Research article

An effective double direction method for solving convex-constrained nonlinear equations with image restoration

  • Published: 10 December 2025
  • MSC : 65K05, 90C52, 90C56, 94A08

  • The restoration of medical imaging has recently gained significant attention due to its critical role in the medical sciences. This research introduces two efficient double-direction approaches for solving large-scale monotone nonlinear equations and addressing medical image restoration problems. The acceleration parameter in the first algorithm was derived by approximating the Jacobian matrix with a diagonal matrix, while the second algorithm integrates a correction parameter using the Picard-Mann hybrid iterative procedure. The study established the descent condition and demonstrated both the global convergence and R-linear convergence rate of the proposed method under favorable conditions. Numerical experiments showed that the procedure significantly enhances the numerical performance of the proposed methods. Additionally, one of the techniques was successfully applied to restore blurred medical images, highlighting its practical applicability in the field of medical imaging.

    Citation: Muhammad Abdullahi, Abdullah Al-Yaari, Auwal Bala Abubakar, Abubakar Sani Halilu, Muhamad Afendee Muhamed. An effective double direction method for solving convex-constrained nonlinear equations with image restoration[J]. AIMS Mathematics, 2025, 10(12): 28926-28953. doi: 10.3934/math.20251273

    Related Papers:

  • The restoration of medical imaging has recently gained significant attention due to its critical role in the medical sciences. This research introduces two efficient double-direction approaches for solving large-scale monotone nonlinear equations and addressing medical image restoration problems. The acceleration parameter in the first algorithm was derived by approximating the Jacobian matrix with a diagonal matrix, while the second algorithm integrates a correction parameter using the Picard-Mann hybrid iterative procedure. The study established the descent condition and demonstrated both the global convergence and R-linear convergence rate of the proposed method under favorable conditions. Numerical experiments showed that the procedure significantly enhances the numerical performance of the proposed methods. Additionally, one of the techniques was successfully applied to restore blurred medical images, highlighting its practical applicability in the field of medical imaging.



    加载中


    [1] M. Abdullahi, A. B. Abubakar, K. Muangchoo, Modified three-term derivative-free projection method for solving nonlinear monotone equations with application, Numer. Algorithms, 95 (2024), 1459–1474. https://doi.org/10.1007/s11075-023-01616-8 doi: 10.1007/s11075-023-01616-8
    [2] M. Abdullahi, A. S. Halılu, A. M. Awwal, N. Pakkaranang, On efficient matrix-free method via quasi-Newton approach for solving system of nonlinear equations, Adv. Theor. Nonlinear Anal. Appl., 5 (2021), 568–579. Available from: https://atnaea.org/index.php/journal/article/view/225.
    [3] A. B. Abubakar, A. H. Ibrahim, M. Abdullahi, M. Aphane, J. Chen, A sufficient descent LS-PRP-BFGS-like method for solving nonlinear monotone equations with application to image restoration, Numer. Algorithms, 96 (2024), 1423–1464. https://doi.org/10.1007/s11075-023-01690-4 doi: 10.1007/s11075-023-01690-4
    [4] J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1988), 141–148. https://doi.org/10.1093/imanum/8.1.141 doi: 10.1093/imanum/8.1.141
    [5] A. C. Bovik, Handbook of image and video processing, 2Eds., Academic Press, New York, 2010. https://doi.org/10.1016/B978-0-12-374648-1.00069-2
    [6] R. H. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16 (1995), 1190–1208. https://doi.org/10.1137/0916069 doi: 10.1137/0916069
    [7] N. Djuranovic-Milicic, M. Gardaševic-Filipovic, A multistep curve search algorithm in nonlinear optimization: Nondifferentiable convex case, Facta Univer.-Ser. Math., 25 (2010), 11–24. https://doi.org/:10.2298/YJOR0801047D doi: 10.2298/YJOR0801047D
    [8] N. Duranovic-Milicic, A multi-step curve search algorithm in nonlinear optimization, Yugoslav J. Oper. Res., 18 (2008), 1.
    [9] N. Duranovic-Milicic, A multi-step curve search algorithm in nonlinear optimization, Yugoslav J. Oper. Res., 18 (2016), 1. https://doi.org/:10.2298/YJOR0801047D doi: 10.2298/YJOR0801047D
    [10] A. S. Halilu, A. Majumder, M. Y. Waziri, K. Ahmed, Signal recovery with convex constrained nonlinear monotone equations through conjugate gradient hybrid approach, Math. Comput. Simul., 187 (2021), 520–539. https://doi.org/10.1016/j.matcom.2021.03.020 doi: 10.1016/j.matcom.2021.03.020
    [11] A. S. Halilu, A. Majumder, M. Y. Waziri, A. M. Awwal, K. Ahmed, On solving double direction methods for convex constrained monotone nonlinear equations with image restoration, Comput. Appl. Math., 40 (2021), 1–27. https://doi.org/10.1007/s40314-021-01624-1 doi: 10.1007/s40314-021-01624-1
    [12] A. S. Halilu, M. Y. Waziri, An improved derivative-free method via double direction approach for solving systems of nonlinear equations, J. Ramanujan Math. Soc., 33 (2018), 75–89. https://doi.org/10.37727/jrms/2018/v33i1p75 doi: 10.37727/jrms/2018/v33i1p75
    [13] S. H. Khan, A Picard–Mann hybrid iterative process, J. Fix. Point Theory A., 2013 (2013), 1–10. https://doi.org/10.1186/1687-1812-2013-18 doi: 10.1186/1687-1812-2013-18
    [14] W. J. Leong, M. A. Hassan, M. Y. Waziri, A matrix-free quasi-Newton method for solving large-scale nonlinear systems, Comput. Math. Appl., 62 (2011), 2354–2363. https://doi.org/10.1016/j.camwa.2011.07.023 doi: 10.1016/j.camwa.2011.07.023
    [15] D. Li, M. Fukushima, A globally and superlinearly convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations, SIAM J. Numerical Anal., 37 (1999), 152–172. https://doi.org/10.1137/S0036142998335704 doi: 10.1137/S0036142998335704
    [16] J. K. Liu, S. J. Li, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl., 70 (2015), 2442–2453. https://doi.org/10.1016/j.camwa.2015.09.014 doi: 10.1016/j.camwa.2015.09.014
    [17] J. K. Liu, B. Tang, T. Liu, Z. Yang, S. Liang, An accelerated double-step derivative-free projection method based algorithm using Picard–Mann iterative process for solving convex constrained nonlinear equations, J. Compu. Appl. Math., 464 (2025), 116541. https://doi.org/10.1016/j.cam.2025.116541 doi: 10.1016/j.cam.2025.116541
    [18] J. Martínez, Practical quasi-Newton methods for solving nonlinear systems, J. Comput. Appl. Math., 124 (2000), 97–121. https://doi.org/10.1016/S0377-0427(00)00434-9 doi: 10.1016/S0377-0427(00)00434-9
    [19] E. D. Dolan, J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201–213. https://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263
    [20] E. Nermeh, M. Abdullahi, A. S. Halilu, H. Abdullahi, Modification of a conjugate gradient approach for convex constrained nonlinear monotone equations with applications in signal recovery and image restoration, Commun. Nonlinear Sci., 136 (2024), 108079. https://doi.org/10.1016/j.cnsns.2024.108079 doi: 10.1016/j.cnsns.2024.108079
    [21] J. Nocedal, S. J. Wright, Numerical optimization, Springer Science, 2006. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0
    [22] M. Petrović, V. Rakočević, N. Kontrec, S. Panić, D. Ilić, Hybridization of accelerated gradient descent method, Numer. Algorithms, 79 (2018), 769–786. https://doi.org/10.1007/s11075-017-0460-4 doi: 10.1007/s11075-017-0460-4
    [23] B. Saheya, G. Chen, Y. Sui, C. Wu, A new Newton-like method for solving nonlinear equations, SpringerPlus, 5 (2016), 1–13. https://doi.org/10.1186/s40064-016-2909-7 doi: 10.1186/s40064-016-2909-7
    [24] S. B. Salihu, A. S. Halilu, M. Abdullahi, K. Ahmed, P. Mehta, S. Murtala, An improved spectral conjugate gradient projection method for monotone nonlinear equations with application, J. Appl. Math. Comput., 70 (2024), 3879–3915. https://doi.org/10.1007/s12190-024-02121-4 doi: 10.1007/s12190-024-02121-4
    [25] M. V. Solodov, B. F. Svaiter, A globally convergent inexact Newton method for systems of monotone equations, in Reformulation: Nonsmooth, Piecewise Smooth, Semi-Smooth and Smoothing Methods, Springer, 1998,355–369.
    [26] M. Y. Waziri, H. U. Muhammad, A. S. Halilu, K. Ahmed, Modified matrix-free methods for solving systems of nonlinear equations, Optimization, 69 (2020), 134–148. https://doi.org/10.1080/02331934.2020.1778689 doi: 10.1080/02331934.2020.1778689
    [27] Y. Xiao, H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310–319. https://doi.org/10.1016/j.jmaa.2013.04.017 doi: 10.1016/j.jmaa.2013.04.017
    [28] Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416–2423. https://doi.org/10.1016/j.apnum.2009.04.004 doi: 10.1016/j.apnum.2009.04.004
    [29] N. Zhang, J. Liu, B. Tang, A three-term projection method based on spectral secant equation for nonlinear monotone equations, JPN J. Ind. Appl. Math., 41 (2024), 617–635. https://doi.org/10.1007/s13160-023-00624-4 doi: 10.1007/s13160-023-00624-4
    [30] W. Zhou, D. Li, Limited memory BFGS method for nonlinear monotone equations, J. Comput. Math., 25 (2007), 89–96.
    [31] W. Zhou, D. Li, A globally convergent BFGS method for nonlinear monotone equations without any merit functions, Math. Comput., 77 (2008), 2231–2240. https://doi.org/10.1090/S0025-5718-08-02121-2 doi: 10.1090/S0025-5718-08-02121-2
    [32] Z. Dai, X. Chen, F. Wen, A modified Perry's conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations, Appl. Math. Comput., 270 (2015), 378–386. https://doi.org/10.1016/j.amc.2015.08.014 doi: 10.1016/j.amc.2015.08.014
    [33] L. Zhang, W. Zhou, Spectral gradient projection method for solving nonlinear monotone equations, J. Comput. Appl. Math., 196 (2006), 478–484. https://doi.org/10.1016/j.cam.2005.10.002 doi: 10.1016/j.cam.2005.10.002
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(406) PDF downloads(15) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog