Research article Special Issues

Bayesian stress-strength inference for the Moran-Downton bivariate exponential distribution under modified Type-Ⅱ censoring

  • Published: 10 December 2025
  • MSC : 62F10, 62N05, 62P30

  • The stress-strength reliability $ \delta = \Pr(X < Y) $, where $ (X, Y) $ is Moran-Downton bivariate exponential distributed, is investigated under a modified bivariate Type-Ⅱ censoring scheme. Likelihood contributions for the four censoring configurations are derived via series representations of the modified Bessel function and evaluated with finite partial-sum approximations that admit geometric error bounds, enabling direct likelihood computation. Bayesian inference is developed using two Markov chain Monte Carlo strategies: (ⅰ) Metropolis-Hastings within Gibbs sampler using the likelihood based on censored data; and (ⅱ) a data-augmentation scheme that imputes censored observations. Extensive simulations across different censoring proportions and parameter settings show a decreasing mean squared error with increasing sample size and a slightly superior correlation estimate between $ X $ and $ Y $ for the approach using a likelihood based on censored data, while both methods perform comparably for $ \delta $. Finally, the methodology is illustrated with a simulated numerical example and a real bivariate dataset, highlighting implementation details and the benefits of the proposed censoring design for estimating the model parameters and stress-strength reliability.

    Citation: Yu-Jau Lin, Tzong-Ru Tsai, Yuhlong Lio, Hon Keung Tony Ng, Liang Wang. Bayesian stress-strength inference for the Moran-Downton bivariate exponential distribution under modified Type-Ⅱ censoring[J]. AIMS Mathematics, 2025, 10(12): 28878-28907. doi: 10.3934/math.20251271

    Related Papers:

  • The stress-strength reliability $ \delta = \Pr(X < Y) $, where $ (X, Y) $ is Moran-Downton bivariate exponential distributed, is investigated under a modified bivariate Type-Ⅱ censoring scheme. Likelihood contributions for the four censoring configurations are derived via series representations of the modified Bessel function and evaluated with finite partial-sum approximations that admit geometric error bounds, enabling direct likelihood computation. Bayesian inference is developed using two Markov chain Monte Carlo strategies: (ⅰ) Metropolis-Hastings within Gibbs sampler using the likelihood based on censored data; and (ⅱ) a data-augmentation scheme that imputes censored observations. Extensive simulations across different censoring proportions and parameter settings show a decreasing mean squared error with increasing sample size and a slightly superior correlation estimate between $ X $ and $ Y $ for the approach using a likelihood based on censored data, while both methods perform comparably for $ \delta $. Finally, the methodology is illustrated with a simulated numerical example and a real bivariate dataset, highlighting implementation details and the benefits of the proposed censoring design for estimating the model parameters and stress-strength reliability.



