with reduced gravity and stratification, Mathematics, 11 (2023), 21–34. http://doi.org/10.3390/math11092134 doi: 10.3390/math11092134
|
| [19] |
Z. Ullah, A. Hussain, M. S. Aldhabani, N. H. Altaweel, S. Shahab, Temperature-dependent density on dissipative and reactive nanofluid flows, Lubricants, 11 (2023), 410. http://doi.org/10.3390/lubricants11090410 doi: 10.3390/lubricants11090410
|
| [20] |
I. Boukholda, Z. Ullah, Y. M. Mahrous, A. Alamer, M. B. Amara, M. D. Alsulami, et al., Thermal density and heat sink effects in dissipative nanofluid over a magnetized sheet, Case Stud. Therm. Eng., 55 (2024), 104185. http://doi.org/10.1016/j.csite.2024.104185 \newpage doi: 10.1016/j.csite.2024.104185
|
| [21] |
I. Haider, J. Younis, N. Jabeen, A. Hussain, I. A. Shaaban, M. A. Mohsin, M. A. Assiri, Viscous dissipation and variable density impact on heat-mass transmission in magneto Ree-Eyring nanofluid across stretched sheet, Case Stud. Therm. Eng., 68 (2025), 105871. http://doi.org/10.1016/j.csite.2025.105871 doi: 10.1016/j.csite.2025.105871
|
| [22] |
M. A. Fahmy, A new LRBFCM-GBEM modeling algorithm for general solution of time fractional-order dual phase lag bioheat transfer problems in functionally graded tissues, Numer. Heat Trans., Part A: Appl., 75 (2019), 616–626. http://doi.org/10.1080/10407782.2019.1608770 doi: 10.1080/10407782.2019.1608770
|
| [23] |
M. A. Fahmy, A. Almutlg, Boundary element method solution of a fractional bioheat equation for memory-driven heat transfer in biological tissues, Fractal Fract., 9 (2025), 565. http://doi.org/10.3390/fractalfract9090565 doi: 10.3390/fractalfract9090565
|
| [24] |
W. M. Abd-Elhameed, H. M. Ahmed, A. Napoli, V. Kowalenko, New formulas involving Fibonacci and certain orthogonal polynomials, Symmetry, 15 (2023), 736. http://doi.org/10.3390/sym15030736 doi: 10.3390/sym15030736
|
| [25] |
W. M. Abd-Elhameed, A. F. Abu-Sunayh, M. H. Alharbi, A. G. Atta, Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation, AIMS Mathematics, 9 (2024), 34567–34587. http://doi.org/10.3934/math.20241646 doi: 10.3934/math.20241646
|
| [26] |
Z. Wu, W. Zhang, Several identities involving Fibonacci polynomials and Lucas polynomials, J. Inequa. Appl., 2013 (2013), 205. http://doi.org/10.1186/1029-242X-2013-205 doi: 10.1186/1029-242X-2013-205
|
| [27] |
W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for generalized Fibonacci and Lucas polynomials, Mathematics, 10 (2022), 23–42. http://doi.org/10.3390/math10132342 doi: 10.3390/math10132342
|
| [28] | N. Yilmaz, I. Aktas, Special transforms of generalized bivariate Fibonacci and Lucas polynomials, Hacettepe J. Math. Stat., 52 (2023), 640–651. http://dergipark.org.tr/en/download/article-file/2402660 |
| [29] |
W. M. Abd-Elhameed, N. A. Zeyada, New formulas involving $k$-Fibonacci and $k$-Lucas polynomials, Ind. J. Pure Appl. Math., 53 (2022), 1006–1016. http://doi.org/10.1007/s13226-021-00214-5 doi: 10.1007/s13226-021-00214-5
|
| [30] |
A. Nalli, P. Haukkanen, On generalized Fibonacci and Lucas polynomials, Chaos, Solitons Fractals, 42 (2009), 3179–3186. http://doi.org/10.1016/j.chaos.2009.04.048 doi: 10.1016/j.chaos.2009.04.048
|
| [31] |
