Herein, we aimed to develop two hybrid inertial viscosity-type forward-backward splitting algorithms for estimating the common solution of the variational inclusion problem and fixed point problem in Hilbert spaces. At the beginning of each iteration, the first algorithm estimated viscosity, fixed point, and inertial extrapolation. On the other hand, the second method estimated viscosity and inertial extrapolation alone. We demonstrated that the sequence induced by the proposed hybrid algorithms has strong convergence. We discussed a few special cases of the proposed algorithms and also presented theoretical applications of our findings. We furnished suitable numerical examples to validate the effectiveness of the recommended approaches.
Citation: Doaa Filali, Mohammad Dilshad, Mohammad Akram, Mohd. Falahat Khan, Syed Shakaib Irfan. Hybrid inertial viscosity-type forward-backward splitting algorithms for variational inclusion problems[J]. AIMS Mathematics, 2025, 10(12): 28829-28860. doi: 10.3934/math.20251269
Herein, we aimed to develop two hybrid inertial viscosity-type forward-backward splitting algorithms for estimating the common solution of the variational inclusion problem and fixed point problem in Hilbert spaces. At the beginning of each iteration, the first algorithm estimated viscosity, fixed point, and inertial extrapolation. On the other hand, the second method estimated viscosity and inertial extrapolation alone. We demonstrated that the sequence induced by the proposed hybrid algorithms has strong convergence. We discussed a few special cases of the proposed algorithms and also presented theoretical applications of our findings. We furnished suitable numerical examples to validate the effectiveness of the recommended approaches.
| [1] |
A. Alamer, M. Dilshad, Halpern-type inertial iteration methods with self-adaptive step size for split common null point problem, Mathematics, 12 (2024), 747. https://doi.org/10.3390/math12050747 doi: 10.3390/math12050747
|
| [2] |
T. O. Alakoya, O. J. Ogunsola, O. T. Mewomo, An inertial viscosity algorithm for solving monotone variational inclusion and common fixed point problems of strict pseudocontractions, Bol. Soc. Mat. Mex., 29 (2023), 31. https://doi.org/10.1007/s40590-023-00502-6 doi: 10.1007/s40590-023-00502-6
|
| [3] |
M. Al-Qurashi, S. Rashid, F. Jarad, E. Ali, R. H. Egami, Dynamic prediction modelling and equilibrium stability of a fractional discrete biophysical neuron model, Results Phys., 48 (2023), 106405. https://doi.org/10.1016/j.rinp.2023.106405 doi: 10.1016/j.rinp.2023.106405
|
| [4] | Y. Alber, I. Ryazantseva, Nonlinear Ill-posed problems of monotone type, Dordrecht: Springer, 2006. https://doi.org/10.1007/1-4020-4396-1 |
| [5] |
F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear osculattor with damping, Set-Valued Anal., 9 (2001), 3–11. https://doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155
|
| [6] |
F. E. Browder, Nonlinear mapping of nonexpansive and accretive-type in Banach spaces, Bull. Am. Math. Soc., 73 (1967), 875–882. https://doi.org/10.1090/S0002-9904-1967-11823-8 doi: 10.1090/S0002-9904-1967-11823-8
|
| [7] |
J. Y. Bello Cruz, R. Diaz Millan, A variant of forward-backward splitting method for the sum of two monotone operators with new search strategy, Optimization, 64 (2015), 1471–1486. https://doi.org/10.1080/02331934.2014.883510 doi: 10.1080/02331934.2014.883510
|
| [8] | H. H. Bauschke, P. L. Combettes, convex analysis and monotone operator theory in Hilbert space, Berlin: Springer, 2011. https://doi.org/10.1007/978-1-4419-9467-7 |
| [9] | L. C. Ceng, Q. H. Ansari, M. M. Wong, J. C. Yao, Mann type hybrid extragradient method for variational inequalities, variational inclusions and fixed point problems, Fixed Point Theor., 13 (2012), 403–422. |
| [10] |
L. C. Ceng, Q. H. Ansari, J. C. Yao, Viscosity approximation methods for generalized equilibrium problems and fixed point problems, J. Global Optim., 43 (2009), 487–502. https://doi.org/10.1007/s10898-008-9342-6 doi: 10.1007/s10898-008-9342-6
|
| [11] |
W. Cholamjiak, P. Cholamjiak, S. Suantai, An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl., 20 (2018), 42. https://doi.org/10.1007/s11784-018-0526-5 doi: 10.1007/s11784-018-0526-5
|
| [12] |
P. L. Combettes, V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168–1200. https://doi.org/10.1137/050626090 doi: 10.1137/050626090
|
| [13] |
C. E. Chidume, Iterative construction of fixed points for multivalued operators of the monotone type, Appl. Anal., 23 (1986), 209–218. https://doi.org/10.1080/00036818608839641 doi: 10.1080/00036818608839641
|
| [14] |
M. Dilshad, F. M. Alamrani, A. Alamer, E. Alshaban, M. G. Alshehri, Viscosity-type inertial iterative methods for variational inclusion and fixed point problems, AIMS Math., 9 (2024), 18553–18573. https://doi.org/10.3934/math.2024903 doi: 10.3934/math.2024903
|
| [15] |
M. Dilshad, M. Akram, M. Nsiruzzaman, D. Filali, A. A Khidir, Adaptive inertial Yosida approximation iterative algorithms for split variational inclusion and fixed point problems, AIMS Math., 8 (2023), 12922–12942. https://doi.org/10.3934/math.2023651 doi: 10.3934/math.2023651
|
| [16] |
V. H Dang, P. K. Anh, D. M. Le, Modified forward-backward splitting method for variational inclusions, 4OR-Q J. Oper. Res., 19 (2021), 127–151. https://doi.org/10.1007/s10288-020-00440-3 doi: 10.1007/s10288-020-00440-3
|
| [17] |
D. Filali, M. Dilshad, L. S. M. Alyasi, M. Akram, Inertial iterative algorithms for split variational inclusion and fixed point problems, Axioms, 12 (2023), 848. https://doi.org/10.3390/axioms12090848 doi: 10.3390/axioms12090848
|
| [18] | F. Facchinei, J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, New York: Springer, 2003. https://doi.org/10.1007/b97543 |
| [19] | K. Geobel, W. A. Kirk, Topics in metric fixed poit theory, Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152 |
| [20] |
M. H. Heydari, S. Rashid, F. Jarad, A numerical method for distributed-order time fractional 2D Sobolev equation, Results Phys., 45 (2023), 106211. https://doi.org/10.1016/j.rinp.2023.106211 doi: 10.1016/j.rinp.2023.106211
|
| [21] |
D. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51 (2015), 311–325. https://doi.org/10.1007/s10851-014-0523-2 doi: 10.1007/s10851-014-0523-2
|
| [22] |
P. L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964–979. https://doi.org/10.1137/0716071 doi: 10.1137/0716071
|
| [23] |
Y. Malitsky, M. K. Tam, A forward-backward splitting method for monotone inclusions without cocoercivity, SIAM J. Optim., 30 (2020), 1451–1472. https://doi.org/10.1137/18M1207260 doi: 10.1137/18M1207260
|
| [24] |
P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
|
| [25] |
A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl., 150 (2011), 275-283. https://doi.org/10.1007/s10957-011-9814-6 doi: 10.1007/s10957-011-9814-6
|
| [26] |
A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), 447–454. https://doi.org/10.1016/S0377-0427(02)00906-8 doi: 10.1016/S0377-0427(02)00906-8
|
| [27] |
A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., 241 (2000), 46–55. https://doi.org/10.1006/jmaa.1999.6615 doi: 10.1006/jmaa.1999.6615
|
| [28] |
W. Mann, Mean value methods in iteration, Amer. Math. Soc., 4 (1953), 506-510. https://doi.org/10.2307/2032162 doi: 10.2307/2032162
|
| [29] |
F. O. Nwawuru, O. K. Nrain, M. Dilshad, J. N. Ezeora, Splitting method involving two-step inertial for solving inclusion and fixed point problems with applications, Fixed Point Theory Algorithms Sci. Eng., 2025 (2025), 8. https://doi.org/10.1186/s13663-025-00781-w doi: 10.1186/s13663-025-00781-w
|
| [30] |
Z. Opial, Weak covergence of the sequence of successive approximations of nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0
|
| [31] |
G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), 383–390. https://doi.org/10.1016/0022-247X(79)90234-8 doi: 10.1016/0022-247X(79)90234-8
|
| [32] |
S. Reich, A. Taiwo, Fast hybrid iterative schemes for solving variational inclusion problems, Math. Method. Appl. Sci., 46 (2023), 17177–17198, . https://doi.org/10.1002/mma.9494 doi: 10.1002/mma.9494
|
| [33] |
H. Raguet, J. Fadili, G. Peyre, A generalized forward-backward splitting, SIAM J. Imaging Sci., 6 (2013), 1199–1226. https://doi.org/10.1137/120872802 doi: 10.1137/120872802
|
| [34] |
R. T. Rockafellar, On the maximality of subdifferential mappings, Pac. J. Math., 33 (1970), 209–216. https://doi.org/10.2140/PJM.1970.33.209 doi: 10.2140/PJM.1970.33.209
|
| [35] |
Y. Song, Iterative approximation to common fixed points of a countable family of nonexpansive mappings, Appl. Anal., 86 (2007), 1329–1337. https://doi.org/10.1080/00036810701556144 doi: 10.1080/00036810701556144
|
| [36] |
A. Taiwo, O. T. Mewomo, A. Gibali, A simple strong convergent method for solving split common fixed point problems, J. Nonlinear Var. Anal., 5 (2021), 777–793. https://doi.org/10.23952/jnva.5.2021.5.10 doi: 10.23952/jnva.5.2021.5.10
|
| [37] |
D. Thong, N. Vinh, Inertial methods for fixed point problems and zero point problems of the sum of two monotone mappings, Optimization, 68 (2019), 1037–1072. https://doi.org/10.1080/02331934.2019.1573240 doi: 10.1080/02331934.2019.1573240
|
| [38] |
P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446. https://doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
|
| [39] |
K. K. Tan, H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301–308. https://doi.org/10.1006/jmaa.1993.1309 doi: 10.1006/jmaa.1993.1309
|
| [40] |
Y. Tang, H. Lin, A. Gibali, Y. J. Cho, Convegence analysis and applicatons of the inertial algorithm solving inclusion problems, Appl. Numer. Math., 175 (2022), 1–17. https://doi.org/10.1016/j.apnum.2022.01.016 doi: 10.1016/j.apnum.2022.01.016
|
| [41] |
H. K. Xu, Another control condition in an iterative maethod for nonexpansive mappings, Bull. Aust. Math. Soc., 65 (2002), 109–113. https://doi.org/10.1017/S0004972700020116 doi: 10.1017/S0004972700020116
|
| [42] |
I. Yamada, The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, Stud. Comput. Math., 8 (2001), 473–504. https://doi.org/10.1016/S1570-579X(01)80028-8 doi: 10.1016/S1570-579X(01)80028-8
|