    加载中


    [1] A. H. Abdel-Hamid, Stress-strength reliability for general bivariate distributions, J. Egypt. Math. Soc., 24 (2016), 617–621. https://doi.org/10.1016/j.joems.2016.01.005 doi: 10.1016/j.joems.2016.01.005
    [2] S. Al-Saadi, D. Young, Estimators for the correlation coefficient in a bivariate exponential distribution, J. Stat. Comput. Sim., 11 (1980), 13–20. https://doi.org/10.1080/00949658008810386 doi: 10.1080/00949658008810386
    [3] D. S. Bai, Y. Hong, Estimation of Pr(X < Y) in the exponential case with common location parameter, Commun. Stat. Theor. M., 21 (1992), 269–282. https://doi.org/10.1080/03610929208830777 doi: 10.1080/03610929208830777
    [4] N. Balakrishnan, Progressive censoring methodology: an appraisal, TEST, 16 (2007), 211–259. https://doi.org/10.1007/s11749-007-0061-y doi: 10.1007/s11749-007-0061-y
    [5] N. Balakrishnan, R. Aggarwala, Progressive censoring: Theory, methods, and applications, New York: Springer, 2000. https://doi.org/10.1007/978-1-4612-1334-5
    [6] N. Balakrishnan, E. Cramer, The art of progressive censoring: Applications to reliability and quality, New York: Springer, 2014. https://doi.org/10.1007/978-0-8176-4807-7
    [7] N. Balakrishnan, H. K. T. Ng, On estimation of the correlation coefficient in Moran-Downton multivariate exponential distribution, J. Stat. Comput. Sim., 71 (2001), 41–58. https://doi.org/10.1080/00949650108812133 doi: 10.1080/00949650108812133
    [8] Z. W. Birnbaum, On a use of Mann-Whitney statistics, In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1 (1956), 13–17. https://scispace.com/pdf/on-a-use-of-the-mann-whitney-statistic-1fww2ymmj6.pdf
    [9] A. Childs, B. Chandrasekar, N. Balakrishnan, D. Kundu, Exact likelihood inference based on Type-Ⅰ and Type-Ⅱ hybird censored samples from the exponential distribution, Ann. Inst. Stat. Math., 55 (2003), 319-330. https://doi.org/10.1007/BF02530502 doi: 10.1007/BF02530502
    [10] E. Cramer, Inference for stress-strength models based on Weinman multivariate exponential samples, Commun. Stat. Theor. M., 30 (2001), 331–346. https://doi.org/10.1081/STA-100002035 doi: 10.1081/STA-100002035
    [11] F. Downton, Bivariate exponential distributions in reliability theory, J. R. Stat. Soc. B, 32 (1970), 408–417. https://doi.org/10.1111/J.2517-6161.1970.TB00852.X doi: 10.1111/J.2517-6161.1970.TB00852.X
    [12] P. Enis, S. Geisser, Estimation of the probability that $Y < X$, J. Am. Stat. Assoc., 66 (1971), 162–168. https://doi.org/10.1080/01621459.1971.10482238 doi: 10.1080/01621459.1971.10482238
    [13] B. Epstein, Truncated life tests in the exponential case, Ann. Math. Statist., 25 (1954), 555–564. https://doi.org/10.1214/aoms/1177728723 doi: 10.1214/aoms/1177728723
    [14] S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE T. Pattern Anal., PAMI-6 (1984), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596 doi: 10.1109/TPAMI.1984.4767596
    [15] A. I. Genç, Estimation of $P(X>Y)$ with Topp-Leone distribution, J. Stat. Comput. Sim., 83 (2013), 326–339. https://doi.org/10.1080/00949655.2011.607821 doi: 10.1080/00949655.2011.607821
    [16] W. K Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97–109. https://doi.org/10.1093/biomet/57.1.97 doi: 10.1093/biomet/57.1.97
    [17] Q. He, H. N. Nagaraja, Correlation estimation in Downton's bivariate exponential distribution using incomplete samples, J. Stat. Comput. Sim., 81 (2011), 531–546. https://doi.org/10.1080/00949650903436562 doi: 10.1080/00949650903436562
    [18] W. J. Huster, R. Brookmeyer, S. G. Self, Modelling paired survival data with covariates, Biometrics, 45 (1989), 145–156. https://doi.org/10.2307/2532041 doi: 10.2307/2532041
    [19] G. Iliopoulos, D. Karlis, I. Ntzoufras, Bayesian estimation in Kibble's bivariate gamma distribution, Can. J. Stat., 33 (2005), 571–589. https://doi.org/10.1002/cjs.5550330408 doi: 10.1002/cjs.5550330408
    [20] L. Jiang, A. C. M. Wong, A note on inference for $P(X < Y)$ for right truncated exponentially distribution data, Stat. Papers, 49 (2008), 637–651. https://doi.org/10.1007/s00362-006-0034-3 doi: 10.1007/s00362-006-0034-3
    [21] W. F. Kibble, A two-variate gamma type distribution, Sankhyā Indian J. Stat., 5 (1941), 137–150.
    [22] C. Kim, Y. Chung, Bayesian estimation of $P(Y < X)$ from Burr-type X model containing spurious observations, Stat. Papers, 47 (2006), 643–651. https://doi.org/10.1007/s00362-006-0310-2 doi: 10.1007/s00362-006-0310-2
    [23] S. Kotz, Y. Lumelskii, M. Pensky, The stress-strength model and its generalizations, Singapore: World Scientific, 2003. https://doi.org/10.1142/5015
    [24] D. Kundu, R. Gupta, Estimation of $P[Y < X]$ for generalized exponential distribution, Metrika, 61 (2005), 291–308. https://doi.org/10.1007/s001840400345 doi: 10.1007/s001840400345
    [25] D. Kundu, R. D. Gupta, Estimation of $P[Y < X]$ for Weibull distributions, IEEE T. Reliab., 55 (2006), 270–280. https://doi.org/10.1109/TR.2006.874918 doi: 10.1109/TR.2006.874918
    [26] D. Kundu, M. Raqab, Estimation of $R = P(Y < X)$ for three-parameter Weibull distribution, Stat. Probab. Lett., 79 (2009), 1839–1846. https://doi.org/10.1016/j.spl.2009.05.026 doi: 10.1016/j.spl.2009.05.026
    [27] Y. J. Lin, Y. L. Lio, H. K. T. Ng, L. Wang Bayesian estimation of stress-strength parameter for Moran-Downton Bivariate exponential distribution under progressive Type Ⅱ censoring, In: Bayesian inference and computation in reliability and survival analysis, Cham: Springer, 2022. https://doi.org/10.1007/978-3-030-88658-5_2
    [28] Y. J. Lin, Y. L. Lio, H. K. T. Ng, Bayes estimation of moran-downton bivariate exponential distribution based on censored samples, J. Stat. Comput. Sim., 83 (2013), 837–852. https://doi.org/10.1080/00949655.2011.639771 doi: 10.1080/00949655.2011.639771
    [29] Y. J. Lin, Y. L. Lio, T. R. Tsai, Bayesian estimation of the stress-strength parameter for bivariate normal distribution under an updated Type-Ⅱ hybrid censoring, Mathematics, 13 (2025), 792. https://doi.org/10.3390/math13050792 doi: 10.3390/math13050792
    [30] Y. L. Lio, T. R. Tsai, Estimation of $\delta = P(X < Y)$ for Burr Ⅻ distribution based on the progressively first failure-censored samples, J. Appl. Stat., 39 (2012), 309–322. https://doi.org/10.1080/02664763.2011.586684 doi: 10.1080/02664763.2011.586684
    [31] M. Ali, J. Woo, M. Pal, Inference on reliability $P(Y < X)$ in two-parameter exponential distributions, J. Probab. Stat. Sci., 3 (2004), 119–125.
    [32] M. Ali, M. Pal, J. Woo, Estimation of $P(Y < X)$ when $X$ and $Y$ belong to different distribution families, J. Probab. Stat. Sci., 8 (2010), 35–48.
    [33] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092. https://doi.org/10.1063/1.1699114 doi: 10.1063/1.1699114
    [34] P. A. Moran, Testing for correlation between non-negative variates, Biometrika, 54 (1967), 385–394. https://doi.org/10.2307/2335030 doi: 10.2307/2335030
    [35] R. C. Team, R: A language and environment for statistical computing and graphics, In: Foundation for statistical computing, Vienna, 2022.
    [36] M. Z. Raqab, M. T. Madi, D. Kundu, Estimation of $P(Y < X)$ for the three-parameter generalized exponential distribution, Commun. Stat. Theor. M., 37 (2008), 2854–2864. https://doi.org/10.1080/03610920802162664 doi: 10.1080/03610920802162664
    [37] B. Saraçoğlu, M. F. Kaya, A. M. Abd-elfattah, Comparison of estimators for stress-strength reliability in the Gompertz case, Hacet. J. Math. Stat., 38 (2009), 339–349.
    [38] B. Saraçoğlu, I. Kinaci, D. Kundu, On estimation of $R = P(Y < X)$ for exponential distribution under progressive Type-Ⅱ censoring, J. Stat. Comput. Sim., 82 (2012), 729–744. https://doi.org/10.1080/00949655.2010.551772 doi: 10.1080/00949655.2010.551772
    [39] B. Saraçoğlu, C. Kuş, Estimation of the stress-strength reliability under progressive censoring for Gompertz distribution, In: Proceedings of the Sixth Symposium of Statistics Days, 2008.
    [40] S. Sturtz, U. Ligges, A. Gelman, R2winbugs: A package for running winbugs from R, J. Stat. Softw., 12 (2005), 1–16. https://doi.org/10.18637/jss.v012.i03 doi: 10.18637/jss.v012.i03
    [41] J. G. Surles, W. J. Padgett, Inference for $P(Y < X)$ in the Burr Type X model, J. Appl. Stat. Sci., 7 (1998), 225–238.
    [42] J. G. Surles, W. J. Padgett, Inference for reliability and stress-strength for a scaled Burr Type X distribution, Lifetime Data Anal., 7 (2001), 187–200. https://doi.org/10.1023/A:1011352923990 doi: 10.1023/A:1011352923990
    [43] T. M. Therneau, P. M. Grambsch, Modeling survival data: Extending the cox model, New York: Springer, 2000. https://doi.org/10.1007/978-1-4757-3294-8
    [44] H. Tong, A note on the estimation of $Pr \{Y < X\}$ in the exponential case, Technometrics, 16 (1974), 625–625. https://doi.org/10.1080/00401706.1974.10489247 doi: 10.1080/00401706.1974.10489247
    [45] T. Xavier, J. K. Jose, A study of stress-strength reliability using a generalization of power transformed half-logistic distribution, Commun. Stat. Theor. M., 50 (2021), 4335–4351. https://doi.org/10.1080/03610926.2020.1716250 doi: 10.1080/03610926.2020.1716250
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(376) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(10)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog