Research article

Stabilization of stochastic systems driven by $ G $-Lévy process via discrete-time feedback control

  • Published: 11 December 2025
  • MSC : 60H05, 60H10, 60H20

  • In this paper, we establish sufficient conditions for the mean square and quasi-sure exponential stability of stochastic differential equations driven by the $ G $-Lévy process under discrete-time feedback control in the drift term. Departing from the conventional Lyapunov-based approach, we propose a comparative method to analyze the stabilization effect of the designed control. An example validates the effectiveness of the proposed control strategy.

    Citation: Guanghua Wei, Bingjun Wang, Mingxia Yuan. Stabilization of stochastic systems driven by $ G $-Lévy process via discrete-time feedback control[J]. AIMS Mathematics, 2025, 10(12): 29151-29167. doi: 10.3934/math.20251282

    Related Papers:

  • In this paper, we establish sufficient conditions for the mean square and quasi-sure exponential stability of stochastic differential equations driven by the $ G $-Lévy process under discrete-time feedback control in the drift term. Departing from the conventional Lyapunov-based approach, we propose a comparative method to analyze the stabilization effect of the designed control. An example validates the effectiveness of the proposed control strategy.



    加载中


    [1] S. Peng, Filtration consistent nonlinear expectations and evaluations of contingent claims, Acta Math. Appl. Sin.-E., 20 (2004), 1–24. https://doi.org/10.1007/s10255-004-0161-3 doi: 10.1007/s10255-004-0161-3
    [2] S. Peng, Nonlinear expectations and nonlinear Markov chains, Chinese Ann. Math., 26B (2005), 159–184. https://doi.org/10.1142/S0252959905000154 doi: 10.1142/S0252959905000154
    [3] S. Peng, Nonlinear expectations and stochastic calculus under uncertainty-With Robust CLT and $G$-Brownian motion, 1 Ed, Berlin: Springer, 2019. https://doi.org/10.1007/978-3-662-59903-7
    [4] F. Gao, Pathwise properties and homeomorphic flows for stochastic differential equations driven by $G$-Brownian motion, Stoch. Proc. Appl., 119 (2009), 3356–3382. https://doi.org/10.1016/j.spa.2009.05.010 doi: 10.1016/j.spa.2009.05.010
    [5] B. Wang, H. Gao, M. Li, M. Yuan, Reflected forward-backward stochastic differential equations driven by $G$-Brownian motion with continuous monotone coefficients, Qual. Theor. Dyn. Syst., 21 (2022), 1–34. https://doi.org/10.1007/s12346-022-00671-1 doi: 10.1007/s12346-022-00671-1
    [6] X. Li, X. Lin, Y. Lin, Lyapunov-type conditions and stochastic differential equations driven by $G$-Brownian motion, J. Math. Anal. Appl., 439 (2016), 235–255. https://doi.org/10.1016/j.jmaa.2016.02.042 doi: 10.1016/j.jmaa.2016.02.042
    [7] L. Xu, J. Suo, H. Hu, Boundedness analysis of stochastic distributed delay-coupled systems on networks driven by $G$-Brownian motion, Int. J. Control, 97, (2024) 331–347. https://doi.org/10.1080/00207179.2022.2142853 doi: 10.1080/00207179.2022.2142853
    [8] L. Xu, D. He, Q. Zhu, Boundedness analysis of neutral stochastic systems driven by $G$-Brownian motion, Eur. J. Control, 75 (2024), 1–8. https://doi.org/10.1016/j.ejcon.2023.100940 doi: 10.1016/j.ejcon.2023.100940
    [9] L. Hu, Y. Ren, T. Xu, $p$-moment stability of solutions to stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Comput., 230 (2014), 231–237. https://doi.org/10.1016/j.amc.2013.12.111 doi: 10.1016/j.amc.2013.12.111
    [10] D. Zhang, Z. Chen, Exponential stability for stochastic differential equations driven by $G$-Brownian motion, Appl. Math. Lett., 25 (2012), 1906–1910. https://doi.org/10.1016/j.aml.2012.02.063 doi: 10.1016/j.aml.2012.02.063
    [11] X. Mao, Almost sure exponential stabilization by discrete-time stochastic feedback control, IEEE T. Automat. Contr., 61 (2016), 1619–1624. https://doi.org/10.1109/TAC.2015.2471696 doi: 10.1109/TAC.2015.2471696
    [12] X. Mao, W.Liu, L. Hu, Q. Luo, J. Lu, Stabilization of hybrid stochastic differential equations by feedback control based on discrete-time state observations, Systems Control Lett., 73 (2014), 88–95. https://doi.org/10.1016/j.sysconle.2014.08.011 doi: 10.1016/j.sysconle.2014.08.011
    [13] W. Yin, J. Cao, Y. Ren, Quasi-sure exponential stabilization of stochastic systems induced by $G$-Brownian motion with discrete time feedback control, J. Math. Anal. Appl., 474 (2019), 276–289. https://doi.org/10.1016/j.jmaa.2019.01.045 doi: 10.1016/j.jmaa.2019.01.045
    [14] W. Yin, J. Cao, Y. Ren, G. Zheng, Improved result on stabilization of $G$-SDEs by feedback control based on discrete-time observations, SIAM J. Control Optim., 50 (2021), 1927–1950. https://doi.org/10.1137/20M1311028 doi: 10.1137/20M1311028
    [15] M. Hu, S. Peng, $G$-Lévy processes under sublinear expectations, 2009. https://doi.org/10.48550/arXiv.0911.3533
    [16] L. Ren, On representation theorem of sublinear expectation related to $G$-Lévy processes and paths of $G$-Lévy processes, Stat. Probabil. Lett., 83 (2013), 1301–1310. https://doi.org/10.1016/j.spl.2013.01.031 doi: 10.1016/j.spl.2013.01.031
    [17] K. Paczka, Itô calculus and jump diffusions for $G$-Lévy processes, arXiv Preprint, 2012. https://doi.org/10.48550/arXiv.1211.2973
    [18] K. Paczka, $G$-martingale representation in the $G$-Lévy setting, arXiv Preprint, 2014. https://doi.org/10.48550/arXiv.1404.2121
    [19] B. Wang, H. Gao, Exponential stability of solutions to stochastic differential equations driven by $G$-Lévy processes, Appl. Math. Opt., 83 (2021), 1191–1218. https://doi.org/10.1007/s00245-019-09583-0 doi: 10.1007/s00245-019-09583-0
    [20] G. Shen, X. Wu, X. Yin, Stabilization of stochastic differential equations driven by $G$-Lévy process with discrete-time feedback control, Discrete Contin. Dyn.-B, 26 (2021), 755–774. https://doi.org/10.3934/dcdsb.2020133 doi: 10.3934/dcdsb.2020133
    [21] H. Yuan, Q. Zhu, Discrete-time feedback stabilization for neutral stochastic functional differential equations driven by $G$-Lévy process, Chaos Soliton. Fract., 166 (2023), 1–13. https://doi.org/10.1016/j.chaos.2022.112981 doi: 10.1016/j.chaos.2022.112981
    [22] L. Denis, M. Hu, S. Peng, Function spaces and capacity related to a sublinear expectation: Application to $G$-Brownian motion paths, Potential Anal., 34 (2011), 139–161. https://doi.org/10.1146/annurev.bioeng.1.1.299 doi: 10.1146/annurev.bioeng.1.1.299
    [23] X. Li, S. Peng, Stopping times and related Itô calculus with $G$-Brownian motion, Stoch. Proc. Appl., 121 (2011), 1492–1508. https://doi.org/10.1016/j.spa.2011.03.009 doi: 10.1016/j.spa.2011.03.009
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(473) PDF downloads(13) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog