This paper gives the analytical solution to the one-dimensional compressible MHD equations without magnetic diffusion in half space. The interesting result is that the solution to one-dimensional compressible isentropic MHD equations without magnetic diffusion on $ (x, t)\in[0, +\infty)\times R_{+} $ can be expressed as the initial density and boundary function of velocity strictly if and only if the solution to the Riccati differential equation of the boundary condition function exists under some assumptions. When the magnetic field is zero, the compressible MHD equations become compressible Navier–Stokes equations. The analytical solution was studied by Dou & Zhao 2021 on the 1D Navier–Stokes equations, which is a special case in this paper. The magnetic field and the coupling term of the magnetic field and velocity result in more complicated computations and estimates. And, we can prove that the analytical solution to compressible MHD equations without magnetic diffusion depends continuously on the initial value. The existence of a steady solution to compressible MHD equations is given, and the large-time behavior and asymptotic limit theorem of the analytical solution are also shown when the time tends to infinity and the initial data of magnetic field goes to zero. Finally, we give several examples to show that the set of this kind of solution is not empty.
Citation: Changsheng Dou, Hongtian Zhang, Tengzhe Zhao. Analytical solution and asymptotic limit to one-dimensional compressible magnetohydrodynamic equations without magnetic diffusion[J]. AIMS Mathematics, 2025, 10(12): 28908-28925. doi: 10.3934/math.20251272
This paper gives the analytical solution to the one-dimensional compressible MHD equations without magnetic diffusion in half space. The interesting result is that the solution to one-dimensional compressible isentropic MHD equations without magnetic diffusion on $ (x, t)\in[0, +\infty)\times R_{+} $ can be expressed as the initial density and boundary function of velocity strictly if and only if the solution to the Riccati differential equation of the boundary condition function exists under some assumptions. When the magnetic field is zero, the compressible MHD equations become compressible Navier–Stokes equations. The analytical solution was studied by Dou & Zhao 2021 on the 1D Navier–Stokes equations, which is a special case in this paper. The magnetic field and the coupling term of the magnetic field and velocity result in more complicated computations and estimates. And, we can prove that the analytical solution to compressible MHD equations without magnetic diffusion depends continuously on the initial value. The existence of a steady solution to compressible MHD equations is given, and the large-time behavior and asymptotic limit theorem of the analytical solution are also shown when the time tends to infinity and the initial data of magnetic field goes to zero. Finally, we give several examples to show that the set of this kind of solution is not empty.
| [1] |
H. Beirao da Veiga, Long time behavior for one-dimensional motion of a general barotropic viscous fluid, Arch. Rational Mech. Anal., 108 (1989), 141–160. https://doi.org/10.1007/BF01053460 doi: 10.1007/BF01053460
|
| [2] |
G. Q. Chen, D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differ. Equ., 182 (2002), 344–376. https://doi.org/10.1006/jdeq.2001.4111 doi: 10.1006/jdeq.2001.4111
|
| [3] |
Y. Cho, H. In, M. Yang, Liouville-type theorems for the stationary ideal compressible MHD equations, Appl. Math. Lett., 172 (2026), 109694. https://doi.org/10.1016/j.aml.2025.109694 doi: 10.1016/j.aml.2025.109694
