Research article Topical Sections

Solving a constrained Sylvester-type system on the commutative quaternion ring

  • Published: 10 December 2025
  • MSC : 15A09, 15A03, 15A24, 15B57

  • This paper establishes solvability conditions and general solution sets for a constrained Sylvester-type system over the commutative quaternion ring by proposing two distinct methods. As a key application, we also analyze the minimum solution of a related optimization problem when this system is solvable. Additionally, the solvability condition and the general form of the Hermitian solutions for this system over the commutative quaternion ring are established in this paper. The main results are validated through an algorithm and a numerical example.

    Citation: Xiao-Xiao Ma, Long-Sheng Liu, Xiao-Quan Chen. Solving a constrained Sylvester-type system on the commutative quaternion ring[J]. AIMS Mathematics, 2025, 10(12): 28861-28877. doi: 10.3934/math.20251270

    Related Papers:

  • This paper establishes solvability conditions and general solution sets for a constrained Sylvester-type system over the commutative quaternion ring by proposing two distinct methods. As a key application, we also analyze the minimum solution of a related optimization problem when this system is solvable. Additionally, the solvability condition and the general form of the Hermitian solutions for this system over the commutative quaternion ring are established in this paper. The main results are validated through an algorithm and a numerical example.



    加载中


    [1] C. Segre, The real representations of complex elements and extension to bicomplex systems, Math. Ann., 40 (1892), 413–467. https://doi.org/10.1007/BF01443559 doi: 10.1007/BF01443559
    [2] Y. N. Xia, X. F. Chen, D. Y. Lin, B. Li, X. J. Yang, Global exponential stability analysis of commutative quaternion-valued neural networks with time delays on time scales, Neural Process Lett., 55 (2023), 6339–6360. https://doi.org/10.1007/s11063-022-11141-9 doi: 10.1007/s11063-022-11141-9
    [3] S. C. Pei, J. H. Chang, J. J. Ding, Commutative reduced biquaternions and their Fourier transform for signal and image processing applications, IEEE T. Signal Proces., 52 (2004), 2012–2031. https://doi.org/10.1109/TSP.2004.828901 doi: 10.1109/TSP.2004.828901
    [4] W. X. Ding, Y. Li, Z. H. Liu, R. Y. Tao, M. C. Zhang, Algebraic method for LU decomposition in commutative quaternion based on semi-tensor product of matrices and application to strict image authentication, Math. Meth. Appl. Sci., 47 (2024), 6036–6050. https://doi.org/10.1002/mma.9905 doi: 10.1002/mma.9905
    [5] Q. W. Wang, Z. H. Gao, J. L. Gao, A comprehensive review on solving the system of equations $AX = C$ and $XB = D$, Symmetry, 17 (2025), 625. https://doi.org/10.3390/sym17040625 doi: 10.3390/sym17040625
    [6] Q. W. Wang, J. L. Gao, A comprehensive review on the generalized Sylvester equation $AX-YB = C$, Symmetry, 17 (2025), 1686. https://doi.org/10.3390/sym17101686 doi: 10.3390/sym17101686
    [7] Z. H. He, A. Dmytryshyn, Q. W. Wang, A new system of Sylvester-like matrix equations with arbitrary number of equations and unknowns over the quaternion algebra, Linear Multilinear A., 73 (2025), 1269–1309. https://doi.org/10.1080/03081087.2024.2413635 doi: 10.1080/03081087.2024.2413635
    [8] L. X. Jin, Q. W. Wang, L. M. Xie, Two systems of dual quaternion matrix equations with applications, Comput. Appl. Math., 44 (2025), 378. https://doi.org/10.1007/s40314-025-03342-4 doi: 10.1007/s40314-025-03342-4
    [9] Z. H. He, W. L. Qin, J. Tian, X. X. Wang, Y. Zhang, A new Sylvester-type quaternion matrix equation model for color image data transmission, Comput. Appl. Math., 43 (2024), 227. https://doi.org/10.1007/s40314-024-02732-4 doi: 10.1007/s40314-024-02732-4
    [10] Y. N. Zhang, D. C. Jiang, J. Wang, A recurrent neural network for solving Sylvester equation with time-varying coefficients, IEEE T. Neural Networ., 13 (2002), 1053–1063. https://doi.org/10.1109/TNN.2002.1031938 doi: 10.1109/TNN.2002.1031938
    [11] H. H. Kösal, M. Akyiğit, M. Tosun, Consimilarity of commutative quaternion matrices, Miskolc Math. Notes, 16 (2015), 965–977. https://doi.org/10.18514/MMN.2015.1421 doi: 10.18514/MMN.2015.1421
    [12] H. H. Kösal, M. Tosun, Universal similarity factorization equalities for commutative quaternions and their matrices, Linear Multilinear A., 67 (2019), 926–938. https://doi.org/10.1080/03081087.2018.1439878 doi: 10.1080/03081087.2018.1439878
    [13] L. Y. Zhang, M. Z. Q. Chen, Z. W. Gao, L. F. Ma, On the explicit Hermitian solutions of the continuous-time algebraic Riccati matrix equation for controllable systems, IET Control Theory A., 18 (2024), 834–845. https://doi.org/10.1049/cth2.12618 doi: 10.1049/cth2.12618
    [14] S. Sra, R. Hosseini, Conic geometric optimization on the manifold of positive definite matrices, SIAM J. Optimiz., 25 (2015), 713–739. https://doi.org/10.1137/140978168 doi: 10.1137/140978168
    [15] X. D. Zhang, X. L. Feng, The Hermitian positive definite solution of the nonlinear matrix equation, Int. J. Nonlin. Sci. Num., 18 (2017), 293–301. https://doi.org/10.1515/ijnsns-2016-0016 doi: 10.1515/ijnsns-2016-0016
    [16] X. Q. Chen, L. S. Liu, X. X. Ma, Q. W. Long, A system of coupled matrix equations with an application over the commutative quaternion ring, Symmetry, 17 (2025), 619. https://doi.org/10.3390/sym17040619 doi: 10.3390/sym17040619
    [17] Y. Zhang, Q. W. Wang, L. M. Xie, The Hermitian solution to a new system of commutative quaternion matrix equations, Symmetry, 16 (2024), 361. https://doi.org/10.3390/sym16030361 doi: 10.3390/sym16030361
    [18] H. H. Kösal, M. Tosun, Commutative quaternion matrices, Adv. Appl. Clifford Al., 24 (2014), 769–779. https://doi.org/10.1007/s00006-014-0449-1 doi: 10.1007/s00006-014-0449-1
    [19] L. M. Xie, Q. W. Wang, A system of matrix equations over the commutative quaternion ring, Filomat, 37 (2023), 97–106. https://doi.org/10.2298/FIL2301097X doi: 10.2298/FIL2301097X
    [20] S. F. Yuan, Y. Tian, M. Z. Li, On Hermitian solutions of the reduced biquaternion matrix equation $(AXB, CXD) = (E, G)$, Linear Multilinear A., 68 (2020), 1355–1373. https://doi.org/10.1080/03081087.2018.1543383 doi: 10.1080/03081087.2018.1543383
    [21] A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and applications, New York: Springer, 2003. https://doi.org/10.1007/0-387-21634-0_4
    [22] J. R. Magnus, L-structured matrices and linear matrix equations, Linear Multilinear A., 14 (1983), 67–88. https://doi.org/10.1080/03081088308817543 doi: 10.1080/03081088308817543
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(257) PDF downloads(39) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog