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Abstract: This work examined the two-dimensional, steady-state flow of a non-Newtonian
nanofluid past an impermeable stretching sheet, incorporating temperature-dependent density,
nonlinear rheology, nanoparticle transport mechanisms (thermophoresis/Brownian motion), and
thermal radiation. The model was formed by nonlinear equations for mass, momentum, heat, and
particle transport, and the surface heating condition was applied before using similarity transformations
to reduce the system to ordinary differential equations. The numerical solution employs an innovative
approach using merged Fibonacci-Lucas polynomials combined with least squares approximation,
transforming the equations into algebraic form solved via the Newton iteration method. Rigorous
convergence testing and error analysis verified the method’s precision and reliability. The findings
demonstrate that higher density and convection parameters substantially improve all transport
processes, with heat transfer rates increasing by more than double. However, the Williamson parameter
and Brownian motion show opposing influences, in which they decrease both surface friction and
thermal transfer while simultaneously enhancing mass transport efficiency. Further, elevating the
density parameter from 0.0 to 1.0 increases the skin-friction coefficient from 0.96084 to 1.18692 while
simultaneously boosting both reduced Nusselt and Sherwood numbers. Conversely, augmenting the
Williamson parameter from 0.0 to 0.6 reduces the skin-friction coefficient from 1.12885 to 0.96097,
accompanied by moderate variations in heat and mass transfer rates. Extensive benchmarking against
published numerical results demonstrated the scheme’s accuracy, with close matching to existing
solutions substantiating the reliability of our proposed approach.
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Nomenclature

c Constant (s7')

Dy  Coeflicient of Brownian diffusion (’%2)

qr Radiative heat flux (%)

Cp Specific heat (kgLK)

D7 Coefficient of thermophoresis diffusion (’”72)
f Dimensionless stream function

C Concentration (’”T"l)

Ty  Convection temperature (K)

C,, Nanofluid concentration beside the sheet (’"T”’)
u Velocity component in the x— direction (%)
v Velocity component in the y— direction (%)
S.  Schmidt number

Cf. Local skin friction coefficient

T., Ambient temperature (K)

Re,  Local Reynolds number

Nu, Local Nusselt number

S. Schmidt number

Pr  Prandtl number

Sh, Local Sherwood number

x,y  Cartesian coordinates ()

Greek symbols

Heat capacity of nanoparticles in relation to the heat capacity of the basic fluid (
Density of nanofluid (%)

Thermal conductivity parameter
Thermophoresis parameter

L

mol

~

Kinematic viscosity (’”72)
Brownian motion parameter
Thermal conductivity at the slit (Wm™'K~1)
Radiation parameter

Thermal conductivity (Wm™'K")
Williamson parameter

Convection parameter

Similarity variable

Dimensionless concentration
Density parameter

Coeflicient of viscosity (kgm™'s™1)
Dimensionless temperature

S

TR OIS I DDA RLRLI DR DR A

1. Introduction

The development of nanoparticle-infused base fluids has transformed heat transfer solutions
across multiple industries. These engineered suspensions demonstrate remarkable thermal properties,
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including boosted conductivity and convection, that benefit applications from microelectronics cooling
to large-scale solar thermal systems and specialized medical devices. The field of nanofluids
originated with Choi’s [1] groundbreaking demonstration of thermal conductivity enhancement
through nanoparticle suspensions. This discovery sparked widespread investigation into nanofluid
dynamics, heat transfer mechanisms, and industrial applications. Recent advances have significantly
expanded our understanding of these complex fluids. Rashid et al. [2] demonstrated how nanoparticle
morphology influences both entropy production and magnetohydrodynamic flow characteristics over
stretched surfaces. Alali and Megahed [3] analyzed unsteady Casson nanofluid flow with velocity
slip, quantifying the combined effects of viscous dissipation and thermal radiation. Abbas et al. [4]
numerically simulated magnetized nanofluid flow past vertical cones, accounting for the transport
of chemically reactive species. Garvandha et al. [5] investigated thermodynamic irreversibilities
in inclined magnetic nanofluid flows along cylindrical geometries, while Amer et al. [6] addressed
practical engineering scenarios by analyzing dissipative non-Newtonian nanofluid flow in porous
media with surface roughness. Recent work has deepened our understanding of nanofluid behavior
by exploring more intricate physical effects linked to modern thermal applications. Ali et al. [7]
investigated how nanoparticle volume fraction dynamics, Coriolis forces, and magnetic fields influence
entropy generation in mixed convection, offering deeper insight into thermodynamic irreversibility
in rotating nanofluid environments. Meanwhile, Mishra and Pathak [8] analyzed the thermal-flow
performance of an Ellis hybrid nanofluid containing polytetrafluoroethylene and single-walled carbon
nanotubes over a stretching or shrinking cylinder, emphasizing the role of slip effects in enhancing
heat-transfer behavior. Extending this direction, Mishra [9] further explored radiative Ellis hybrid
nanofluid flow in a porous medium with slip, demonstrating how radiation and porosity modify the
thermal response of hybrid suspensions. Collectively, these studies broaden the modeling framework
of nanofluid transport and highlight the influence of multiphysics interactions on heat and momentum
transfer. These investigations collectively highlight the necessity for advanced modeling approaches
that accurately represent the coupled thermal, electromagnetic, and rheological behavior of nanofluids,
a fundamental objective driving the current research.

The conventional assumption of fixed thermal conductivity proves inadequate for modeling
advanced thermal-fluid systems, especially in high-temperature operations or nanofluid applications.
Temperature-dependent thermal conductivity significantly enhances predictive accuracy in critical
engineering domains including material thermal processing, microelectronics cooling, power
generation systems, and industrial polymer manufacturing. This parameter’s fundamental importance
has driven numerous investigators to integrate variable thermal conductivity formulations into
contemporary heat transfer models, substantially improving their physical fidelity and practical
applicability. Several pivotal studies have demonstrated the importance of temperature-dependent
thermal properties in fluid flow systems. Hamad et al. [10] examined radiative magnetohydrodynamic
stagnation-point flow, showing that variable viscosity and thermal conductivity substantially alter flow
behavior compared to constant-property assumptions. Khader and Megahed [11] analyzed porous
media flows with varying sheet thickness and thermal conductivity, using differential transformation
methods to quantify thermal boundary layer expansion. Further advancing this understanding, Hamid
and Khan [12] established that thermal conductivity variations critically influence boundary layer
evolution in unsteady Williamson nanofluid flows. Recent investigations by Jan et al. [13] on hybrid
nanofluids revealed that thermal conductivity gradients enhance heat transfer sensitivity to surface
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conditions. Khaleque et al. [14] extended this to power-law fluids, demonstrating coupled viscosity-
thermal conductivity effects under radiative and diffusive transport. These pioneering studies directly
informed our approach of incorporating thermal conductivity variations to authentically represent heat
transfer dynamics in complex nanofluid systems experiencing coupled thermal and electromagnetic
effects.

The role of temperature-dependent (variable) density is critically important in accurately capturing
the physical behavior of complex fluid systems, especially in thermally driven processes such as
material processing, lubrication, thermal management in electronics, and environmental heat transfer.
In non-Newtonian nanofluid systems, where interactions between momentum, heat, and mass transfer
are highly nonlinear, accounting for density variations, enhances model fidelity and enables realistic
simulation of buoyancy-driven flows. Several investigations have addressed the significance of variable
density in diverse thermal-fluid contexts. Previous research has extensively examined the influence
of temperature-dependent density across various thermal-fluid scenarios. For instance, Salem et
al. [15] investigated its effect on hydromagnetics mixed convection near moving plates, demonstrating
its role in flow stratification. Siddiqa et al. [16] studied radiation-coupled mixed convection along
permeable surfaces, emphasizing density-driven forces, while their later work [17] revealed thermal
field sensitivity to density gradients in natural convection over horizontal disks. Recent advancements
further highlight its importance: Ullah et al. [18] analyzed oscillatory heat transfer under reduced
gravity and thermal stratification, and Ullah and his colleague [19] explored reactive nanofluid flows
near magnetized sheets, with applications in machining and lubrication. Boukholda et al. [20]
integrated thermal density effects in microelectronic cooling systems with magnetized nanofluids,
and Haider et al. [21] examined viscous dissipation in magneto-Ree-Eyring nanofluids under slip
conditions, reinforcing its impact on heat and mass transfer.

The proliferation of diverse numerical methodologies has fundamentally transformed scientific
and engineering research. These evolving computational techniques provide robust solutions for
analytically intractable problems, significantly expanding our capacity to model intricate physical
systems. This advancement continues to drive innovation across multidisciplinary domains including
thermal science, biomedical applications, materials engineering, and fluid mechanics, as example,
Fahmy’s research series ( [22,23]) has substantially progressed numerical methods in bioheat transfer.
The initial work introduced a hybrid LRBFCM-GBEM algorithm for solving time-fractional dual-
phase-lag bioheat transfer in functionally graded tissues. Subsequently, a nonlinear boundary-
element formulation was developed to handle space-time fractional dual-phase-lag responses under
electromagnetic heating. The third collaborative work further advanced boundary-element methods
by incorporating memory effects through fractional bioheat modeling. Together, these contributions
have significantly enriched numerical capabilities and expanded applications in biomedical thermal
engineering.

The importance of the standard Fibonacci and Lucas polynomials (SFLPs), together with their
generalized and modified sequences, has led to several research studies examining them. Theoretical
findings on the SFLPs have been established. The authors in [24] have articulated conclusions on the
SFLPs and their interrelations with other polynomials, especially orthogonal polynomials. Alternative
formulations of Lucas polynomials were developed and utilized in [25] to tackle the time-fractional
diffusion equation. Further contributions on these polynomials can be found in [26]. The studies are
not restricted to the SFLPs, but many researchers are interested in introducing and investigating several
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modified and generalized sequences of SFLPs. The authors in [27] have simplified certain radicals
by utilizing two generalized categories of SFLPs. Generalized bivariate FLPs were examined [28].
In [29], the authors introduced and analyzed several k-Fibonacci and k-Lucas polynomial expressions.
The generalizations of the FLPs were analyzed in [30]. Various sequences of the FLPs, together with
their generalizations, have been employed in numerous studies to tackle different forms of differential
equations. The authors of [31] have developed an approximate solution for a 2D problem utilizing
a combination of FLPs. The researchers of [32] employed generalized Lucas polynomials and the
wavelet approach to address some fractional optimal control problems.

While numerous studies ( [33,34]) have explored nanofluid flow over stretching surfaces, none have
simultaneously incorporated temperature-dependent viscosity, density variation, and linearly varying
thermal conductivity within a second-grade fluid framework under convective heating. Moreover, the
combined influence of these variable-property effects on the higher-order momentum formulation has
not been quantified in prior literature. This study introduces a novel mathematical model that unifies
these mechanisms and demonstrates, for the first time, their coupled impact on skin friction, heat
transfer, and mass transport, thereby filling a clear gap in both theory and application.