|
| [4] |
V. David, B. D. G. Chandran, R. Meyrand, J. Squire, E. L. Yerger, Generalized expanding-box formulations of reduced magnetohydrodynamics in the solar wind, J. Plasma Phys., 91 (2025), E68. https://doi.org/10.1017/S0022377825000145 doi: 10.1017/S0022377825000145
|
| [5] |
S. Ding, H. Wen, C. Zhu, Global classical large solutions of 1D compressible Navier–Stokes equations with density-dependent viscosity and vacuum, J. Differ. Equations, 251 (2011), 1696–1725. https://doi.org/10.1016/j.jde.2011.05.025 doi: 10.1016/j.jde.2011.05.025
|
| [6] |
C. Dou, S. Jiang, Q. Ju, Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys., 64 (2013), 1661–1678. https://doi.org/10.1007/s00033-013-0311-7 doi: 10.1007/s00033-013-0311-7
|
| [7] |
C. Dou, Q. Ju, Low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain for all time, Commun. Math. Sci., 12 (2014), 661–679. https://doi.org/10.4310/CMS.2014.v12.n4.a3 doi: 10.4310/CMS.2014.v12.n4.a3
|
| [8] |
C. Dou, Z. Zhao, Analytical solution to 1D compressible Navier–Stokes equations, J. Funct. Spaces, 2021 (2021), 6339203. https://doi.org/10.1155/2021/6339203 doi: 10.1155/2021/6339203
|
| [9] |
A. Hastir, B. Jacob, H. Zwart, Riccati equations and LQ-optimal control for a class of hyperbolic PDEs, Syst. Control Lett., 205 (2025), 106244. https://doi.org/10.1016/j.sysconle.2025.106244 doi: 10.1016/j.sysconle.2025.106244
|
| [10] |
D. Hoff, Global existence for 1D compressible isentropic Navier–Stokes equations with large initial data, Trans. Amer. Math. Soc., 303 (1987), 169–181. https://doi.org/10.1090/S0002-9947-1987-0896014-6 doi: 10.1090/S0002-9947-1987-0896014-6
|
| [11] |
X. Hu, D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Rational Mech. Anal., 197 (2010), 203–238. https://doi.org/10.1007/s00205-010-0295-9 doi: 10.1007/s00205-010-0295-9
|
| [12] |
X. Hu, D. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41 (2009), 1272–1294. https://doi.org/10.1137/080723983 doi: 10.1137/080723983
|
| [13] |
S. Jiang, Q. Ju, F. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions, Commun. Math. Phys., 297 (2010), 371–400. https://doi.org/10.1007/s00220-010-0992-0 doi: 10.1007/s00220-010-0992-0
|
| [14] |
S. Jiang, Q. Ju, F. Li, Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations, Nonlinearity, 25 (2012), 1351–1365. https://doi.org/10.1088/0951-7715/25/5/1351 doi: 10.1088/0951-7715/25/5/1351
|
| [15] |
S. Jiang, Q. Ju, F. Li, Z. Xin, Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data, Adv. Math., 259 (2014), 384–420. https://doi.org/10.1016/j.aim.2014.03.022 doi: 10.1016/j.aim.2014.03.022
|
| [16] |
Q. Jiu, Y. Wang, Z. Xin, Global well-posedness of the Cauchy problem of two-dimensional compressible Navier–Stokes equations in weighted spaces, J. Differ. Equations, 255 (2013), 351–404. https://doi.org/10.1016/j.jde.2013.04.014 doi: 10.1016/j.jde.2013.04.014
|
| [17] |
Q. Jiu, Y. Wang, Z. Xin, Global well-posedness of 2D compressible Navier–Stokes equations with large data and vacuum, J. Math. Fluid Mech., 16 (2014), 483–521. https://doi.org/10.1007/s00021-014-0171-8 doi: 10.1007/s00021-014-0171-8
|
| [18] | Y. I. Kanel, A model system of equations for the one-dimensional motion of a gas, Differencial'nye Uravnenija, 4 (1968), 721–734. |
| [19] |
A. V. Kazhikhov, Cauchy problem for viscous gas equations, Sib. Math. J., 23 (1982), 44–49. https://doi.org/10.1007/BF00971419 doi: 10.1007/BF00971419
|
| [20] |
J. C. Kegley, A global existence and uniqueness theorem for a Riccati Equation, SIAM J. Math. Anal., 14 (1983), 47–59. https://doi.org/10.1137/0514004 doi: 10.1137/0514004
|
| [21] |
J. Li, Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier–Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640–671. https://doi.org/10.1016/j.matpur.2014.02.001 doi: 10.1016/j.matpur.2014.02.001
|
| [22] |
K. Li, B. Lv, Y. Wang, Global well-posedness and large-time behavior of 1D compressible Navier–Stokes equations with density-depending viscosity and vacuum in unbounded domains, Sci. China Math., 64 (2021), 1231–1244. https://doi.org/10.1007/s11425-019-9521-4 doi: 10.1007/s11425-019-9521-4
|
| [23] |
J. Li, Z. Xin, Global well-posedness and large-time asymptotic behavior of classical solutions to the compressible Navier–Stokes equations with vacuum, Ann. PDE, 5 (2019), 7. https://doi.org/10.1007/s40818-019-0064-5 doi: 10.1007/s40818-019-0064-5
|
| [24] |
M. Liang, Y. Ou, The low Mach number limit of non-isentropic magnetohydrodynamic equations with large temperature variations in bounded domains, Sci. China Math., 67 (2024), 787–818. https://doi.org/10.1007/s11425-022-2127-3 doi: 10.1007/s11425-022-2127-3
|
| [25] |
J. S. Linshiz, E. S. Titi, Analytical study of certain magnetohydrodynamic-$\alpha$ models, J. Math. Phys., 48 (2007), 065504. https://doi.org/10.1063/1.2360145 doi: 10.1063/1.2360145
|
| [26] |
N. Liu, P. Zhang, Global small analytic solutions of MHD boundary layer equations, J. Differ. Equations, 281 (2021), 199–257. https://doi.org/10.1016/j.jde.2021.02.003 doi: 10.1016/j.jde.2021.02.003
|
| [27] | D. Serre, Solutions faibles globales des equations de Navier–Stokes pour un fluide compressible, C. R. Acad. Sci. Paris Ser. I Math., 303 (1986), 639–642. |
| [28] |
W. Shi, X. Yang, X. Yan, Determination of the 3D Navier–Stokes equations with damping, Electron. Res. Arch., 30 (2022), 3872–3886. https://doi.org/10.3934/era.2022197 doi: 10.3934/era.2022197
|
| [29] |
I. Stra$\check{s}$kraba, A. Zlotnik, On a decay rate for 1D-viscous compressible barotropic fluid equations, J. Evol. Equ., 2 (2002), 69–96. https://doi.org/10.1007/s00028-002-8080-3 doi: 10.1007/s00028-002-8080-3
|
| [30] |
A. Suen, D. Hoff, Global low-energy weak solutions of the equations of three-dimensional compressible magnetohyfrodynamics, Arch. Rational Mech. Anal., 205 (2012), 27–58. https://doi.org/10.1007/s00205-012-0498-3 doi: 10.1007/s00205-012-0498-3
|
| [31] |
Y. F. Yang, X. Gu, C. Dou Global well-posedness of strong solutions to the magnetohydrodynamic equations of compressible flows, Nonlinear Anal., 95 (2014), 23–37. https://doi.org/10.1016/j.na.2013.08.024 doi: 10.1016/j.na.2013.08.024
|
| [32] |
Y. Ye, Global classical solution to 1D compressible Navier–Stokes equations with no vacuum at infinity, Math. Meth. Appl. Sci., 39 (2016), 776–795. https://doi.org/10.1002/mma.3521 doi: 10.1002/mma.3521
|
| [33] |
J. Zhang, S. Jiang, F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics, Math. Mod. Meth. Appl. Sci., 19 (2009), 833–875. https://doi.org/10.1142/S0218202509003644 doi: 10.1142/S0218202509003644
|
| [34] | W. Zhang, Global existence and blow-up for Riccati equation, Dynam. Syst. Appl., 12 (2003), 251–258. |
| [35] |
J. Zhang, T. G. Fang, Y. F. Zhong, Analytical solution of magnetohydrodynamic sink flow, Appl. Math. Mech.-Engl. Ed., 32 (2011), 1221–1230. https://doi.org/10.1007/s10483-011-1495-9 doi: 10.1007/s10483-011-1495-9
|
| [36] |
P. Zhang, C. Zhu, Global classical solutions to 1D full compressible Navier–Stokes equations with the Robin boundary condition on temperature, Nonlinear Anal.: Real World Appl., 47 (2019), 306–323. https://doi.org/10.1016/j.nonrwa.2018.11.004 doi: 10.1016/j.nonrwa.2018.11.004
|