S. Haq, I. Ali, Approximate solution of two-dimensional Sobolev equation using Lucas and Fibonacci polynomials, Eng. Comput., 38 (2022), 2059–2068. http://doi.org/10.1007/s00366-021-01327-5 doi: 10.1007/s00366-021-01327-5
|
| [32] |
S. Sabermahani, Y. Ordokhani, P. Rahimkhani, Application of generalized Lucas wavelet method for nonlinear fractal-fractional optimal control problems, Chaos, Soliton. Fract., 170 (2023), 113348. http://doi.org/10.1016/j.chaos.2023.113348 doi: 10.1016/j.chaos.2023.113348
|
| [33] |
M. M. Khader, M. Adel, Investigation of Reiner-Philippoff nanofluid flow over a stretching sheet considering diffusion and first-order velocity slip: Numerical and theoretical analysis, ZAMM, 105 (2025), e70245. http://doi.org/10.1002/zamm.70245 doi: 10.1002/zamm.70245
|
| [34] |
M. M. Khader, A. Hijaz, A. M. Megahed, Engineering applications through numerical treatment of non-Newtonian nanofluid on nonlinear stretching surface, Case Stud. Therm. Eng., 51 (2023), 103641. http://doi.org/10.1016/j.csite.2023.103641 doi: 10.1016/j.csite.2023.103641
|
| [35] |
A. M. Megahed, M. G. Reddy, W. Abbas, Modeling of MHD fluid flow over an unsteady stretching sheet with thermal radiation, variable fluid properties and heat flux, Math. Comput. Simul., 185 (2021), 583–593. https://doi.org/10.1016/j.matcom.2021.01.011 doi: 10.1016/j.matcom.2021.01.011
|
| [36] |
A. M. Megahed, Improvement of heat transfer mechanism through a Maxwell fluid over a stretching sheet, Math. Comput. Simul., 187 (2021), 97–109. http://doi.org/10.1016/j.matcom.2021.02.018 doi: 10.1016/j.matcom.2021.02.018
|
| [37] |
Z. Ullah, M. M. Alam, F. E. Merga, U. Tariq, F. Albouchi, Y. M. Mahrous, et al., Variable density and heat generation impact on chemically reactive Carreau nanofluid with convective heating, Case Stud. Therm. Eng., 63 (2024), 105260. http://doi.org/10.1016/j.csite.2024.105260 doi: 10.1016/j.csite.2024.105260
|
| [38] |
W. M. Abd-Elhameed, Novel formulas of generalized Jacobi polynomials, Mathematics, 10 (2022), 4237. http://doi.org/10.3390/math10224237 doi: 10.3390/math10224237
|
| [39] |
W. M. Abd-Elhameed, O. M. Alqubori, New expressions for polynomials combining Fibonacci and Lucas polynomials, AIMS Mathematics, 10 (2024), 2930–2957. http://doi.org/10.3934/math.2025136 doi: 10.3934/math.2025136
|
| [40] | K. Parand, M. Delkhosh, Operational matrices to solve nonlinear Volterra-Fredholm integro-differential equations, GU. J. Sci., 29 (2016), 895–907. |
| [41] |
S. Nadeem, S. T. Hussain, C. Lee, Flow of a Williamson fluid over a stretching sheet, Braz. J. Chem. Eng., 30 (2013), 619–625. http://doi.org/10.11648/j.ijse.20210501.12 doi: 10.11648/j.ijse.20210501.12
|
| [42] |
W. A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Trans., 53 (2010), 2477–2483. http://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032 doi: 10.1016/j.ijheatmasstransfer.2010.01.032
|
| [43] |
L. Ali, P. Kumar, H. Poonia, S. Areekara, R. Apsari, The significant role of Darcy-Forchheimer and thermal radiation on Casson fluid flow subject to stretching surface: A case study of dusty fluid, Modern Phys. Lett. B, 38 (2024), 2350215. http://doi.org/10.1142/S0217984923502159 doi: 10.1142/S0217984923502159
|