2. Model development

This investigation examines a stable, 2D laminar flow of a non-Newtonian Williamson nanofluid
past an impermeable stretching sheet. The base fluid demonstrates density variations with temperature
and nonlinear viscous characteristics, while nanoparticles are subject to both thermophoresis and
Brownian diffusion. The system incorporates thermal radiation effects and surface convective heat
transfer. Below is the representation of the physical model.

o
oo © T = Tm Concentration Layer

h,
Momentum Layer

o
)
@ IThermal Layer
i o\r’

I Williamson Nanofluid Stretching Sheet

Figure 1. Model configuration.

X, U

The mathematical formulation employs continuity, momentum, energy, and mass conservation
equations within the Boussinesq framework. The flow physics is captured through four governing
equations:
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Continuity Equation [15]:
0 0
— — =0. 2.1
ax(pu)+ay(pV) 0 (2.1)
Momentum Equation (non-Newtonian fluid model) [12]:
ou  Ou u 0 {[ r (0u)l (8u)}
U— +v—=——< |1+ —|— — - (2.2)
dox dy p(T)dy v2 \dy/|\dy

Energy Equation (including thermophoresis, Brownian motion, and radiation) [12]:

oT  OT 0T 8C Dy (dT\ 1 ,dq, 1 8 ar
— +v—=1{Dp——+—|—| ;- —[(k—1]. 2.3
u6x+v8y T{ B@y 0y+Too(8y)} p(T)cp(ay)+p(T)cp8y(K(9y) 2.3)
Concentration Equation [12]:
2 2
W€ 0C Do 0Ty OC (2.4)

ax oy TT. o TPy

Here, we must observe that the governing equations represent the following physical principles:
Eq (2.1) describes mass conservation with density variations; Eq (2.2) defines momentum balance
for the non-Newtonian fluid with temperature-dependent viscosity and second-grade effects; Eq (2.3)
expresses energy conservation incorporating Brownian motion, thermophoresis, radiation, and variable
thermal conductivity; while Eq (2.4) governs nanoparticle concentration through diffusion and
thermophoresis. This formulation ensures comprehensive physical representation of the complex
transport phenomena. Now, the physical model requires satisfaction of these peripheral conditions:

u=cx, —«k—=h(T;-T), C=C, v=0, a y=0, (2.5)

u—0, T - T, C - Cq, as y — oo, (2.6)

The nanoparticle concentration field is represented by C, where C,, indicates the wall concentration
and C, the free-stream value. Particle transport mechanisms include Dg (Brownian diffusion
coefficient) for concentration-gradient driven motion and D7 (thermophoretic coefficient) for
temperature-gradient migration. Thermal radiation is quantified by ¢,, while k denotes fluid thermal
conductivity. The system’s thermal properties are characterized by c, (specific heat capacity) and
7 (nanoparticle-to-fluid heat capacity ratio). The velocity field components u (x—direction) and v
(y—direction) characterize the nanofluid motion. The formulation incorporates temperature-dependent
density po(T') to model thermal buoyancy effects. Fluid rheology is described by dynamic viscosity u
and non-Newtonian parameter I', which quantifies the nonlinear viscous response. Thermal conditions
are specified through temperature variables: T (field), T, (wall), T, (surface convection), and T
(ambient). Other relevant parameters include the stretching rate of the surface ¢, and the heat transfer
coeflicient at the wall A, while v represents the kinematic viscosity of the fluid. Further, the radiative
heat flux ¢, in this study has been modeled strictly in accordance with the Rosseland diffusion
approximation [35]. The formulation used follows the standard assumptions of optically thick media,
where the radiative contribution is represented as a diffusion process. The linearization of the radiative
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term and its incorporation into the energy equation fully adhere to the classical Rosseland framework
widely adopted in thermal boundary-layer analysis. To reduce the system, the following similarity
transformations are introduced:

To-T 1Y 10%

0(’7): T —T B Y= ‘/;/Xf(ﬂ), u_/_)ayv V:_;a’ (27)
Co—-C Y
o= = Nev [ pmay 2.8)

To simplify the governing system, the stream function ¥ is introduced such that it automatically
satisfies the continuity equation. The similarity variable 7 reduces the partial differential equations to
ordinary ones, the dimensionless concentration is given by ¢(7), and the dimensionless temperature is
given by 6(n). The function f(n) emerges from the similarity transformation of the stream function.
The formulation considers thermally induced changes in the Williamson fluid’s density and viscosity
characteristics during motion, as quantified through the following mathematical expressions ( [36,37]):

p(T) = poe™°’, k=ko (1 +ab), (2.9)

where p, is the constant density, kj is the constant conductivity, ¢ is the density parameter, and «
is the conductivity factor. By computing the required differential terms and implementing suitable
transformations (2.7) and (2.8) for the model (2.2) to (2.4), the mass conservation condition is satisfied.
We subsequently obtain the complete system of transport equations for concentration, thermal energy,
and fluid momentum, shown below:

(f/// _50/]@//) (/lf” +e(59>+€259(ff// _f/Z) — O, (210)
1
o {(07=00)(1+ab+7) -t} +e°7F 0 + Q0 + QO =0, (2.11)
T
Q
¢ -5 + Q—’ (07 -602)+S.f¢' " =0. (2.12)
b

The presented terms below result from carefully executed simplifications of the original framework
conditions documented in the referenced Eqs (2.5) and (2.6):

f=0, f=1, @=-1-6, ¢=1, a n=0, (2.13)

f -0, 60— 0, ¢ — 0, as n — oo. (2.14)

The dynamics of this complex system are dictated by a particular combination of influential
variables that capture the essential physics. We formally identify these controlling parameters through
the following definitions:

2 160 T3 Dy (T, — T, h
A= 4|=Su, I, T=—m= = r ) g o
v 3o k* HoT s Ko Y ¢po
Dy (C,, - Co,
pr=t g - 0D L Y (2.16)
Ko H PoDg
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In this study, the parameter A represents a local Williamson parameter based on the x—coordinate.
As a spatially dependent variable, its value evolves throughout the flow field, establishing the validity
of the solution strictly within a local similarity framework. For graphical representation, specific
constant values of 4 were selected, corresponding to flow analysis at fixed x—positions across
all y—coordinates. The definitions of these factors are: local Williamson parameter A, radiation
parameter V', thermophoresis parameter €),, convection parameter §, Prandtl number Pr, Brownian
motion parameter €),, and Schmidt number S.. Further, this study examines several key engineering
parameters that characterize the transport phenomena at the surface: the modified skin friction
coefficient C foe%, which quantifies shear stress effects; the scaled local Nusselt number N uxRe%l,
representing heat transfer efficiency; and the dimensionless Sherwood number Sh.Re™, describing
mass transfer rates. These parameters serve as critical indicators of system performance and can be
mathematically defined through the following relationships:

l 1 -1
S CfiRet =~ (e”“’) + g f”(O)) £7(0), Sh,Re? = —¢'(0), 2.17)

Nu, Re? = — (1+7T+a6(0))6(0). (2.18)
3. Implementation of the approximation method

This work aims to investigate the combined Fibonacci-Lucas polynomials and their characteristics.
Furthermore, we provide an approximation formula for the derivatives of the MFLPs. Then, we will
use it for solving the proposed model with the help of the least squares method.

3.1. Fundamentals of FLPs

We can derive the SFLPs using the following two recurrence formulas, respectively [38]:

Fi(z) = 2Fi_1(2) — Fi2(2) = 0, Fo(z) =0, Fi(z) =1,

3.1
Li(z) — zLi-1(z) — Li-2(2) = 0, Ly(z) = 2, Li(z) =z
The Fibonacci and Lucas polynomials can be represented by [38]:
L]
-k
F,(z) = (m )Zm_Zk_]’
k=0 k
- (3.2)
1
Ly(2) = —( )z’”‘z" :
~m— k\ k

Also, we present two categories of non-orthogonal polynomials: the generalized Fibonacci
polynomials F f’B (z), and the generalized Lucas polynomials Lf"B (2), both of which were examined
in [27], and can be expressed, respectively, as follows:

FAB(2) = AzFY2 () + BFYS(2), FP( =1, FMP@)=Az r=2,

L) = AL @+ B, '@ =2 L’ =4z r22

(3.3)
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3.2. Presenting the merged FLPs

This subsection introduces a new merged FLP and gives some characteristics of these polynomials.
The two recursive formulas in (3.1) show that both FLPs adhere to the same pattern; however, they
commence with distinct initial values; therefore, we can get [39]:

$i(2) = 20i-1(2) = $i2(2) =0, ¢o(x) =a,  ¢i(z) = bz, (3.4)

generalizes the two sets in (3.1). We symbolize ¢;(z) = F Lf"b (z) for the merged Fibonacci and Lucas
polynomials, that is:

FL(2) — zF LY (z) = FLY(z) = 0, FLY"()=a,  FLY() = bz (3.5)
Both F;(z) and L;(z) are particular polynomials of F L?’b(z). In fact, we have
Fin@=FL'@, L) =FL'(). (3.6)
Remark 3.1. [/39]

The fundamental concept for deriving the formulae associated with the polynomials F Lf’b(z) that
fulfil (3.5) is encapsulated in the following theorem, which demonstrates that F Lf’b (z) can be articulated
in terms of two specific Fibonacci polynomials.

Theorem 3.1. [39]
The MFLPs of order £ € Z* can be expressed as:
FLY" @) = b Fr1(2) + (a — b) Fr(2). 3.7)
Theorem 3.2.

Consider a positive integer i. The power of impersonation of F Lf’b(z) is:

(3.8)

L5] . .
=2k + Dp_1((G = 2k)b + ka) .
FL;l,b(Z) — ;_0 (l + )k lligl ) + Cl) ZI_Zk.

3.3. A derivative expression of the MFLPs

In this subsection, we give an expression for the derivatives of the MFLPs in terms of other
parameters of the MFLPs. From this expression, some important specific formulas are obtained.

Theorem 3.3. [39]

Consider the two positive integers s and m with m > s. D*FL%"(z) has the following expression:

< D+ Dpoi(m—p - 1!

1
DFL%(z) = - .
apzz(; pl(=p+m—ys)! (3.9)

(=2bp(p + s) + ap(—m + p + s) + bm(2p + s))FLZfS_2p(z).

As a special case, the derivatives D* FL%"(z) can be expressed as combinations of their original
ones.
Any function ¥/(z) can be approximated in terms of the MFLPs as follows:

m

V(@) = Y@ = ) e FL (). (3.10)

t=0
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3.4. Approximate formula of the derivatives

The essential objective of this part is to give an approximate formula for the derivatives of the
MFLPs. We will commence with the presentation of the subsequent lemma.

Lemma 3.1.
Let FL‘;’b(z) be an MFLP for £ =0,1,...,n — 1, where n > 0. Then
D" FL}"(z) = 0. 3.11)
Proof. This lemma can be proved by using equation (3.8) and the properties of the differential operator.
O
Theorem 3.4.
Suppose that the function ¥(z) is approximated as in (3.10), and then D™(,,(z)) can be given as:
m_ 5] . N .
o ab  _0-din b (€—=2i+ 1);-1((€=20)b + ia)(€ - 2i),
DOWn@) =y Y @t T @ = . . (3.12)

{=n i=n

Proof. Having the analytic expression of the MFLPs, using characteristics of D™, and with the help of
Lemma 1, one gets fori =n,n+1,...,m:

. Y u Y (E=2i+ 1) (C=20b+ia) ,
D" (y(2)) = D [Z e FLi"@)|=D" | ) e - 27
=0 =0 =0
m L] (6 =2i+ D). (€ =20)b + ia) o
:ZZQ’ i D"
=0 =0 ' (3.13)
i LZZJJ (€=2i+ 1) (€ =20Db+ia)€—20)y ;, 5,
= Ce - Z
{=n i=n l!
n 4] |
— Z Z c (DZ,?’n Zt’—Zt—n’
{=n i=n
where (DZ’?’H is defined in (3.12), and this concludes the proof of the theorem. O

Now, we examine the convergence analysis of the approach suggested in this study. We shall present
the subsequent theorem.

Theorem 3.5.

Assume that DY"y(z) € C(0,1) for j=0,1,...,mand P,, = span {FL?’b(Z)}ZLO- If ¢,,(2) defined in
(3.10) is the best approximation (BA) to y(z) from ¥,, and:

1
S, (WD) = fo W) — v dz,

then
lim 5,,(4(2)) = 0.
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Proof. First, we can take into consideration the following generalized Taylor formula:

‘n

“ Z
Yr2)= » ——D"y(07).
;0 (En)!

It is readily seen from formula (3.14) and ¥*(z) € \P,, that one gets

(m+1)n
———A,,
((m+ 1n)!

where A, > sup, |D(’"”+”)w(§)|. On account of this, ¥,,(z) is the BA of y(z), and due to the above
relation, one can conclude:

[ (z) =¥ (2)l <

1
1 (2) = ¥m@Il5 < W (2) = ¥ @)I5 = f l(z) — ¥ (2)|*dz
0

1 s Z(2m-¢—2)rz
< AN——d7
fo "((mn + n)!)?

(3.14)
2 1
— Aﬂ f Z(2m+2)ndZ
((mn +m1)* Jo
A2
T ()X @m+ 2+ 1)
Consequently, one can get lim,,,« [[¥(z) = ¥(2)Il3 = 0. O

4. Numerical enforcement of the MFLPs

To employ the MFLPs and obtain the required scheme for solving (2.10)—(2.14) inside the domain
[0, 7] = [0, 6], we follow the following steps (algorithm):
(1) We approximate f(n), 8(n), and ¢(n) by f,.(n), 6,.(n), and ¢,,(n) in the following form:

m m m

ful) = > eFL@),  Ou() = Y deFL(),  ¢u) = ) e FL @) (4.1)

k=0 k=0 k=0

(2) By substituting from Eqgs (3.12) and (4.1) in (2.10)—(2.14), we obtain:

m 4] m 4] IRTERE .
ZZC[ (DZ’?3 (-2 ZZC‘) mnf—zz—z Z d (D??l =21 ||
(=3 i=3 =2 i=2 (=1 i=1
A e n P+ Exp|s Y. diFLY (|| + Exp|26 ) d FLZ’b(n)]. (4.2)
(=2 i=2 k=0 ] k=0
n L&) n L%J Y
=2 i=2 t=1 i=1
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4 4 2
1 m LEJ m LEJ
a,b —2i-2 a,b —2i—1
ﬁ[z de @iy 51 _52 de @
(=2 i=2 =1 i=1
n w5 Y
[1 + T +a Z d, FLZ’b(n)] - Z de @y q ! ]
k:O €=1 l:1
Exp|6 Y di FLY )|+ Exp|26 ) di FLZ”’()])] [Z c FL;;”(n)]. (4.3)
k=0 k=0 k=0
m 5] m 5] m 5]
Z d (D?? 1 n€—21—1 +Q, Z d, (sz? 1 £-2i—1 Z e q)la? 1 £-2i—1
=1 i=1 =1 i=1 =1 i=1
w L4 ’
+Q, | > > ey g =0,
=1 i=1
m 5] m 5] m 5] '
Z e (Dla? ) (=22 _ s Z d CD?,?J nf—zz—l Z Z e CDZ ?’1 £-2i-1
(=2 i=2 =1 i=1 (=1 i=1
o (o L | n L6 Y
t o Do, s | Y de @y (4.4)
b\ =2 = =1 i=1
m m 5] m
+ S, [Z c FLZ’b(n)] Z er CD?? ) n A Exp|26 Z d FLZb(n)] =0,
k=0 =1 i=1 k=0
Y afFL0 =0, Y aDVFLPO)=1, ) eFL0)=1,
k=0 k=0 k=0
Z d, DVFL(0) + B [1 - Z d FLZ"’(O)] =0, (4.5)
k=0 k=0
> aDVFLYG) =0, Y d&FLYM) =0, ) eFLY () = 0.
k=0 k=0 k=0

(3) To conduct a comprehensive numerical analysis through simulation, we assume that the numerical

solution (f,,(1), 6,,(n), ¢.,,(n)) for the presented issue may be provided. Consequently, we estimate
the residual error function (REF) as follows:
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m 5] m L]
REF,(n3;a,b,m) = Z cr ?:?’3 n 23 s Z e (D?,’?,z o272

(=3 i=3 (=2 i=2
m L;J m |.§J ) m
DX e A Y D e @ Explo . dy FLZ’}’(U)}
=1 i=1 =2 i=2 k=0
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The minimal residual (REF;(n;a,b,m) — 0, i = 1, 2,3) indicates that the approximate solution
closely aligns with the exact solution, meaning the absolute error approaches zero. This kind of
error is used when the true solution is unknown, which is sometimes difficult in the case of highly

nonlinear differential equations. Ultimately, the REF possesses various other forms; for further
details, refer to [40].
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(4) By applying the least squares method, we define the following objective functions:

3
SFl[co,cl,...,cm]:f [REF,(n; a, b,m)] dn,
0
3
SFZ[dO’dl,---adm]:f [REFz(n;a,b,m)]dn, 4.9)
0

3
SF3[€O,€1,---,€m]=f [REF;(3; a, b, m)] dn.
0

To minimize S Fi[co, 1, ..., Cmls S Faldy, dy, ....dy], S Fsleo, e, ...,e,], and obtain the optimal
values of ¢;, d;, e;, i =0,1,2,...,m, we construct the following relations:
OSF _ 0SF; 0SF;

0. 0, 0, k=012 ..m 4.10
Er od; e " (4.10)

(5) Equations (4.10) constitute a set of (3m + 3) nonlinear algebraic equations that can be resolved
utilizing the Newton iteration approach to get the coefficients {cx, di, ei}]’,,. Furthermore, we
may ascertain the numerical solution of the model (2.10)—(2.14) utilizing the formulas (4.1).

5. Validation of the numerical scheme

The current model’s credibility was established through systematic comparison with the benchmark
study of Nadeem et al. [41], who investigated pseudoplastic Williamson fluid flow over a stretching
surface. Their analytical approach utilized similarity transformations and boundary layer theory,
with solutions obtained via homotopy analysis. Significantly, their formulation represents a specific
instance of our comprehensive model when the non-Newtonian Williamson parameter § assumes a
zero value. Tabulated results (Table 1) reveal remarkable consistency between both studies, with
marginal deviations not exceeding 0.0002%. This quantitative agreement rigorously validates our
generalized methodology’s mathematical soundness and computational precision, while demonstrating
its backward compatibility with established solutions under limiting conditions.

Table 1. Numerical values of %C foe% for distinct values of 1 at 6 = 0.0.
A  Nadeemetal. [41] Present work

0.0 1.000000 1.00000000000
0.1 0.976588 0.97658778901
0.2 0.939817 0.93981659028
0.3 0.882720 0.88271899807

Further, Table 2 presents another validation of the present numerical scheme by comparing the
computed values of the reduced Nusselt number in terms of (—6'(0)), with the benchmark results
reported by Khan and Pop [42] for a wide range of Prandtl numbers with the condition (6(0) = 1).
As the table shows, the values obtained in this study match the reference data with excellent accuracy
across all tested cases—from low-Prandtl-number fluids (Pr = 0.07) to highly viscous thermal regimes

AIMS Mathematics Volume 10, Issue 12, 29012-29036.



29026

(Pr = 7.0). The close agreement, often to more than six significant figures, confirms the robustness and
reliability of the current computational formulation and its consistency with well-established results in
the literature.

Table 2. Numerical values of —6'(0) for distinct valuesof Prata =A=60=Q, =Q;, =T =

0.0.
Pr  Khan and Pop [42] Present work
0.07 0.0663 0.066299808723
0.20 0.1691 0.169071098740
0.70 0.4539 0.453870145925
2.00 09113 0.911288014789
7.00 1.8954 1.895399501478

6. Results and discussion

This study examines the influence of key governing parameters on fluid flow, heat transfer, and
mass transport through advanced numerical modeling. The analysis begins by transforming the
original governing equations into a computationally tractable form using appropriate mathematical
formulations. The transformed system is then solved numerically using an innovative merged
Fibonacci-Lucas polynomial approach, which provides high-accuracy solutions for the nonlinear
coupled equations. The computational implementation leverages MATHEMATICA'’s robust symbolic
and numerical capabilities to generate comprehensive solutions for the velocity, temperature, and
concentration fields. From these fundamental distributions, derived physical quantities, including
surface shear stress (skin friction coefficient) and rates of heat and mass transfer (Nusselt and
Sherwood numbers), are calculated through systematic differentiation and post-processing of the
primary solution variables. This approach enables precise characterization of the transport phenomena
while maintaining numerical stability across the parameter space. As shown in Figure 2, the variable
density parameter ¢ significantly influences the velocity f”(17), temperature 6(77), and concentration ¢(17)
profiles. An increase in 6 makes the fluid’s density more responsive to temperature changes, leading
to noticeable shifts in flow behavior. This is because a higher ¢ strengthens the density gradient in
the boundary layer, thereby modifying momentum distribution. The resulting increased resistance to
fluid motion causes a reduction in the velocity, temperature, and concentration profiles. Therefore,
the variable density parameter is vital in controlling the energy and mass transport properties of the
nanofluid system. Physically, increasing the variable density parameter enhances the density gradient,
which strengthens resistance to flow and reduces the velocity, temperature, and concentration profiles.

The Williamson parameter A characterizes the non-Newtonian pseudoplastic behavior of the fluid,
where increasing A signifies stronger deviation from Newtonian viscosity. As evidenced in Figure 3,
increasing A significantly alters the transport dynamics: the velocity profile f’(7) diminishes near the
surface due to enhanced shear-thinning effects, which reduce the fluid’s resistance to deformation
and weaken convective momentum transfer. Concurrently, the temperature profile 6(r) rises away
from the sheet, indicating a shift toward diffusion-dominated heat transfer as convective transport
becomes less effective. The concentration field ¢(n7) also responds to these changes, exhibiting a
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gradual enhancement with higher A values, likely due to the combined effects of suppressed momentum
diffusion and sustained nanoparticle mobility under shear-thinning conditions. The observed patterns
illustrate how the Williamson parameter adjusts the equilibrium among viscous, thermal, and mass
transport mechanisms. This has significant implications for optimizing non-Newtonian nanofluid
systems in scenarios where precise heat and mass transfer performance is essential. Physically,
increasing the Williamson parameter enhances shear-thinning, which reduces near-surface velocity
while promoting diffusion-dominated heat and mass transfer.

] 1.0t il
=02 ! =03, 0,=0.8, =0.1, Sc=1.5 o) ——
e 08| =02, Pr=6.0, Y=0.5 o) ——
0.6 I
E [ §=0.0,05, 1.0
0.47
0.2 I
T OO I L L L L
5 1 2 3 5
g 1
Figure 2. Variation of ¢ on f’(n), and variation of ¢ on ¢(n7) and 6(n).
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Figure 3. Variation of A on f’(n), and variation of A on ¢(77) and 6(n).

As demonstrated in Figure 4, both the radiation parameter (' and convection parameter (3 critically
modify the thermal characteristics 6(n) of the boundary layer. The radiation effect shows a direct
correlation with temperature distribution, where elevated Y values substantially strengthen radiative
heat flux within the fluid medium, producing a marked temperature increase, particularly in regions
distant from the stretching surface. This thermal enhancement occurs because radiation provides
supplementary energy input, effectively expanding the thermal boundary layer thickness while raising
the overall temperature magnitudes [43]. Similarly, the convection parameter § exhibits more
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complex behavior. Increased g values amplify surface heat transfer rates to the ambient medium,
yet lead to higher temperature fields within the boundary layer. This apparent behavior stems from
the parameter’s role in governing the convective boundary condition, in which stronger convective
coupling actually reduces cooling efficiency at the surface-to-fluid interface, thereby promoting thermal
energy accumulation in the near-wall region. Physically, increasing the radiation and convection
parameters enhances thermal energy within the boundary layer by boosting radiative flux and
modifying surface heat exchange, leading to higher fluid temperatures.
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Figure 4. Variation of I’ on (), and variation of 8 on 6(n).
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Figure 5. Variation of €, on (1), and variation of €, on ¢(1n).

As illustrated in Figure 5, the Brownian motion parameter 2, plays a role in shaping both the
temperature profile 6(r7) and the concentration profile ¢(r). As €, moves from the value 0.5 to
1.5, the temperature profile 8(n) rises, indicating enhanced heat transfer due to intensified particle
motion and micro-scale interactions. Conversely, the concentration profile ¢(7) decreases with higher
), as stronger Brownian diffusion promotes wider particle dispersion, reducing local concentration.
These trends highlight the significant role of Brownian motion in governing heat and mass transfer
dynamics in the studied system. In shaping these profiles 6(r7) and ¢(n), other fixed values of governing
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parameters come into play: @ = 0.2, Pr = 6.0, T = 0.5, 8 = 0.3, and 6 = 0.5. Furthermore, Sc¢ = 1.5
has an effect on mass diffusion. Physically, increasing the Brownian motion parameter intensifies
particle movement, which enhances heat transfer while reducing local nanoparticle concentration due
to wider dispersion.

The thermophoresis parameter €, significantly influences both the temperature distribution (1)
and concentration profile ¢(77) as observed from Figure 6. The temperature profile 6(r) increases with
rising €);, a phenomenon attributed to the migration of particles from hot to cold regions, which in turn
enhances thermal energy transfer. Similarly, elevated €, values drive particles toward cooler regions,
resulting in a higher concentration distribution ¢(n). This phenomenon illustrates thermophoresis’
ability to regulate both thermal and mass transfer in nanofluidic environments. The interaction between
thermophoresis and Brownian motion (£2,) becomes especially significant, as their combined effects
govern the system’s overall transport behavior.
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Figure 6. Variation of , on 6(17), and variation of €, on ¢(1).
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Figure 7. Variation of @ on (1), and variation of Pr on 6(1n).

Figure 7 demonstrates the significant influence of the thermal conductivity parameter & and Prandtl
number Pr on the temperature distribution 8(17). When «a rises from 0.2 to 1.0, and the Prandtl number
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Pr enhances from 3.0 to 8.0, the temperature profile 6(r7) drops, which suggests that better thermal
conductivity helps heat dissipate more effectively and lessens thermal gradients. Similarly, a rise in
the Prandtl number from 3.0 to 8.0 results in a clear reduction in temperature distribution. The reason
for this is that fluids characterized by larger Prandtl numbers exhibit diminished thermal diffusivity,
thereby hindering heat conduction and causing the thermal boundary layer to become narrower.
Physically, increasing thermal conductivity and the Prandtl number enhances heat dissipation, reducing
the temperature profile and narrowing the thermal boundary layer.

Figure 8. Stream lines for 6 = 0.0, and stream lines for 6 = 1.0.

The streamline distributions in Figure 8 demonstrate a fundamental transformation driven by the
density variation parameter 6. For the case of constant density (6 = 0.0), the streamlines maintain wide,
uniform spacing with gentle curvature, reflecting a stable, well-developed flow field characteristic of
fluids with homogeneous properties. When density variation is introduced (6 = 1.0), the streamline
pattern undergoes significant reorganization: the paths become more densely clustered near the
surface and exhibit substantially increased curvature. This contraction occurs because the density
gradient creates localized buoyancy effects that accelerate fluid elements in specific regions, thereby
compressing the streamlines and intensifying the velocity gradients.

With the parameters examined, we will now investigate their impact on the skin friction coefficient
%C foe%, the local Nusselt number Nu, Re%, and the local Sherwood number S/, Re™ using the
data presented in Table 3. Clearly, the numerical results demonstrate significant parametric influences
on surface friction % C foe%, heat transfer Nu, Re_Tl, and mass transfer S/, Re? characteristics. The
density parameter 6 shows a positive correlation with all three transport metrics-increasing ¢ from 0.0
to 1.0 enhances skin friction by 23.5%, the Nusselt number by 17.9%, and the Sherwood number by
33.3%. This stems from density-driven buoyancy effects that intensify near-wall gradients. Thermal
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radiation factor I’ demonstrates particularly strong impact on the heat transfer mechanism, with the
Nusselt number increasing 101% as Y rises from 0.0 to 1.0, while causing only a marginal decrease in
skin friction (1.1%) and the Sherwood number (1.1%) reduction.

Table 3. Values of %C foe%, Nu,Re?, and Sh,Re? after affecting with the governing
parameters with S, = 1.5.

§ A4 YT B Q ©Q a Pr LCfRe? Nu,Re? Sh.Re>
00 02 05 03 08 0. 02 6.0 096084 0264725 0.743891
05 02 05 03 08 0.1 02 60 1.08169 0.293251 0.874339
1.0 02 05 03 08 0.1 02 60 118692 0312212 0.991787
05 00 05 03 08 0.1 02 60 1.12885 0.288031 0.889139
05 03 05 03 08 0.1 02 60 105574 0.296551 0.825623
05 06 05 03 08 0.1 02 6.0 0.96097 0.299807 0.759778
05 02 00 03 08 0.1 02 6.0 109072 0.193665 0.882749
05 02 05 03 08 0.1 02 6.0 108169 0.293251 0.874339
05 02 1.0 03 08 0.1 02 60 10783 0.389661 0.873315
05 02 05 0.1 08 0.1 02 6.0 101907 0.124643 0.810557
05 02 05 03 08 0.1 02 60 1.08169 0.293251 0.874339
05 02 05 05 08 0.1 02 60 1.11885 0410001 0.911943
05 02 05 03 05 0.1 02 60 1.05435 0333374 0.823646
05 02 05 03 08 0.1 02 60 108169 0.293251 0.874339
05 02 05 03 1.5 01 02 60 115117 0.186324 0.991819
05 02 05 03 08 00 02 60 1.07973 0.296309 0.880979
05 02 05 03 08 02 02 60 1.08371 0.290094 0.868497
05 02 05 03 08 05 02 60 1.0909 0.280025 0.855887
05 02 05 03 08 0.1 02 60 1.08169 0.293251 0.874339
05 02 05 03 08 0.1 06 60 107696 0.327797 0.867332
05 02 05 03 08 0.1 1.0 60 107310 0360215 0.861648
05 02 05 03 08 0.1 02 3.0 107728 0.295163 0.876743
05 02 05 03 08 0.1 02 50 1.07906 0.295821 0.872644
05 02 05 03 08 0.1 02 80 1.08055 0.296505 0.870971

The convection parameter 8 shows similar trends, with 229% Nusselt number enhancement and
12.5% skin friction increase at higher S values, indicating strengthened thermal boundary layer
development. The Williamson parameter A exhibits an inverse relationship with both % C foe% and
Sh, Re™ but a direct correlation with the thermal transfer coefficient. As A increases from 0.0 to
0.6, friction decreases by 14.9%, the Sherwood number reduces by 14.6%, while the Nusselt number
shows modest 4.1% improvement, reflecting the competing effects of shear-thinning and viscoelastic
behavior. Likewise, nanoparticle transport parameters reveal contrasting behavior, where Brownian
motion parameter €2, enhances mass transfer by approximately 20.4% while reducing heat transfer
by approximately 44.1%, whereas thermophoresis €2, shows inverse effects in the thermal transfer
mechanism and a positive impact in the mass transfer mechanism. Additionally, the conductivity
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parameter « improves the Nusselt number by 22.8% with minimal impact on other quantities.

7. Conclusions

This study successfully developed and analyzed a comprehensive model for non-Newtonian
Williamson nanofluid flow over an impermeable stretching surface. The framework incorporated
temperature-dependent density, thermal conductivity, mixed convection, nanoparticle dynamics, and
thermal radiation effects. The numerical methodology, combining Fibonacci-Lucas polynomials with
least squares approximation, demonstrated remarkable accuracy and stability. Results confirm the
approach’s effectiveness in capturing crucial physical phenomena, establishing a reliable foundation
for investigating thermally sensitive fluids with complex rheological behavior. Key findings reveal
that:

(1) The density and convection parameters notably boost all transport rates, leading to substantial
increases in skin friction, heat transfer, and mass transfer.

(2) The Williamson parameter and Brownian motion exhibit contrasting effects: while they reduce
friction and thermal transfer, they simultaneously enhance mass transport.

(3) Heat transfer performance is considerably enhanced by thermal radiation and conductivity,
evidenced by radiation’s over 100% increase in the Nusselt number, highlighting their key role in
thermal energy movement.

(4) Increasing the variable density parameter decreases the velocity, temperature, and concentration
profiles, underscoring its significant impact on flow and transport characteristics.

(5) The thermophoresis effect significantly improves temperature and concentration profiles,
demonstrating its critical influence on regulating energy and particle transfer in nanofluid
applications.

(6) Future work may extend the present spectral framework to unsteady or three-dimensional
Williamson nanofluid flows, enabling broader application to advanced thermal management
systems.
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